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Scale-similar structures of homogeneous
isotropic non-mirror-symmetric turbulence
based on the Lagrangian closure theory

Kazuhiro Inagaki†

Institute of Industrial Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8505, Japan

(Received 13 November 2020; revised 30 July 2021; accepted 4 August 2021)

We investigate the effect of helicity on the scale-similar structures of homogeneous
isotropic and non-mirror-symmetric turbulence based on the Lagrangian renormalised
approximation (LRA), which is a self-consistent closure theory proposed by Kaneda
(J. Fluid Mech., vol. 107, 1981, pp. 131–145). In this study, we focus on the time scale
representing the scale-similar range. For the LRA, the Lagrangian two-time velocity
correlation and response function determine the representative time scale. The LRA
predicts that both the Lagrangian two-time velocity correlation and response function
equation do not explicitly depend on helicity. We assume the extended scale-similar
spectra and time scale by considering the helicity dissipation rate. Considering the
small-scale structures, the requirements for the energy and helicity fluxes and response
function equation to be scale similar, yield the conventional inertial-range power laws
and provide the energy and helicity spectra ∝ k−5/3 and the time scale ∝ ε−1/3k−2/3,
where ε and k denote the energy dissipation rate and wavenumber, respectively. Notably,
energy flux can be scale similar only when kH/k � 1, where kH = εH/ε and εH denotes
the helicity dissipation rate. This condition makes the energy cascade process in the
scale-similar range completely independent of helicity. We also investigate the localness of
the interscale interaction in the energy and helicity cascades for the LRA. We demonstrate
that the helicity cascade is slightly non-local in scales compared with the energy cascade.
This study provides a foundation on the modelling of non-mirror-symmetric turbulent
flows.
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K. Inagaki

1. Introduction

In three-dimensional (3-D) hydrodynamic turbulent flows, the scale-similarity law
proposed by Kolmogorov (1941b) (which we will refer to as K41) has been foundational
to turbulence theories. However, its validity or universality is still under discussion. A
primitive element that can possibly break Kolmogorov’s picture may be the breakage
of mirror symmetry, where pseudoscalar quantities such as helicity possess finite values
and play some physical roles. Helicity is defined by the volume average of the inner
product of velocity and vorticity, and in addition to the kinetic energy, it is an inviscid
invariant of the Navier–Stokes equations in three dimensions (Moffatt 1969). Owing to
the spontaneous appearance of helicity in turbulent flows subject to rotation (Marino
et al. 2013; Deusebio & Lindborg 2014; Ranjan & Davidson 2014; Duarte et al. 2016;
Inagaki & Hamba 2018), in such flows the effect of the breakage of mirror symmetry
should be considered in small scales of Kolmogorov’s locally isotropic turbulence. The
existence of two different inviscid invariants is reminiscent of the two-dimensional (2-D)
turbulence, in which energy and enstrophy are, respectively, conserved in an inviscid
condition. In an analogy with the 2-D turbulence, Brissaud et al. (1973) suggested several
scale-similar structures in helical turbulence. One of these structures is the pure helicity
cascade range, where the energy spectrum yields E(k) ∝ (εH)2/3k−7/3. Another is the
pure energy cascade range, where E(k) ∝ ε2/3k−5/3 with an inverse cascade. Notably, the
helicity spectra in these ranges satisfy EH(k) ∝ kE(k). Here, E(k)[= 〈|ũ(k)|2〉/(2πk2)]
and EH(k){= Re[〈ũ(k) · ω̃∗(k)〉]/(4πk2)} denote the energy and helicity spectra, ũ and ω̃
are the Fourier coefficients of velocity and vorticity, and where the superscript ∗, 〈·〉 and
k denote the complex conjugate, the statistical average involving the volume average and
the wavenumber, respectively. Here ε[= 2ν

∫∞
0 dk k2E(k)] and εH[= 2ν

∫∞
0 dk k2EH(k)],

respectively, denote the energy and helicity dissipation rates, where ν is the kinematic
viscosity.

Recently, several studies numerically observed the pure helicity cascade or inverse
energy cascade by attaining the maximally helical condition |EH(k)| = 2kE(k), adopting
an artificial cutoff of the nonlinear interaction of mixed-sign helical modes (Biferale,
Musacchio & Toschi 2012, 2013; Sahoo, Bonaccorso & Biferale 2015), or employing a
special forcing (Kessar et al. 2015; Stepanov et al. 2015; Plunian et al. 2020). However, it
is well known that the maximally helical condition |EH(k)| = 2kE(k) is not persistent in
the dynamics of Navier–Stokes equations and that the turbulent field successively restores
the mirror symmetry at small scales via the cascade process (Kraichnan 1973; Chen, Chen
& Eyink 2003a). In contrast to the 2-D turbulence, where the energy and enstrophy spectra
are connected by an equality, the helicity spectrum is bounded by an inequality, which is
referred to as the realisability condition (Moffatt 1978),

|EH(k)| ≤ 2kE(k). (1.1)

Therefore, the helicity spectrum can be sufficiently small at different scales from the
helicity injection scale. In the aforementioned studies on pure helicity cascade or
inverse energy cascade, some modification of the nonlinear interaction or spacial forcing
are essential elements for realising the maximally helical condition |EH(k)| = 2kE(k)
(Biferale et al. 2012, 2013; Kessar et al. 2015; Sahoo et al. 2015; Stepanov et al. 2015;
Plunian et al. 2020). In this regard, it would be beneficial to investigate the statistical
similarity achieved by the pure nonlinearity of the Navier–Stokes equations.

In this study, we focus on the representative time scale to investigate the scale-similar
structures of non-mirror-symmetric turbulence. The scale-similar spectra of energy and
helicity are closely connected to the constant energy and helicity fluxes (Kraichnan 1971;
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Scale-similar structures of non-mirror-symmetric turbulence

Brissaud et al. 1973),

Π = ε ∝ ωkkE(k), ΠH = εH ∝ ωkkEH(k), (1.2a,b)

where Π , ΠH and ωk are the interscale energy and helicity fluxes and inverse of a
representative time scale, respectively. Notably, the constant energy flux agrees with
Kolmogorov’s four-fifths law (Kolmogorov 1941a; Frisch 1995). Similarly, the constant
helicity flux agrees with the skew-symmetric third-order velocity correlation (Chkhetiani
1996; L’vov, Podivilov & Procaccia 1997; Gomez, Politano & Pouquet 2000; Kurien
2003). By employing the conventional turbulence time scale ωk ∝ ε1/3k2/3, (1.2a,b)
provides the conventional simultaneous or joint energy and helicity cascades range spectra
(Brissaud et al. 1973),

E(k) = CKε
2/3k−5/3, EH(k) = CHε

Hε−1/3k−5/3, (1.3a,b)

where CK and CH are constants. The spectra provided by (1.3a,b) are observed in the
numerical simulations of homogeneous turbulence (Borue & Orszag 1997; Chen et al.
2003a,b; Mininni, Alexakis & Pouquet 2006; Baerenzung et al. 2008; Sahoo, De Pietro &
Biferale 2017), an observation of an atmospheric boundary layer (Koprov et al. 2005), and
a direct numerical simulation (DNS) of the Ekman boundary layer (Deusebio & Lindborg
2014). It should be noted that Linkmann (2018) suggested the possibility of helicity altering
the value of CK , which poses a question on the universality of Kolmogorov’s theory. In the
magnetohydrodynamic turbulence case, the dominance of the time scale of a large-scale
magnetic field supports the prediction that both the kinetic and magnetic energy spectra
are proportional to k−3/2 (Iroshnikov 1964; Kraichnan 1965a; Yoshida & Arimitsu 2007).
Even in the hydrodynamic case, Kurien, Taylor & Matsumoto (2004a) suggested that
the dominance of the helicity-related time scale ω2

k ∝ |EH(k)|k2 yields slightly shallow
spectra,

E(k) ∝ ε(εH)−1/3k−4/3, EH(k) ∝ (εH)2/3k−4/3. (1.4a,b)

They suggested that these spectra offer an interpretation of the bottleneck effect at
small scales. Herbert et al. (2012) observed another form of spectra that agree with the
non-local effect of the large-scale shear-time scale in a von Kármán flow. Therefore, the
representative time scale and the localness of the interscale interaction are the basis of
scale-similar structures in turbulence.

The two-time velocity correlation and response function are relevant tools for
obtaining a time scale without heuristic modelling. The response function was first
introduced to turbulence by Kraichnan (1959) in a statistical closure theory referred
to as the direct interaction approximation (DIA). For a pioneering analysis of the
non-mirror symmetric turbulence based on a closure theory, André & Lesieur (1977)
investigated the effect of helicity via the eddy-damped quasi-normal Markovian (EDQNM)
approximation. Recently, Briard & Gomez (2017) discussed the detailed dynamics of
helicity and its dissipation rate via EDQNM. However, it should be noted that the
EDQNM phenomenologically employs the eddy-damping time scale ω2

k ∝ ∫ k
0 dp p2E( p)

(Lesieur 2008). In contrast, the DIA dynamically determines the time scale via the
two-time velocity correlation and response function. To obtain the closure equations
consistent with the Kolmogorov spectrum, it is necessary to adopt the Lagrangian
description (Kraichnan 1964, 1965b; Kaneda 1981). In this study, we adopt the Lagrangian
renormalised approximation (LRA) developed by Kaneda (1981). The LRA is analytically
more convenient than the abridged Lagrangian history DIA (ALHDIA) developed by
Kraichnan (1965b). This study may be the first to investigate the effect of helicity on
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K. Inagaki

the scale-similar structures in homogeneous turbulence based on a self-consistent closure
theory independent of any ad hoc adjusting parameters.

The rest of this paper is organised as follows. In § 2, we present some statistical
properties of the Navier–Stokes equations and the closure equations of the LRA. In § 3,
we discuss the scale-similar structures of LRA equations in the homogeneous isotropic
and non-mirror-symmetric case. In this section, we also investigate the localness of
the interscale interaction based on the closure equations. In § 4, we further discuss the
properties of the closure equations and their relations with previous studies. Conclusions
are provided in § 5.

2. Properties of the Navier–Stokes and closure equations

2.1. Basic equations for energy and helicity spectra
The Navier–Stokes equations for an incompressible fluid in Fourier space read(

∂

∂t
+ νk2

)
ũi(k, t) = −iMij�(k)

∫
d3 p

∫
d3q δ(k − p − q)ũj(p, t)ũ�(q, t), (2.1)

where ũ(k, t) is the Fourier coefficient of the velocity field that satisfies the solenoidal
condition k · ũ(k, t) = 0, Mij�(k) = [kjPi�(k)+ k�Pij(k)]/2 and Pij(k) = δij − kikj/k2.
The Fourier transformation of a variable f (x, t) and its inverse transformation are defined
by

f (x, t) =
∫

d3k f̃ (k, t) eik·x, f̃ (k, t) = 1
(2π)3

∫
d3x f (x, t) e−ik·x. (2.2a,b)

The equations for energy and helicity spectra, E(k, t) and EH(k, t), yield(
∂

∂t
+ 2νk2

)
E(k, t) = 1

2

∫ ∞

0
dp
∫ ∞

0
dq S(k, p, q, t), (2.3)

(
∂

∂t
+ 2νk2

)
EH(k, t) = 1

2

∫ ∞

0
dp
∫ ∞

0
dq SH(k, p, q, t), (2.4)

where

S(k, p, q, t) = −16π2kpqΔkpqMij�(k)Im[〈ũi(k, t)ũj(−p, t)ũ�(−q, t)〉], (2.5)

SH(k, p, q, t) = −16π2kpqΔkpq
(
εijmk� + εi�mkj

)
kmRe[〈ũi(k, t)ũj(−p, t)ũ�(−q, t)〉],

(2.6)

and Δkpq is unity only when k, p and q can form the sides of a triangle. The conservation
of energy and helicity are guaranteed by the detailed balance (see e.g. Waleffe 1992)

S(k, p, q, t)+ S( p, q, k, t)+ S(q, k, p, t) = 0, (2.7)

SH(k, p, q, t)+ SH( p, q, k, t)+ SH(q, k, p, t) = 0. (2.8)

Therefore, we have∫ ∞

0
dk
∫ ∞

0
dp
∫ ∞

0
dq S(k, p, q, t) = 0,

∫ ∞

0
dk
∫ ∞

0
dp
∫ ∞

0
dq SH(k, p, q, t) = 0.

(2.9a,b)
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Scale-similar structures of non-mirror-symmetric turbulence

Interscale energy flux Π(k, t) and helicity flux ΠH(k, t) are defined by

Π(k, t) = 1
2

∫ ∞

k
dk′
∫ ∞

0
dp′
∫ ∞

0
dq′S(k′, p′, q′, t)

= −1
2

∫ k

0
dk′
∫ ∞

0
dp′
∫ ∞

0
dq′ S(k′, p′, q′, t), (2.10)

ΠH(k, t) = 1
2

∫ ∞

k
dk′
∫ ∞

0
dp′
∫ ∞

0
dq′ SH(k′, p′, q′, t)

= −1
2

∫ k

0
dk′
∫ ∞

0
dp′
∫ ∞

0
dq′ SH(k′, p′, q′, t), (2.11)

where we utilise (2.9a,b).
Considering the maximally helical or homochiral condition,

EH(k, t) = 2kE(k, t). (2.12)

This condition holds for the Beltrami velocity field, which is defined by ik × ũ(k, t) =
kũ(k, t). For the Beltrami velocity field, SH(k, p, q, t) satisfies

SH(k, p, q, t) = 2kS(k, p, q, t), (2.13)

which denotes a maximally helical condition for the third moment. Using (2.13), the
detailed balance for helicity (2.8) yields

kS(k, p, q, t)+ pS( p, q, k, t)+ qS(q, k, p, t) = 0. (2.14)

Similarly, the Navier–Stokes equations in two dimensions provide the equation
k2S(k, p, q, t)+ p2S( p, q, k, t)+ q2S(q, k, p, t) = 0, which guarantees the conservation
of enstrophy. Waleffe (1992) analysed the statistical properties of the Navier–Stokes
equations by employing the scale-similar structure and the two detailed balance (2.7)
and (2.14), which verified that the nonlinear interaction of the velocity fields comprising
the same sign helical modes can trigger an inverse transfer of energy. However, it is
demonstrated that the turbulent field successively restores the mirror symmetry at small
scales via the cascade process (Kraichnan 1973; Chen et al. 2003a). Hence, the maximally
helical condition (2.12) is not persistent in the dynamics of the Navier–Stokes equations.
The relationship between this tendency and the property of the closure equations is
discussed in Appendix A.

2.2. Properties of closure equations
In this study, we adopt the LRA (Kaneda 1981) as a closure approximation. For details on
the closure, see Kaneda (1981, 2007). A unique feature of LRA is in introducing a mapping
function from Eulerian to Lagrangian velocities,

v(x, s | t) =
∫

d3x′ ψ(x′, t | x, s)u(x′, t), (2.15)

where v(x, s | t) denotes the Lagrangian velocity and ψ(x′, t | x, s) denotes the Lagrangian
position function that obeys

∂

∂t
ψ(x, t | x′, s)+ ui(x, t)

∂

∂xi
ψ(x, t | x′, s) = 0, (2.16)
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withψ(x, s | x′, s) = δ(x − x′). Namely, v(x, s | t) denotes the velocity of the fluid element
at time t which was at x at time s. Notably, the Lagrangian velocity satisfies

v(x, s | s) = u(x, s). (2.17)

For the representative variables, the LRA adopts the Lagrangian two-time velocity
correlation Qij(k, t, s) and the mean Lagrangian response function Gij(k, t, s). They are
defined by

Qij(k, t, s)δ(k + k′) = Pia(k)
〈
ṽa(k, s | t)ũj(k′, s)

〉
, (2.18)

Gij(k, t, s)δ(k − k′) = Pia(k)Pjb(k)
〈
δṽa(k, s | t)

δf̃b(k′, s)

〉
, (2.19)

where δ f̃ (k, t) denotes an infinitesimal forcing driving an infinitesimal perturbation in the
Eulerian velocity field δũ(k, t); δũ(k, t) obeys(

∂

∂t
+ νk2

)
δũi(k, t) = −2iMij�(k)

∫
d3p

∫
d3q δ(k − p − q)ũj(p, t)δũ�(q, t)

+ Pij(k)δf̃j(k, t). (2.20)

The initial condition for the response function Gij(k, s, s) is determined as follows. Based
on (2.17) and (2.19), we have

Gij(k, s, s)δ(k − k′) = Pia(k)Pjb(k)
〈
G̃E

ab(k, s | k′, s)
〉
, (2.21)

where

G̃E
ij (k, t | k′, s) = δũi(k, t)

δf̃j(k′, s)
(2.22)

and thus,

δũi(k, t) =
∫ t

t0
ds
∫

d3k′ G̃E
ij(k, t | k′, s)δf̃j(k′, s), (2.23)

where t0 is the initial time. G̃E
ij(k, t | k′, s) denotes the Eulerian response function that

obeys (
∂

∂t
+ νk2

)
G̃E

ij (k, t | k′, s) = −2iMi�m(k)
∫

d3p
∫

d3q δ(k − p − q)

× ũ�(p, t)G̃E
mj(q, t | k′, s). (2.24)

The time derivative of the right-hand side of (2.23) must correspond to (2.20), which
requires

G̃E
ij(k, t | k′, t) = Pij(k)δ(k − k′). (2.25)

Accordingly, the initial condition for the mean Lagrangian response function yields

Gij(k, s, s) = Pij(k). (2.26)

Notably, (2.21) should hold even when we adopt another type of response function as
the representative. Hence, the initial condition (2.26) is general for the closure theories
employing the response function.
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Scale-similar structures of non-mirror-symmetric turbulence

For the LRA, the closure equations yield (Kaneda 1981)

(
∂

∂t
+ 2νk2

)
Qij(k, t, t) = Tij(k, t)+ Tji(−k, t), (2.27)

(
∂

∂t
+ νk2

)
Qij(k, t, s) = −ηia(k, t, s)Qaj(k, t, s) (t > s), (2.28)

(
∂

∂t
+ νk2

)
Gij(k, t, s) = −ηia(k, t, s)Gaj(k, t, s) (t > s), (2.29)

where

Tij(k, t) = Mi�m(k)
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

× [−4Mabc(p)Gma(p, t, s)Q�b(q, t, s)Qjc(−k, t, s)

+ 2Mabc(k)Gja(−k, t, s)Qmc(p, t, s)Q�b(q, t, s)
]
, (2.30)

ηij(k, t, s) = 2
∫

d3p
∫

d3q δ(k − p − q)Pib(k)
qjqbq�qm

q2

∫ t

s
ds′ Q�m(−p, t, s′). (2.31)

For a homogeneous isotropic and non-mirror symmetric case, second-order tensor
variables read

Qij(k, t, s) = 1
2

Pij(k)Q(k, t, s)− i
2
εij�

k�
k2 QH(k, t, s), (2.32)

Gij(k, t, s) = Pij(k)G(k, t, s)− iεij�
k�
k

GH(k, t, s), (2.33)

where Q(k, t, s) and QH(k, t, s) are related to the energy and helicity spectra, respectively,
and are expressed as

Q(k, t, t) = E(k, t)
2πk2 , QH(k, t, t) = EH(k, t)

4πk2 , (2.34a,b)

where Q(k, t, t) and QH(k, t, t) denote the spectral densities of energy and helicity,
respectively.

The trace parts of (2.27)–(2.29) yield the equations for Q(k, t, t), Q(k, t, s) and G(k, t, s),
respectively. Meanwhile, multiplying (2.27)–(2.29) by iεijnkn yields the equations for
QH(k, t, t), QH(k, t, s) and GH(k, t, s), respectively. The resulting equations yield

(
∂

∂t
+ 2νk2

)
Q(k, t, t) = 2π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

∫ t

t0
ds

×
{

kpqbkpq
[
G(k, t, s)Q( p, t, s)− G( p, t, s)Q(k, t, s)

]
Q(q, t, s)

− pq
k

ckpq

[
G(k, t, s)QH( p, t, s)− G( p, t, s)QH(k, t, s)

]
QH(q, t, s)
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+ pq
k

[
bkpqkGH(k, t, s)QH( p, t, s)− ckpqpGH( p, t, s)QH(k, t, s)

]
Q(q, t, s)

− pq
k

ckpq

[
p2

k
GH(k, t, s)Q( p, t, s)− pGH( p, t, s)Q(k, t, s)

]
QH(q, t, s)

}
, (2.35)

(
∂

∂t
+ 2νk2

)
QH(k, t, t) = 2π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

∫ t

t0
ds

×
{

kpqbkpq

[
G(k, t, s)QH( p, t, s)− G( p, t, s)QH(k, t, s)

]
Q(q, t, s)

− pq
k

ckpq

[
p2G(k, t, s)Q( p, t, s)− k2G( p, t, s)Q(k, t, s)

]
QH(q, t, s)

+ kpq
[
bkpqkGH(k, t, s)Q( p, t, s)− ckpqpGH( p, t, s)Q(k, t, s)

]
Q(q, t, s)

− pq
k

ckpq

[
kGH(k, t, s)QH( p, t, s)− pGH( p, t, s)QH(k, t, s)

]
QH(q, t, s)

}
, (2.36)

[
∂

∂t
+ νk2 + η(k, t, s)

]
Q(k, t, s) = 0 (t > s), (2.37)

[
∂

∂t
+ νk2 + η(k, t, s)

]
QH(k, t, s) = 0 (t > s), (2.38)

[
∂

∂t
+ νk2 + η(k, t, s)

]
G(k, t, s) = 0 (t > s), (2.39)

[
∂

∂t
+ νk2 + η(k, t, s)

]
GH(k, t, s) = 0 (t > s), (2.40)

where

η(k, t, s) = k
∫ ∞

0
dq q3J

(q
k

) ∫ t

s
ds′ Q(q, t, s′), (2.41)

J(x) = π

2a4

[
(a2 − 1)2 ln

(
1 + a
|1 − a|

)
− 2a + 10

3
a3
]
, a = 2x

1 + x2 (2.42)

and

bkpq = p
k
(xy + z3), ckpq = k

q
z(x + yz) = k

p
z(1 − y2),

x = p2 + q2 − k2

2pq
, y = q2 + k2 − p2

2qk
, z = k2 + p2 − q2

2kp
.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.43a–e)

Details on the calculations are provided in Appendix B. Hence, for the closure equations,
S(k, p, q, t) and SH(k, p, q, t) in (2.3)–(2.6) read

S(k, p, q, t) = 4π2Δkpq

∫ t

t0
ds kpq

×
{

k2 [(bkpq + bkqp)G(k, t, s)Q( p, t, s)Q(q, t, s)
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Scale-similar structures of non-mirror-symmetric turbulence

− bkpqG( p, t, s)Q(k, t, s)Q(q, t, s)− bkqpG(q, t, s)Q(k, t, s)Q( p, t, s)
]

−
[
(ckpq + ckqp)G(k, t, s)QH( p, t, s)QH(q, t, s)

− ckpqG( p, t, s)QH(k, t, s)QH(q, t, s)− ckqpG(q, t, s)QH(k, t, s)QH( p, t, s)
]

+ k
[
bkpqGH(k, t, s)QH( p, t, s)Q(q, t, s)+ bkqpGH(k, t, s)Q( p, t, s)QH(q, t, s)

− p
k

ckpqGH( p, t, s)QH(k, t, s)Q(q, t, s)− q
k

ckqpGH(q, t, s)QH(k, t, s)Q( p, t, s)
]

− k
[

p2

k2 ckpqGH(k, t, s)Q( p, t, s)QH(q, t, s)+ q2

k2 ckqpGH(k, t, s)QH( p, t, s)Q(q, t, s)

− p
k

ckpqGH( p, t, s)Q(k, t, s)QH(q, t, s)

− q
k

ckqpGH(q, t, s)Q(k, t, s)QH( p, t, s)
]}
, (2.44)

SH(k, p, q, t) = 8π2Δkpq

∫ t

t0
ds kpq

×
{

k2
[
bkpqG(k, t, s)QH( p, t, s)Q(q, t, s)+ bkqpG(k, t, s)Q( p, t, s)QH(q, t, s)

− bkpqG( p, t, s)QH(k, t, s)Q(q, t, s)− bkqpG(q, t, s)QH(k, t, s)Q( p, t, s)
]

− k2
[

p2

k2 ckpqG(k, t, s)Q( p, t, s)QH(q, t, s)+ q2

k2 ckqpG(k, t, s)QH( p, t, s)Q(q, t, s)

− ckpqG( p, t, s)Q(k, t, s)QH(q, t, s)− ckqpG(q, t, s)Q(k, t, s)QH( p, t, s)
]

+ k3
[
(bkpq + bkqp)GH(k, t, s)Q( p, t, s)Q(q, t, s)

− p
k

ckpqGH( p, t, s)Q(k, t, s)Q(q, t, s)− q
k

ckqpGH(q, t, s)Q(k, t, s)Q( p, t, s)
]

− k
[
(ckpq + ckqp)GH(k, t, s)QH( p, t, s)QH(q, t, s)

− p
k

ckpqGH( p, t, s)QH(k, t, s)QH(q, t, s)

− q
k

ckqpGH(q, t, s)QH(k, t, s)QH( p, t, s)
]}
, (2.45)

where we adopt the symmetry in p and q. Equations (2.44) and (2.45) satisfy the detailed
balance provided by (2.7) and (2.8), which is presented in Appendix C.

It should be noted that these triple correlations in the closure do not satisfy the
maximally helical condition for the third moment given by (2.13) even if the energy and
helicity spectra are maximally helical; namely, the closure yields

SH(k, p, q, t) /= 2kS(k, p, q, t), (2.46)
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even if EH(k, t) = 2kE(k, t) at the time t (see also Appendix A). Although this result
is not unique to the LRA, it holds for other closures based on the two-point velocity
correlations such as the EDQNM, DIA and ALHDIA. The fact that the closure equations
are inconsistent with the maximally helical condition is physically plausible. We define
the relative helicity as

ρH(k, t) = EH(k, t)
2kE(k, t)

. (2.47)

The relative helicity must be bounded via the realisability condition (1.1), namely

|ρH(k, t)| ≤ 1. (2.48)

For homogeneous turbulence, it is well known that the relative helicity ρH(k, t) decreases
even when it starts from the maximally helical condition ρH(k, t0) = 1 (Morinishi,
Nakabayashi & Ren 2001). The closure equations follow this property. Actually, the
EDQNM predicts the same tendency (André & Lesieur 1977; Briard & Gomez 2017).
Although some special forcing may realise the maximally helical spectra (Kessar et al.
2015; Stepanov et al. 2015; Plunian et al. 2020), it is beyond the scope of this
study because we focus on the scale-similar structures achieved by the nonlinearity of
the Navier–Stokes equations. Considering this point, the property (2.13) derived from
the Navier–Stokes equations with the Beltrami velocity field possibly holds only for the
subensemble satisfying ik × ũ(k, t) = kũ(k, t).

For the LRA, Q(k, t, s), QH(k, t, s), G(k, t, s) and GH(k, t, s) obey the same equation
as presented in (2.37)–(2.40). The initial condition for the response function (2.26)
yields G(k, s, s) = 1 and GH(k, s, s) = 0. The latter with (2.40) yields GH(k, t, s) = 0.
Therefore, the non-mirror-symmetric part of the response function must disappear for the
LRA. Using the mirror-symmetric part of the response function G(k, t, s), the two-time
velocity correlations are reduced to

Q(k, t, s) = G(k, t, s)Q(k, s, s) (t ≥ s), (2.49)

QH(k, t, s) = G(k, t, s)QH(k, s, s) (t ≥ s), (2.50)

which represent the fluctuation-dissipation theorem (FDT) (Marconi et al. 2008;
Matsumoto et al. 2021). It is a feature of LRA that the FDT holds. It should be noted that
helicity does not directly influence the response function because η(k, t, s), given by (2.41),
is solely determined by the mirror-symmetric part of the velocity correlation. Therefore,
the effect of the breakage of mirror symmetry disappears from the response function
(2.39). Similarly, Kaneda & Gotoh (1991) and Rubinstein & Zhou (1999) demonstrated
that helicity does not affect the Lagrangian two-time velocity correlation. Therefore, we
infer that the breakage of mirror symmetry does not affect both the response function and
Lagrangian two-time velocity correlation for the LRA.

Using (2.49), (2.50) and GH(k, t, s) = 0, the equations for the spectral densities of
energy and helicity (2.35) and (2.36) yield(

∂

∂t
+ 2νk2

)
Q(k, t, t) = 2π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

∫ t

t0
ds G(k, t, s)G( p, t, s)G(q, t, s)

×
{

kpqbkpq
[
Q( p, s, s)− Q(k, s, s)

]
Q(q, s, s)

− pq
k

ckpq

[
QH( p, s, s)− QH(k, s, s)

]
QH(q, s, s)

}
, (2.51)
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Scale-similar structures of non-mirror-symmetric turbulence(
∂

∂t
+ 2νk2

)
QH(k, t, t) = 2π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

∫ t

t0
ds G(k, t, s)G( p, t, s)G(q, t, s)

×
{

kpqbkpq

[
QH( p, s, s)− QH(k, s, s)

]
Q(q, s, s)

− pq
k

ckpq

[
p2Q( p, s, s)− k2Q(k, s, s)

]
QH(q, s, s)

}
. (2.52)

They possess the same form as the EDQNM except for the expression of the relaxation
time. The LRA dynamically determines the relaxation time using the response function
G(k, t, s), whereas the EDQNM phenomenologically employs the eddy damping time
scale (Orszag 1970; Lesieur 2008).

The numerical simulation of the integro-differential equations provided by (2.39), (2.51)
and (2.52) is a primitive approach to investigating the physical properties of the closure
equations. However, the LRA involves time integration in the nonlinear interaction term of
energy and helicity (2.51) and (2.52). Therefore, we have to perform the triple integration
of p, q and s for the numerical simulation of LRA, whereas the EDQNM reduces this
into the double integral of p and q. Consequently, the computation time of LRA increases
proportionally to Nt compared with that of EDQNM, where Nt denotes the number of the
numerical time step. Therefore, the long-time integration of the high Reynolds number
simulation of LRA remains a challenge. For the practical simulations of LRA, reductions
such as Markovianisation (Gotoh, Kaneda & Bekki 1988) and the single-time expression of
the response function with a short time expansion (Kitamura 2020) may be effective. It is
noteworthy that numerical simulations of closure equations are beneficial when we explore
the behaviour of turbulence around the integral and viscous scales. Probably, differences
between EDQNM type models and LRA are even more important around these scales than
in the inertial range. However, in this study, we focus on the scale similarity of the LRA
equations as a first step in understanding the physical properties of the theoretical closure
approximation of turbulence in a non-mirror symmetric case. In future work, we will
perform the numerical simulations of LRA to explore the behaviour of turbulence outside
the similarity range. As will be discussed later, the scale similarity for the simultaneous
energy and helicity cascades requires significantly more extensive scale separation than
the mirror-symmetric case. In this study, we assume long range similarity scalings and
investigate the analytical properties of the LRA for the non-mirror-symmetric case, instead
of numerically solving the closure equations.

3. Scale-similar analysis

3.1. Scale similarity assumptions
Here, we assume the extended scale-similar spectra for energy and helicity (Golbraikh &
Moiseev 2002; Golbraikh 2006; Kessar et al. 2015),

E(k) = C(n)K ε7/3−n(εH)−5/3+nk−n, EH(k) = C(m)H ε4/3−m(εH)−2/3+mk−m, (3.1a,b)

where C(n)K and C(m)H are constants expected to be universal. In addition, the scale-similar
time scale reads

ω−1
k = ε1/3−�(εH)−2/3+�k−�. (3.2)

Considering the simultaneous cascades of energy and helicity, an additional internal
wavenumber or length scale exists (Moiseev & Chkhetiani 1996):

kH = εH/ε. (3.3)
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According to K41 (Kolmogorov 1941b), we assume that the field is approximately
statistically steady in the inertial range. In such a case, the spectra and response function
are reduced to

Q(k, t, t) = Q(k), QH(k, t, t) = QH(k), G(k, t, s) = G(k, t − s) = G(ωk(t − s)).
(3.4a–c)

One may consider that the scale-similar spectra (3.1a,b) should have the lower and upper
bounds klower and kupper, and the response function equation and energy and helicity fluxes
are affected from outside the scale-similar range such as the energy-containing and viscous
ranges. In the following analyses, the wavenumber variables of integration are normalised
by the wavenumber k that lies in the similarity range. In such a case, the integral region
accompanied by the similarity laws (3.1a,b), (3.2) and (3.4a–c) extends to the whole
wavenumber range in the limit klower/k → 0 and kupper/k → ∞. If the contributions from
outside the similarity range vanish in the limit, one can justify this similarity analysis that
the response function equation and energy and helicity fluxes are determined solely by the
contributions from the similarity range. Details for the condition for the contributions from
outside the similarity range to vanish are given in the supplementary material available
at https://doi.org/10.1017/jfm.2021.708. The following scale-similarity analysis considers
the situation that the scale-similar spectra extend to a sufficiently wide range that allows
for the assumption klower/k � 1 and kupper/k � 1. Besides, if distant interactions such
expressed by the contributions from the wavenumber ∼ klower or kupper are not negligible,
the wavenumber integral can diverge and this similarity analysis would lose its meaning.
We will discuss the conditions for these integrals to converge later.

The realisability condition (1.1) or (2.48) requires

|ρH(k)| =
∣∣∣∣∣ C(m)H

2C(n)K

(
εH

kε

)1−n+m
∣∣∣∣∣ =

∣∣∣∣∣ C(m)H

2C(n)K

(
kH

k

)1−n+m
∣∣∣∣∣ ≤ 1. (3.5)

The maximally helical condition corresponds to 1 − n + m = 0 and C(m)H = 2C(n)K .
However, the maximally helical condition is possibly incompatible with the closure
equations in the inertial range in the sense that the closure equations yield (2.46), whereas
the Navier–Stokes equations yield (2.13) in this condition. Besides, the relative helicity
usually decreases due to the nonlinear interaction (Kraichnan 1973; Chen et al. 2003a). In
several fundamental turbulent flows, the cascade directions of energy and helicity in the
simultaneous cascade range (1.3a,b) are both forward (Borue & Orszag 1997; Chen et al.
2003a,b; Mininni et al. 2006; Baerenzung et al. 2008; Deusebio & Lindborg 2014; Sahoo
et al. 2015; Alexakis 2017). Therefore, we consider the scale-similar structures at small
scales and assume

kH < k. (3.6)

The condition provided by (3.6) is consistent with the concept of the locally isotropic
turbulence presented by K41 , which considers small-scale structures. For the kH > k case,
we provide a brief discussion in § 4.4. The realisability (3.5) accompanied by (3.6) requires
the exponent of the relative helicity on kH/k to be positive,

1 − n + m > 0. (3.7)

In this case, a lower bound of the wavenumber that involves kH exists for the helicity
spectrum to satisfy the realisability condition of (1.1) or (3.5). Furthermore, we have
to assume that klower/kL and kL/kH remain finite for the scale-similarity analysis to be
reasonable, where kL denotes the inverse of the integral length scale (see supplementary
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Scale-similar structures of non-mirror-symmetric turbulence

material). The ratio klower/kL is expected to increase if the helicity is injected at large
scales because the helicity hinders the energy transfer to small scales (André & Lesieur
1977; Morinishi et al. 2001; Kessar et al. 2015; Stepanov et al. 2015). Nevertheless,
several numerical simulations of homogeneous turbulence suggest that the relative helicity
ρH(k) rapidly decreases almost proportional to k−1 as it goes away from the integral
scale kL (André & Lesieur 1977; Borue & Orszag 1997; Mininni et al. 2006; Baerenzung
et al. 2008), which suggests that klower/kL will remain finite. Besides, several numerical
simulations suggest that kL/kH � O(1) (Borue & Orszag 1997; Baerenzung et al. 2008;
Mininni & Pouquet 2009; Deusebio & Lindborg 2014). However, further verification is
needed to evaluate the ratios klower/kL and kL/kH in more general helical turbulent flows. In
this study, we assume that klower/kL and kL/kH remain finite and do not explicitly consider
the lower bound of the scale-similar range involving klower or kH .

3.2. Response function
Substituting (3.1a,b), (3.2) and (3.4a–c) into the response function (2.39) in an inviscid
condition, we have

∂

∂t
G(ωk(t − s)) = −k

∫ ∞

0
dq q3J(q/k)

∫ t

s
ds′ G((q/k)�ωk(t − s′))

× C(n)K
2π

ε7/3−n(εH)−5/3+nq−n−2G(ωk(t − s)). (3.8)

Setting γ τ = ωk(t − s), γ σ = ωk(t − s′) and γ = (2π/C(n)K )1/2, we obtain

∂

∂τ
Ḡ(τ ) = −(kH/k)−3+n+2�

∫ ∞

0
dw w−n+1J(w)

∫ τ

0
dσ Ḡ(w�σ )Ḡ(τ ), (3.9)

where Ḡ(τ ) = G(γ τ) and w = q/k. For (3.9) to be explicitly independent of the
wavenumber k, the exponent of kH/k must be zero, namely

− 3 + n + 2� = 0. (3.10)

Accordingly, we have

∂

∂τ
Ḡ(τ ) = −

∫ ∞

0
dw w2�−2J(w)

∫ τ

0
dσ Ḡ(w�σ )Ḡ(τ ). (3.11)

Here, � should be determined by another constraint, for example, the constant energy
flux. If the w integral in (3.11) diverges, this scale-similarity analysis would lose its
meaning. For the DIA, the wavenumber integral of the Eulerian response function equation
diverges at low wavenumber regions when we assume the simplified inertial range
response function as well as the Kolmogorov energy spectrum (Leslie 1971). Note that
� < 0 indicates that the small-scale velocity fluctuations exhibit longer time scales than
the large scales, which may be unphysical. Hence, we consider � ≥ 0. We can confirm
that J(x) ≤ (16π/15)x for x ≤ 1 and its asymptote at x � 1 yields J(x) = (16π/15)x +
O(x3) (Kaneda 1986). Therefore, for � = 0, the w integral in (3.11) diverges at w � 1.
We decompose the w integration in (3.11) into w ≤ 1 and w ≥ 1. For � > 0 and w ≤ 1,
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we have ∫ 1

0
dw w2�−2J(w)

∫ τ

0
dσ Ḡ(w�σ )

≤
∫ 1

0
dw w2�−2 × 16π

15
w ×

∫ τ

0
dσ × 1 = 16π

15

∫ 1

0
dw w2�−1τ, (3.12)

because Ḡ(τ ) ≤ 1. Therefore, the left-hand side of (3.12) converges for a finite τ when
� > 0. By putting ζ = w�σ , (3.11) yields

∂

∂τ
Ḡ(τ ) = −

∫ ∞

0
dw w�−2J(w)

∫ w�τ

0
dζ Ḡ(ζ )Ḡ(τ ). (3.13)

Then, for w ≥ 1 with � > 0, we have∫ ∞

1
w�−2J(w)

∫ w�τ

0
dζ Ḡ(ζ )

≤
∫ ∞

1
w�−2 × 16π

15
w−1 ×

∫ ∞

0
dζ Ḡ(ζ ) =

∫ ∞

1

16π

15
w�−3

∫ ∞

0
dζ Ḡ(ζ ), (3.14)

where we utilise J(x) = J(1/x) ≤ (16π/15)/x for x ≥ 1 and
∫ w�τ

0 dζ Ḡ(ζ ) ≤ ∫∞
0 dζ Ḡ(ζ ).

Because
∫∞

0 dζ Ḡ(ζ ) is finite for a physically reasonable Ḡ(τ ), the left-hand side of (3.14)
converges when � < 2. Consequently, the condition for the w integral in (3.11) to converge
yields 0 < � < 2.

3.3. Energy flux
The most significant relation in turbulence statistics may be Kolmogorov’s four-fifths law
(Kolmogorov 1941a; Frisch 1995),〈

[ΔuL(x, r, t)]3
〉
= −4

5
εr, (3.15)

where ΔuL(x, r, t) = Δu(x, r, t) · r/r and Δu(x, r, t) = u(x + r, t)− u(x, t). Notably,
owing to the complete separation of the longitudinal third moment equation from the
non-mirror symmetric contributions, the four-fifths law (3.15) holds even when the mirror
symmetry is broken and the flow involves non-zero helicity (L’vov et al. 1997; Gomez
et al. 2000; Kurien 2003). As demonstrated by Frisch (1995), the four-fifths law described
in physical space agrees with the constant energy flux in Fourier space, namely Π = ε,
where Π is defined by (2.10). Here, we investigate the scale-similar structure under the
constant energy flux.

Substituting (3.1a,b), (3.2) and (3.4a–c) into the energy flux (2.10) yields (see Kraichnan
1966; Leslie 1971; Kaneda 1986)

Π(k) = 4π2
∫ ∞

k
dk′
∫ k

0
dp′
∫ k′+p′

max( p′,k′−p′)
dq′

×
∫ t

t0
ds G(ωk′(t − s))G(ωp′(t − s))G(ωq′(t − s))

×
⎧⎨
⎩k′3p′q′

⎡
⎣(bk′p′q′ + bk′q′p′)

(
C(n)K
2π

ε7/3−n(εH)−5/3+n

)2

p′−n−2q′−n−2
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− bk′p′q′

(
C(n)K
2π

ε7/3−n(εH)−5/3+n

)2

k′−n−2q′−n−2

− bk′q′p′

(
C(n)K
2π

ε7/3−n(εH)−5/3+n

)2

k′−n−2p′−n−2

⎤
⎦

− k′p′q′
⎡
⎣(ck′p′q′ + ck′q′p′)

(
C(m)H
4π

ε4/3−m(εH)−2/3+m

)2

p′−m−2q′−m−2

− ck′p′q′

(
C(m)H
4π

ε4/3−m(εH)−2/3+m

)2

k′−m−2q′−m−2

− ck′q′p′

(
C(m)H
4π

ε4/3−m(εH)−2/3+m

)2

k′−m−2p′−m−2

⎤
⎦
⎫⎬
⎭ . (3.16)

Setting p′ = k′r, q′ = k′w, k′ = k/v, t0 → −∞, and γ τ = ωk′(t − s), we obtain

Π(k) = 4π2

(
C(n)K
2π

)3/2

(kH/k)−4+2n+�ε
∫ 1

0
dv
∫ v

0
dr
∫ 1+r

max(r,1−r)
dw

×
∫ ∞

0
dτ Ḡ(τ )Ḡ(r�τ )Ḡ(w�τ )v−5+2n+�

×
⎧⎨
⎩
[
(b1rw + b1wr)r−n−1w−n−1 − b1rwrw−n−1 − b1wrr−n−1w

]

− v2(1−n+m)

(
C(m)H

2C(n)K

)2

(kH/k)2(1−n+m)

×
[
(c1rw + c1wr)r−m−1w−m−1 − c1rwrw−m−1 − c1wrr−m−1w

]⎫⎬
⎭ . (3.17)

Considering the conditions in (3.6) and (3.7), the first line in {·} should be the leading
terms. In such a case, the constant energy flux independent of k requires

− 4 + 2n + � = 0. (3.18)

Hence, we have

Π(k) = 4π2

(
C(n)K
2π

)3/2

ε

∫ 1

0
dv
∫ v

0
dr
∫ 1+r

max(r,1−r)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(r4−2nτ)Ḡ(w4−2nτ)

× v−1

⎧⎨
⎩(b1rw + b1wr)r−n−1w−n−1 − b1rwrw−n−1 − b1wrr−n−1w
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− v2(1−n+m)

(
C(m)H

2C(n)K

)2

(kH/k)2(1−n+m)

×
[
(c1rw + c1wr)r−m−1w−m−1 − c1rwrw−m−1 − c1wrr−m−1w

]⎫⎬
⎭ . (3.19)

Because we assume (3.7), the integration of (3.19) by parts on v yields

Π(k) = 4π2

(
C(n)K
2π

)3/2

ε

∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−2nτ)Ḡ(w4−2nτ)

×
⎧⎨
⎩ln

(
1
v

)[
(b1vw + b1wv)v

−n−1w−n−1 − b1vwvw−n−1 − b1wvv
−n−1w

]

− 1
2(1 − n + m)

(1 − v2(1−n+m))

(
C(m)H

2C(n)K

)2

(kH/k)2(1−n+m)

×
[
(c1vw + c1wv)v

−m−1w−m−1 − c1vwvw−m−1 − c1wvv
−m−1w

]⎫⎬
⎭ . (3.20)

Equation (3.20) still depends on k via the two lines from the bottom in {·}. Because we
consider (3.7), the requirement for Π(k) to be independent of k yields kH/k � 1. This
suggests that the constant energy flux holds only when the relative helicity is negligible,
|ρH(k)| � 1. Otherwise, the energy flux depends on the wavenumber k, which conflicts
with the constant energy flux or the four-fifths law (3.15). The wavenumber-dependent
energy flux also conflicts with the statistical steadiness of the energy spectrum. Using
(2.3) and (2.10), the energy spectrum equation in an inviscid range reads

∂

∂t
E(k, t) = − ∂

∂k
Π(k, t). (3.21)

Therefore, if Π depends on k, E(k, t) must depend on the time t, which conflicts with
the assumption of the statistical steadiness of the inertial range. Even if the scale-similar
spectra are explicitly bounded by kH , contributions from k ≤ kH are expected to vanish at
kH/k � 1, the same as the case of klower (see supplementary material). If the contributions
from k ≤ kH are negligible, we need not explicitly consider kH as a lower bound of the
scale-similar helicity spectrum.

As discussed in § 3.2 for the response function, this scale-similarity analysis for the
energy flux would also lose its meaning if the wavenumber integral in (3.20) diverges.
According to Kraichnan (1966), if the energy transfer is effectively local in wavenumber,
the wavenumber integrations converge in a manner that permits the sole contribution of
the inertial-range wavenumbers. We readily observe that the integrand of (3.20) is possibly
singular at v = 0 for n > 0 and m > 0. The asymptotic analysis at v � 1 yields (for the
asymptotic analysis of geometrical factors refer to, for example, Leslie (1971) and Gotoh
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(1998))∫ 1+v

1−v
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−2nτ)Ḡ(w4−2nτ)

× ln
(

1
v

)[
(b1vw + b1wv)v

−n−1w−n−1 − b1vwvw−n−1 − b1wvv
−n−1w

]

∝ ln
(

1
v

)[
v−n+2 + O(v−n+3)

]
, (3.22)

∫ 1+v

1−v
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−2nτ)Ḡ(w4−2nτ)

× (1 − v2(1−n+m))
[
(c1vw + c1wv)v

−m−1w−m−1 − c1vwvw−m−1 − c1wvv
−m−1w

]
∝ v−m+2 + O(v−m+3). (3.23)

Therefore, the integral of the energy-related part converges for n < 3 and that of the
helicity-related part converges for m < 3. When m < 3 and kH/k � 1, (3.20) yields

Π = 4π2

(
C(n)K
2π

)3/2

ε

∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−2nτ)Ḡ(w4−2nτ)

× ln
(

1
v

)[
(b1vw + b1wv)v

−n−1w−n−1 − b1vwvw−n−1 − b1wvv
−n−1w

]
. (3.24)

For � = 4 − 2n < 0, it may be unphysical as discussed in § 3.2. Considering the condition
that the integral in the response function equation converges, 0 < � < 2, the physically
meaningful constant energy flux regime holds for 1 < n < 2 for the LRA. Regarding the
LRA, the scale similarity for the response function equation requires (3.10). Combining
(3.18) with (3.10) yields

n = 5
3
, � = 2

3
, (3.25a,b)

which corresponds with the conventional inertial-range energy spectrum and time scale,
namely E(k) = C(5/3)K ε2/3k−5/3 and ω−1

k = ε−1/3k−2/3. Substituting (3.25a,b) into the
energy flux (3.24) yields

Π = 4π2

(
C(5/3)K

2π

)3/2

ε

∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v2/3τ)Ḡ(w2/3τ)

× ln
(

1
v

)[
(b1vw + b1wv)v

−8/3w−8/3 − b1vwvw−8/3 − b1wvv
−8/3w

]
. (3.26)

Similarly, the response function (3.11) yields

∂τ Ḡ(τ ) = −
∫ ∞

0
dw w−2/3J(w)

∫ τ

0
dσ Ḡ(w2/3σ)Ḡ(τ ). (3.27)

Equations (3.26) and (3.27) are exactly the same as those in the mirror-symmetric
case (Kaneda 1986). Consequently, the scale similarity accompanied by the
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wavenumber-independent response function and constant energy flux yields the
conventional Kolmogorov inertial range. Hence, the closure predicts that the Kolmogorov
constant is universal regardless of the existence of helicity. The numerical integration of
(3.26) and (3.27) with Π = ε yields (Kaneda 1986)

C(5/3)K = CK = 1.72. (3.28)

3.4. Helicity flux
The non-mirror-symmetric counterpart of the four-fifths law is expressed as (Chkhetiani
1996; L’vov et al. 1997; Gomez et al. 2000; Kurien 2003)

〈ΔuL(x, r, t) · uT(x + r, t)× uT(x, t)〉 = 1
15ε

Hr2, (3.29)

where ΔuL(x, r, t) = ΔuL(x, r, t)r/r, uT(x, t) = u(x, t)− [u(x, t) · r/r]r/r. Although
different notations are used in several studies, they are all essentially equivalent (Gomez
et al. 2000; Kurien 2003). The notation in this study is based on L’vov et al. (1997)
(the coefficient is 2/15 in L’vov et al. (1997) because the definitions of helicity and
its dissipation rate are divided by 2, such that it is referred to as the two-fifteenths
law). Notably, the four-fifths law (3.15) and its helical counterpart (3.29) simultaneously
hold without contradiction (L’vov et al. 1997; Gomez et al. 2000; Kurien 2003). As
the four-fifths law (3.15) agrees with the constant energy flux, (3.29) corresponds to
the constant helicity flux in the wavenumber space (see Appendix D). Kurien, Taylor &
Matsumoto (2004b) confirmed (3.29) in the DNS of homogeneous turbulence injecting
helicity.

Using (3.1a,b), (3.2) and (3.4a–c), the helicity flux (2.11) in the scale-similar range
yields

ΠH(k) = 8π2
∫ ∞

k
dk′
∫ k

0
dp′
∫ k′+p′

max( p′,k′−p′)
dq′

×
∫ t

t0
ds G(ωk′(t − s))G(ωp′(t − s))G(ωq′(t − s))

×
{

k′3p′q′
[(

bk′p′q′ − q′2

k′2 ck′q′p′

)
C(n)K
2π

C(m)H
4π

× ε11/3−n−m(εH)−7/3+n+mp′−m−2q′−n−2

+
(

bk′q′p′ − p′2

k′2 ck′p′q′

)
C(n)K
2π

C(m)H
4π

× ε11/3−n−m(εH)−7/3+n+mp′−n−2q′−m−2

− bk′p′q′
C(n)K
2π

C(m)H
4π

ε11/3−n−m(εH)−7/3+n+mk′−m−2q′−n−2
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+ ck′p′q′
C(n)K
2π

C(m)H
4π

ε11/3−n−m(εH)−7/3+n+mk′−n−2q′−m−2

− bk′q′p′
C(n)K
2π

C(m)H
4π

ε11/3−n−m(εH)−7/3+n+mk′−m−2p′−n−2

+ ck′q′p′
C(n)K
2π

C(m)H
4π

ε11/3−n−m(εH)−7/3+n+mk′−n−2p′−m−2

]}
. (3.30)

Setting p′ = k′r, q′ = k′w, k′ = k/v, t0 → −∞ and γ τ = ωk′(t − s), we obtain

ΠH(k) = 8π2

(
C(n)K
2π

)1/2
C(m)H
4π

(kH/k)−4+n+m+�εH
∫ 1

0
dv
∫ v

0
dr
∫ 1+r

max(r,1−r)
dw

×
∫ ∞

0
dτ Ḡ(τ )Ḡ(r�τ )Ḡ(w�τ )v−5+n+m+�

×
[
(b1rw − w2c1wr)r−m−1w−n−1 + (b1wr − r2c1rw)r−n−1w−m−1

− b1rwrw−n−1 + c1rwrw−m−1 − b1wrr−n−1w + c1wrr−m−1w
]
. (3.31)

For (3.31) to be independent of k, it requires

− 4 + n + m + � = 0. (3.32)

By integrating (3.31) by parts on v, the helicity flux yields

ΠH = 8π2

(
C(n)K
2π

)1/2
C(m)H
4π

εH
∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw

×
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−n−mτ)Ḡ(w4−n−mτ)

× ln
(

1
v

)[
(b1vw − w2c1wv)v

−m−1w−n−1 + (b1wv − v2c1vw)v
−n−1w−m−1

− b1vwvw−n−1 + c1vwvw−m−1 − b1wvv
−n−1w + c1wvv

−m−1w
]
. (3.33)

The constant helicity flux condition requires the convergence of the integral of (3.33).
Because the maximally helical condition is not consistent with the closure equations, the
pure helicity cascade barely occurs, where εH solely determines the scaling laws. When
both ε and εH determine the scaling laws, the constant energy and helicity fluxes should be
simultaneously satisfied. Consequently, both (3.18) and (3.32) are required, which yields
m = n. Therefore, regardless of the choice of time scale or value of �, the simultaneous
constant fluxes of energy and helicity yield the same exponent on the wavenumber
for their spectra, namely E(k),EH(k) ∝ k−n when kH/k � 1. The obtained result is
consistent with the spectra associated with the helical time scale (1.4a,b) suggested by
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Kurien et al. (2004a). Here, (3.33) reduces to

ΠH = 8π2

(
C(n)K
2π

)1/2
C(n)H
4π

εH
∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw

×
∫ ∞

0
dτ Ḡ(τ )Ḡ(v4−2nτ)Ḡ(w4−2nτ)

× ln
(

1
v

)[
(b1vw − w2c1wv)v

−n−1w−n−1 + (b1wv − v2c1vw)v
−n−1w−n−1

− b1vwvw−n−1 + c1vwvw−n−1 − b1wvv
−n−1w + c1wvv

−n−1w
]
. (3.34)

We can confirm that the integral of (3.34) converges for n = m < 3, similar to that of
the energy flux, as demonstrated in § 3.3. Similarly, n > 2 may be unphysical because
the small scales exhibit longer time scales than the large scales in this case. Considering
the condition that the integral in the response function equation converges, 0 < � < 2,
we have 1 < n = m < 2. For the LRA, (3.10) determines the exponent for the time scale,
which yields

m = 5
3
. (3.35)

Hence, the LRA with the constant energy and helicity fluxes yields the conventional
simultaneous cascade range spectra (1.3a,b). Substituting n = m = 5/3 and � = 2/3 into
(3.34) yields

ΠH = 8π2

(
C(5/3)K

2π

)1/2
C(5/3)H

4π
εH
∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v2/3τ)Ḡ(w2/3τ)

× ln
(

1
v

)[
(b1vw + b1wv − v2c1vw − w2c1wv)v

−8/3w−8/3

− (b1vw − c1vw)vw−8/3 − (b1wv − c1wv)v
−8/3w

]
. (3.36)

Here, we analytically have b1vw + b1wv − v2c1vw − w2c1wv = 0. The numerical
integration of (3.27) and (3.36) with ΠH = εH and (3.28) yields

C(5/3)H = CH = 2.81. (3.37)

3.5. Localness of interscale interaction
Kolmogorov’s similarity hypothesis assumes the localness of the interscale interaction
for the energy cascade process (Kolmogorov 1941b). Several studies have investigated the
localness of the interscale interaction based on closure theories (Kraichnan 1966, 1971;
Kaneda 1986; Domaradzki & Rogallo 1990). Similarly, we investigate it for the helicity
cascade in the simultaneous energy and helicity cascades range based on the LRA. For the
scale-similar range, the energy flux (2.10) can be rewritten as follows (Kraichnan 1966;
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Kaneda 1986):

Π =
∫ ∞

1
dα

W(α)
α

, α = max(k, p, q)
min(k, p, q)

, (3.38a,b)

where

W(α) = lnα
α

∫ α∗

1
dβ

1
β2 S

(
1,

1
α
,

1
β

)
+ α

∫ α

α∗∗
dβ

lnβ
β3 S

(
1,

1
β
,
α

β

)
,

α∗ =
(∣∣∣∣ 1α − 1

2

∣∣∣∣+ 1
2

)−1

, α∗∗ = max(1, α − 1),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(3.39a–c)

and we utilise the scale-similar property for the triple correlation,

S(ak, ap, aq) = a−3S(k, p, q). (3.40)

Notably, the scale similarity provided by (3.40) is satisfied when (3.18) and kH/k � 1 are
satisfied for the closure. Here W(α) dα/α denotes the contribution to Π from all triad
interactions such that the ratio of the maximum to minimum wavenumber lies between α
and α + dα (Kraichnan 1966; Kaneda 1986). We can also define the filling factor F(α) as
(Kraichnan 1966; Gotoh 1998)

F(α) =
∫ α

1
dα′ W(α′)

α′ . (3.41)

Similarly, the interscale interaction for the helicity cascade (2.11) using α reads

ΠH =
∫ ∞

1
dα

WH(α)

α
, (3.42)

WH(α) = lnα
α

∫ α∗

1
dβ

1
β2 SH

(
1,

1
α
,

1
β

)
+ α

∫ α

α∗∗
dβ

lnβ
β3 SH

(
1,

1
β
,
α

β

)
, (3.43)

FH(α) =
∫ α

1
dα′ WH(α′)

α′ , (3.44)

where we employ the scale-similar property for the triple correlation in the helicity
equation,

SH(ak, ap, aq) = a−3SH(k, p, q), (3.45)

which is satisfied when (3.32) is satisfied for the closure.
Figure 1 shows the profiles of W(α) and WH(α) for the simultaneous energy and helicity

cascades range of the LRA. We also plot W(α) for the inverse energy cascade range of the
2-D turbulence based on the LRA (Kaneda 1987) for reference. In figure 2, we plot the
profiles of F(α) and FH(α). Kraichnan (1966) demonstrated that W(α) ∝ α−4/3 lnα at
α � 1 in the inertial range for the ALHDIA. The LRA yields the same asymptote for
W(α). The asymptote of its helicity counterpart also yields WH(α) ∝ α−4/3 lnα at α � 1
when n = m = 5/3 and � = 2/3. The inset of figure 1 shows these asymptotes using a
log–log plot. The fact that W(α) and WH(α) decrease at large α indicates that we can
interpret that the interscale interactions for energy and helicity cascades are both local.

For the LRA of the 3-D case, W(α) peaks at α = 2, and F(α) reaches 0.6 at α = 4.
Hence, the contributions from the small wavenumber ratio are considered dominant for
the 3-D energy cascade. In contrast, the WH(α) profile is relatively gentle, which indicates
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Figure 1. Measures of localness of the interscale energy and helicity transfers in the simultaneous cascade
range. The red solid and green dashed lines depict the energy and helicity transfers, respectively. The blue
dotted line depicts the interscale energy transfer in the inverse energy cascade range of the 2-D turbulence
based on the LRA. The inset shows the asymptotes of W(α) and WH(α) for the LRA of the 3-D case.

0
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F
(α
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ε
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 (α
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α

Figure 2. Filling factor of the interscale energy and helicity transfers. The line colours and types are the same
as in figure 1.

that the interscale interaction for the helicity cascade is slightly non-local compared with
the energy cascade in the sense that the contributions from α ≥ 4 to WH(α) are larger
than those to W(α). This result is consistent with the EDQNM performed by André &
Lesieur (1977). Note that the helicity cascade is relatively local compared with the 2-D
case (see also Kraichnan 1971). This slightly non-local property of the helicity cascade
process can pave the way for further improvements in helical shell models (Benzi et al.
1996). In addition, the slightly non-local property of the helicity cascade suggests that it
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requires a significantly extensive scale separation to accurately predict the scale-similar
range of the helicity spectrum.

4. Discussion

4.1. Choice of representatives
As discussed in § 2.2, the LRA yields GH(k, t, s) = 0 because its transport (2.40) obeys the
simple exponential decay form, excluding the complex convolution time integrals (see e.g.
Kraichnan 1959, 1965b). Furthermore, for the LRA, the two-time velocity correlations
satisfy the FDT (2.49) and (2.50). However, this form of FDT does not necessarily
hold for systems with strong non-Gaussian statistics (Biferale et al. 2001; Marconi et al.
2008; Matsumoto et al. 2014). In fact, Matsumoto et al. (2021) numerically confirmed
that the FDT does not hold in the Navier–Stokes equations. It is noteworthy that they
demonstrated that other forms of the fluctuation-response relation using the Gaussian
random forcing agree with the mean response function. For the LRA, helicity does not
affect the Lagrangian two-time velocity correlation (Kaneda & Gotoh 1991; Rubinstein &
Zhou 1999). In contrast, the ALHDIA predicts that the equation for the mirror-symmetric
part of the two-time velocity correlation based on the generalised velocity depends on
helicity. Furthermore, Q(k, t, s) and QH(k, t, s) for the ALHDIA, respectively, obey the
different equations, and the FDT does not hold except for the equilibrium equipartition
Q(k, t, t) = constant. (Kraichnan 1965b). However, considering the scale-similar range,
the contributions of helicity to Q(k, t, s) disappear for kH/k � 1, in the same manner
as Π discussed in § 3.3. In addition, the requirement that the equations for Q(k, t, s)
and QH(k, t, s) do not explicitly depend on k yields (3.10). Hence, the constraint for the
exponents n and � is not altered from the LRA, although the decaying curves of Q(k, t, s),
QH(k, t, s) and G(k, t, s) differ.

Now, we consider another representative of the response function. Kaneda (1981)
suggested that the following response function could be a candidate for an alternative
representative of the response function:

GAL
ij (k, t, s)δ(k − k′) = Pia(k)Pjb(k)

〈
δṽAL

a (k, s | t)

δf̃b(k′, s)

〉
, (4.1)

where

δvAL
i (x, s | t) =

∫
d3x′ ψ(x′, t | x, s)δui(x′, t), (4.2)

which denotes a Lagrangian mapping of the perturbated Eulerian velocity field. According
to the same procedure as the LRA, the closed equation for GAL

ij (k, t, s) yields(
∂

∂t
+ νk2

)
GAL

ij (k, t, s)

= −2
∫

d3p
∫

d3q δ(k − p − q)
∫ t

s
ds′

×
[

Pia(k)
(

pap�
p2 − 1

2
δa�

)
pmkcQ�c(−q, t, s′)GAL

mj (k, t, s)

+ Pia(k)kmMcde(p)GAL
mc(p, t, s′)Qad(q, t, s′)GAL

ej (k, s′, s)
]
(t > s). (4.3)
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Similar to (2.33) for the statistically homogeneous isotropic and non-mirror symmetric
case, the alternative response function can be expressed as

GAL
ij (k, t, s) = Pij(k)GAL(k, t, s)− iεij�

k�
k

GAL,H(k, t, s). (4.4)

The equations for GAL(k, t, s) and GAL,H(k, t, s) yield (see Appendix E)

(
∂

∂t
+ νk2

)
GAL(k, t, s)

= −π

2

∫ ∞

0
dp
∫ ∞

0
dqΔkpqkpq

∫ t

s
ds′

×
[

2dkpqQ(q, t, s′)GAL(k, t, s)+ 2p2

k3 ckpqQH(q, t, s′)GAL,H(k, t, s)

+ (bkpq − ckpq)GAL( p, t, s′)Q(q, t, s′)GAL(k, s′, s)

− p
k2 ckpqGAL,H( p, t, s′)QH(q, t, s′)GAL(k, s′, s)

+ p
k

cpqkGAL,H( p, t, s′)Q(q, t, s′)GAL,H(k, s′, s)

+ 1
k
(cpqk − ckpq)GAL( p, t, s′)QH(q, t, s′)GAL,H(k, s′, s)

]
(t > s), (4.5)

(
∂

∂t
+ νk2

)
GAL,H(k, t, s)

= −π

2

∫ ∞

0
dp
∫ ∞

0
dqΔkpqkpq

∫ t

s
ds′

×
[

2dkpqQ(q, t, s′)GAL,H(k, t, s)+ 2p2

k3 ckpqQH(q, t, s′)GAL(k, t, s)

+ (bkpq − ckpq)GAL( p, t, s′)Q(q, t, s′)GAL,H(k, s′, s)

+ 1
k
(cpqk − ckpq)GAL( p, t, s′)QH(q, t, s′)GAL(k, s′, s)

+ p
k

cpqkGAL,H( p, t, s′)Q(q, t, s′)GAL(k, s′, s)

− p
k2 ckpqGAL,H( p, t, s′)QH(q, t, s′)GAL,H(k, s′, s)

]
(t > s), (4.6)

where

dkpq = (1 − y2)(1 − z2). (4.7)

In contrast with (2.39) and (2.40), the alternative response function equations provided
by (4.5) and (4.6) involve convolution time integrals similar to those of the ALHDIA
(Kraichnan 1965b). In particular, (4.6) can provide a non-zero solution for the non-mirror
symmetric part of the response function GAL,H(k, t, s). Regardless of the representative
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Scale-similar structures of non-mirror-symmetric turbulence

selected, the two-time velocity correlations can be expressed as

Q(k, t, s) = R(k, t, s)Q(k, s, s), QH(k, t, s) = RH(k, t, s)QH(k, s, s), (4.8a,b)

where R(k, s, s) = RH(k, s, s) = 1. The conventional LRA yields R(k, t, s) = RH(k, t, s) =
G(k, t, s), where G(k, t, s) obeys (2.39), which denotes the FDT. The present alternative
response functions accompanied by the Lagrangian two-time velocity correlation (2.37)
and (2.38) do not necessarily satisfy the FDT.

For the scale-similar range based on (3.1a,b), (3.2) and (3.4a–c), the GAL(k, t, s)[=
GAL(ωk(t − s))] equation yields

∂

∂τ
G

AL
(τ ) = −π

2
(kH/k)−3+n+2�

∫ ∞

0
dv
∫ 1+v

|1−v|
dw vw−n−1

∫ τ

0
dσ

×
{

2d1vwR̄(w�σ )G
AL
(τ )+ (b1vw − c1vw)G

AL
(v�σ )R̄(w�σ )G

AL
(τ − σ)

+ vcvw1G
AL,H

(v�σ )R̄(w�σ )G
AL,H

(τ − σ)+ C(m)H

2C(n)K

(kH/k)1−n+mwn−m

×
[
2v2c1vwR

H
(w�σ )G

AL,H
(τ )

− vc1vwG
AL,H

(v�σ )R
H
(w�σ )G

AL
(τ − σ)

+ (cvw1 − c1vw)G
AL
(v�σ )R

H
(w�σ )G

AL,H
(τ − σ)

]}
, (4.9)

where X̄(τ ) = X(γ τ) for X = (R,RH,GAL,GAL,H). Notably, the same exponent � can
be adopted for R,RH,GAL and GAL,H because the requirement that their equations do
not explicitly depend on k yields the same constraint for n and � provided by (3.10),
as previously stated in this subsection. For (4.9) to be explicitly independent of k, the
following condition must be satisfied when kH/k < 1:

− 3 + n + 2� = 0, kH/k � 1. (4.10a,b)

The former of (4.10a,b) is equivalent to (3.10). Therefore, the energy spectrum exponent
in the scale-similar range with the constant energy flux condition (3.18) similarly yields
n = 5/3, hence E(k) ∝ k−5/3. The latter of (4.10a,b) is an additional condition for the
scale similarity of the response function. However, it is necessary to obtain the constant
energy flux in either case, as discussed in § 3.3. Employing (4.10a,b), the equation for
G

AL
(τ ) yields

∂

∂τ
G

AL
(τ ) = −π

2

∫ ∞

0
dv
∫ 1+v

|1−v|
dw vw−�−4

∫ τ

0
dσ

×
[
2d1vwR̄(w�σ )G

AL
(τ )+ (b1vw − c1vw)G

AL
(v�σ )R̄(w�σ )G

AL
(τ − σ)

+ vcvw1G
AL,H

(v�σ )R̄(w�σ )G
AL,H

(τ − σ)
]
. (4.11)
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In (4.11), the effect of the breakage of mirror symmetry remains via G
AL,H

(τ ). However,
the G

AL,H
(τ ) equation in the scale-similar range with the condition (4.10a,b) yields

∂

∂τ
G

AL,H
(τ ) = −π

2

∫ ∞

0
dv
∫ 1+v

|1−v|
dw vw−�−4

∫ τ

0
dσ

×
[
2d1vwR̄(w�σ )G

AL,H
(τ )+ (b1vw − c1vw)

× G
AL
(v�σ )R̄(w�σ )G

AL,H
(τ − σ)

+ vcvw1G
AL,H

(v�σ )R̄(w�σ )G
AL
(τ − σ)

]
, (4.12)

which barely provides a non-zero solution for G
AL,H

(τ ) because (4.12) is linear for
G

AL,H
(τ ) that satisfies G

AL,H
(0) = 0 and G

AL,H
(τ ) = 0 at τ � 1. Notably, the zero

initial condition for the non-mirror symmetric part of the response function is the general
property of closure theories as seen in § 2.2. Consequently, the closure theories based on
the response function predict that helicity does not affect the characteristic time scale in
the scale-similar range regardless of the choice of a representative. In addition, whether
the FDT holds or not does not matter in examining the scale-similar structures even in the
homogeneous non-mirror-symmetric turbulence.

4.2. Universality of constant values
Linkmann (2018) suggested that the dissipation coefficient β(= εL/u3) decreases as the
relative helicity of forcing increases, where L and u denote the integral length scale and
root mean square velocity fluctuation, respectively. Using the Kolmogorov spectrum, root
mean square velocity fluctuation can be estimated by

u2 ∼
∫ ∞

L−1
dk CKε

2/3k−5/3 = 3
2

CKε
2/3L2/3, (4.13)

which yields CK ∼ β−2/3. According to this evaluation, Linkmann (2018) suggested that
CK depends on helicity. In our analysis based on the closure equations, we assume
that the scale-similar spectra extend to the entire wavenumber range. This assumption
is valid when we consider L−1 � k � η−1 for the inertial-range wavenumber k, where
η(= (ν3/ε)1/4) denotes the Kolmogorov length scale. In addition, it is necessary to assume
that the interscale interaction is sufficiently local to neglect contributions from outside the
scale-similar range to the energy flux. In this case, CK is determined independently of the
integral scale L. Although the closure suggested that the local interaction is dominant (see
figures 1 and 2), non-local contributions, such as α ≥ 8 in (3.38a,b), are not necessarily
negligible. To accurately evaluate the universality of CK , a significantly extensive scale
separation is required between the integral and viscous scales. Furthermore, the present
closure analysis suggests that the simultaneous energy and helicity cascades range also
requires the condition kH/k = εH/kε � 1. If kH lies in kH > L−1, the scale-similar range
becomes shorter than the mirror-symmetric case. Hence, the breakage of mirror symmetry
makes it more challenging to verify the universality of CK .

Regarding the CH value, the EDQNM provided CH = 2.25 (André & Lesieur 1977),
although this value is adjustable for the EDQNM. Notably, both the LRA and EDQNM
yield CH/CK = 1.6. This is because the forms of their equations are very similar.
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Scale-similar structures of non-mirror-symmetric turbulence

In the direct evaluation with the DNS of homogeneous turbulence, Borue & Orszag
(1997) provided CH = 1 with the hyperviscosity, and Li et al. (2006) also provided the
same evaluation with the conventional viscosity. For the DNS of the Ekman boundary
layer, Deusebio & Lindborg (2014) evaluated CH = 1.4 for the 2-D helicity spectrum
in a logarithmic layer. All these DNSs yielded CK/CH ≤ 1. Hence, the closure may
overestimate CH . In the context of experiments or observations, the reliable measurement
of helicity in high Reynolds number turbulent flows is relatively challenging (Koprov
et al. 2005; Deusebio & Lindborg 2014). Therefore, the accurate measurement of CH
poses a challenge. Even for the energy counterpart CK , the exact constant value may
still be an open question (Sreenivasan 1995; Ishihara et al. 2016, 2020). In this regard,
the validity of the present result, CH = 2.81 (3.37), is yet to be determined. Even if this
value is significantly large, this does not necessarily indicate that the closure analysis
itself is inappropriate. For example, the ALHDIA yields R(k, t, s) /= RH(k, t, s) in (4.8a,b)
(Kraichnan 1965b), which possibly yields a different value for CH . Therefore, if necessary,
the closure theories can be further improved in future studies.

4.3. Effect on energy transfer
The decrease in the dissipation coefficient β owing to helicity, as suggested by Linkmann
(2018), indicates a decrease in the total energy transfer rate from the largest to the smallest
scales. It is well known that the energy cascade rate decreases owing to helicity at the initial
stage of the decaying turbulence (André & Lesieur 1977; Morinishi et al. 2001). Even in
a fully developed turbulence, Kessar et al. (2015) and Stepanov et al. (2015) observed the
hindering effect of the energy cascade with high relative helicity. For the extreme case,
an inverse energy cascade occurs (Biferale et al. 2012, 2013; Sahoo et al. 2015; Plunian
et al. 2020). The proposed closure analysis suggested that the scale similarity requires
a sufficiently small relative helicity kH/k = εH/kε � 1, so that helicity does not affect
the energy cascade in the scale-similar range. However, for large scales where relative
helicity is not negligible, helicity can influence the energy cascade. To primitively analyse
this point, we substitute the conventional inertial-range spectra into the energy flux and
retain the contribution involving kH/k, which yields (3.20). Employing n = m = 5/3 and
� = 2/3, (3.20) yields

Π(k) = 4π2
(

CK

2π

)3/2

ε

∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v2/3τ)Ḡ(w2/3τ)

×
{

ln
(

1
v

)[
(b1vw + b1wv)v

−8/3w−8/3 − b1vwvw−8/3 − b1wvv
−8/3w

]

− 1
2
(1 − v2)

(
CHkH

2CKk

)2 [
(c1vw + c1wv)v

−8/3w−8/3

−c1vwvw−8/3 − c1wvv
−8/3w

] }
. (4.14)

In this case, the relative helicity reads ρH(k) = CHkH/(2CKk), so that the second to third
lines in {·}, which denote the effect of helicity on Π(k), are proportional to [ρH(k)]2.
As discussed in § 3.3, the integral of this part converges for m < 3 and the numerical
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integration yields a negative:

−
∫ 1

0
dv
∫ 1+v

max(v,1−v)
dw
∫ ∞

0
dτ Ḡ(τ )Ḡ(v2/3τ)Ḡ(w2/3τ)

× 1
2
(1 − v2)

[
(c1vw + c1wv)v

−8/3w−8/3 − c1vwvw−8/3 − c1wvv
−8/3w

]
< 0. (4.15)

Therefore, helicity contributes negatively to the energy flux. This result is consistent with
the hindering effect of the energy cascade owing to helicity proposed by Kessar et al.
(2015) and Stepanov et al. (2015). However, in the statistically steady state, Π = ε must
be satisfied for L−1 � k ≤ kI , where kI denotes a wavenumber in the inertial range. For the
constant energy and helicity fluxes to be satisfied in such a wavenumber region, the energy
and helicity spectra, including the time scale, should be altered in a non-scale-similar
manner.

The modification of the energy spectrum owing to the helicity at large scales may pose
difficulties in the prediction of the energy dissipation rate. As suggested by Linkmann
(2018) and discussed in § 4.2, helicity affects the dissipation coefficient β, which indicates
that helicity modifies Taylor’s dissipation law ε ∼ K3/2/L (Taylor 1935), where K(=
〈u2〉/2) denotes the turbulent kinetic energy. The prediction of the dissipation rate is a
basis for turbulence modelling, such as in the K–ε models (see Yoshizawa 1998; Pope
2000). Hence, the effect of helicity on the dissipation rate equation may need to be
modelled, although its theoretical approach is challenging (see e.g. Hamba & Kanamoto
2019). Regarding turbulence modelling, the effects of helicity on turbulence stress or
spatial energy flux are also essential for predicting helical or rotating turbulent flows
(Yokoi & Yoshizawa 1993; Li et al. 2006; Inagaki, Yokoi & Hamba 2017; Inagaki &
Hamba 2018).

4.4. Scale similarity in large scales
So far, we have focused on the scale similarity of small-scale structures by imposing
k > kH (3.6). Here, we consider the similarity in large scales where k < kH . For k < kH ,
the realisability of the relative helicity (3.5) requires the kH/k exponent to satisfy 1 − n +
m < 0 instead of (3.7). Therefore, in the energy flux (3.17), the two lines from the bottom
in {·} exhibit a leading contribution. Hence, the wavenumber-independent condition, as
provided by (3.18), is altered. A critical problem arises in the response function. The
conventional Lagrangian response function of the LRA (2.19) and its alternative (4.1)
yield different conditions for the exponent when scale independence is required. Namely,
the former yields −3 + n + 2� = 0, which is the same as (3.10), whereas the latter yields
−2 + m + 2� = 0. The ALHDIA may yield the same result as the latter. Therefore, the
closure theories do not yield a unique result for the scale similarity in the large scales
where k < kH .

In practice, large scales of turbulent flows are affected by effects such as shear,
rotation and inhomogeneity. Using the DNS of the Ekman boundary layer performed by
Deusebio & Lindborg (2014), we can estimate that kHL ∼ O(1) via L ∼ K3/2/ε in the
region where the mean velocity obeys the logarithmic law. Therefore, the scale where
k < kH corresponds to the larger scale rather than the integral scale. We barely observe
scale-similar structures via the homogeneous isotropic ansatz in such large scales of
turbulent flows.
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5. Conclusions

The effects of helicity on scale-similar structures in homogeneous isotropic and
non-mirror-symmetric turbulence were investigated based on the LRA (Kaneda 1981),
which is a self-consistent closure theory. We verified that the closure equations do not
satisfy the maximally helical condition for the third moments even if the helicity spectrum
is maximally helical. Assuming the generalised power laws for the energy and helicity
spectra and time scale, we investigated the scale-similar solutions of the closure equations.
The scale similarities of the response function equation and energy flux yield the
conventional Kolmogorov spectrum and time scale determined by the energy dissipation
rate and wavenumber. Notably, the wavenumber-independent constant energy flux requires
the relative helicity in the scale-similar range to be negligible. Therefore, helicity does
not contribute to the scale-similar structure of the energy cascade. The simultaneous
constant fluxes of energy and helicity yield the same exponent on the wavenumber for their
spectra regardless of the time scale selected. For the LRA, the time scale is determined
by the energy dissipation rate and wavenumber; hence, the helicity spectrum yields the
conventional −5/3 law (Brissaud et al. 1973). Notably, the scale similarity holds only in
the range where k � kH = εH/ε. Hence, the existence of a finite helicity may shorten
the scale-similar range. We also investigated the localness of the interscale interaction in
the scale-similar range. It was demonstrated that the interscale interaction in the helicity
cascade is slightly non-local compared with that of the energy cascade. This suggests that
a significantly extensive scale separation is required to accurately predict the scale-similar
helicity spectrum.

The LRA suggests that helicity does not directly affect the response function equation.
In addition, the non-mirror symmetric part of the response function always disappears.
Even if we adopt the ALHDIA for the Lagrangian two-time correlation, the requirement
for the power low exponents in the scale-similar range does not change. Therefore, every
closure theory provides the same time scale. It was also verified that in the scale-similar
range, the non-mirror symmetric part of the response function is generally expected to
vanish. Therefore, the effects of the breakage of mirror symmetry on the response function
disappear in the same manner. The closure analysis provides universal values for the
Kolmogorov constant and its helicity counterpart. However, the limitation of the scale
similarity, k � kH = εH/ε, suggests that an accurate verification of these constants may
pose a critical challenge. In the lower part of the inertial range where kH/k is not negligible,
helicity exhibits a negative contribution to the interscale energy flux. This result indicates
the hindering effect of the energy cascade owing to helicity (Kessar et al. 2015; Stepanov
et al. 2015). Specifically, helicity modifies Taylor’s dissipation law (Taylor 1935), which
needs to be considered in turbulence modelling.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2021.708.
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Appendix A. Maximally helical condition and properties of closure equations

Kraichnan (1973) suggested that the maximally helical condition may not be sustained.
A brief elucidation on the breakage of the maximally helical condition is presented as
follows. An incompressible velocity field can be decomposed into two modes as follows
(Herring 1974; Cambon & Jacquin 1989; Waleffe 1992):

ũ(k, t) = ũ+(k, t)h+
k + ũ−(k, t)h−

k =
∑

s

ũs(k, t)hs
k, (A1)

where

hs
k = e(2)(k)− sie(1)(k), e(1)(k) = k × n

|k × n| , e(2)(k) = k × e(1)(k)
|k × e(1)(k)| , (A2a–c)

s = ±, and n is an arbitrary vector. hs
k satisfies

ik × hs
k = skhs

k, hs
k · hs

k = 0, hs
k · hs

k
∗ = 2. (A3a–c)

Hence, ũ+(k, t) (ũ−) denotes the positive (negative) helical mode of the velocity field. The
helical mode velocity field obeys (Waleffe 1992)(

∂

∂t
+ νk2

)
ũsk(k, t) = −1

4

∫
d3p

∫
d3q δ(k − p − q)

×
∑
sp,sq

(spp − sqq)g
sk,sp,sq
k,p,q ũsp(p, t)ũsq(q, t), (A4)

where
g

sk,sp,sq
k,p,q = hsk

k
∗ · h

sp
p × h

sq
q . (A5)

Assuming ũ−(k, t) = 0 at the time t, the equation for ũ−(k, t) at the time t yields

∂

∂t
ũ−(k, t) = −1

4

∫
d3p

∫
d3q δ(k − p − q)( p − q)g−,+,+

k,p,q ũ+(p, t)ũ+(q, t). (A6)

The right-hand side of (A6) is generally non-zero, so that a finite non-zero ũ−(k, t)
spontaneously emerges. Chen et al. (2003a) verified a similar result via statistical analysis.
Hence, the maximally helical condition (2.12) is most probably broken in the dynamics of
the Navier–Stokes equations.

For the LRA, the triple correlation 〈ũsk ∗(k, t)ũsp(p, t)ũsq(q, t)〉 yields

〈
ũsk ∗(k, t)ũsp(p, t)ũsq(q, t)

〉 = 1
2 g

sk,sp,sq
k,−p,−q

∫ t

t0
ds δ(k + p + q)

× [(spp − sqq)G(k, t, s)Qsp( p, t, s)

+ 2(sqq − skk)G( p, t, s)Qsk(k, t, s)
]

Qsq(q, t, s), (A7)

where we use Qsk(k, t, s)δ(k + k′)δsk,s′k = 〈ṽsk(k, s | t)ũs′k(k′, s)〉 and ṽsk(k, s | t) =
hsk

k,i
∗Pij(k)ṽj(k, s | t). Note that other second-moment spectral closures such as EDQNM,

DIA and ALHDIA yield a similar expression for this triple moment. When ũ−(k, t) = 0
at the time t, we have 〈ũ−∗(k, t)ũ+(p, t)ũ+(q, t)〉 = 0, which yields SH(k, p, q, t) =
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Scale-similar structures of non-mirror-symmetric turbulence

2kS(k, p, q, t) (2.13) at this time as a statistical property of the Navier–Stokes equations.
On the other hand, the closure yields

〈
ũ−∗(k, t)ũ+(p, t)ũ+(q, t)

〉 = 1
2 g−,+,+

k,−p,−q

∫ t

t0
ds δ(k + p + q)

× [( p − q)G(k, t, s)Q+( p, t, s)

+ 2(q + k)G( p, t, s)Q−(k, t, s)
]

Q+(q, t, s), (A8)

which is not necessarily zero even if ũ−(k, t) = 0 at the time t so that Q−(k, t, t) = 0.
This result yields SH(k, p, q, t) /= 2kS(k, p, q, t) (2.46) in the maximally helical condition
(2.12).

Appendix B. Calculation details for closure equations

The trace part of (2.27) yields(
∂

∂t
+ 2νk2

)
Q(k, t, t)

=
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

×
{[

A1(k, p, q)G( p, t, s)Q(k, t, s)+ A2(k, p, q)G(k, t, s)Q( p, t, s)
]

Q(q, t, s)

+
[
A3(k, p, q)G( p, t, s)QH(k, t, s)+ A4(k, p, q)G(k, t, s)QH( p, t, s)

]
QH(q, t, s)

+
[
A5(k, p, q)GH( p, t, s)QH(k, t, s)+ A6(k, p, q)GH(k, t, s)QH( p, t, s)

]
Q(q, t, s)

+
[
A7(k, p, q)GH( p, t, s)Q(k, t, s)+ A8(k, p, q)GH(k, t, s)Q( p, t, s)

]
QH(q, t, s)

}
,

(B1)

where

A1(k, p, q) = −2Mi�m(k)Mabc(p)Pma(p)P�b(q)Pic(k) = −kp(xy + z3), (B2a)

A2(k, p, q) = Mi�m(k)Mabc(k)Pia(k)Pmc(p)P�b(q) = k2

2
(1 − xyz − 2y2z2), (B2b)

A3(k, p, q) = −2Mi�m(k)Mabc(p)Pma(p)ε�bd
qd

q2 εice
ke

k2 = p
q

z( y + xz), (B2c)

A4(k, p, q) = −Mi�m(k)Mabc(k)Pia(k)εmcd
pd

p2 ε�be
qe

q2 = − k2

2pq
(x + yz), (B2d)

A5(k, p, q) = −2Mi�m(k)Mabc(p)εmad
pd

p
P�b(q)εice

ke

k2 = −pz(z + xy), (B2e)

A6(k, p, q) = Mi�m(k)Mabc(k)εiad
kd

k
εmce

pe

p2 P�b(q) = k2

2p
(z − xy − 2y2z), (B2f )

A7(k, p, q) = 2Mi�m(k)Mabc(p)εmad
pd

p
ε�be

qe

q2 Pic(k) = kp
q

z(x + yz), (B2g)
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K. Inagaki

A8(k, p, q) = Mi�m(k)Mabc(k)εiad
kd

k
Pmc(p)ε�be

qe

q2 = k2

2q
( y − xz − 2yz2). (B2h)

We define x, y and z in (2.43a–e). Note that we obtain

k2(1 − xyz − 2y2z2) = kp(xy + z3)+ kq(xz + y3), (B3a)

k(x + yz) = p( y + xz) = q(z + xy). (B3b)

After some algebra, we obtain the following relations:∫
d3p

∫
d3q δ(k − p − q)

∫ t

t0
ds A2(k, p, q)G(k, t, s)Q( p, t, s)Q(q, t, s)

=
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds kp(xy + z3)G(k, t, s)Q( p, t, s)Q(q, t, s), (B4a)

∫
d3p

∫
d3q δ(k − p − q)

∫ t

t0
ds A4(k, p, q)G(k, t, s)QH( p, t, s)QH(q, t, s)

= −
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

k
q

z(x + yz)G(k, t, s)QH( p, t, s)QH(q, t, s),

(B4b)∫
d3p

∫
d3q δ(k − p − q)

∫ t

t0
ds

× GH(k, t, s)
[
A6(k, p, q)QH( p, t, s)Q(q, t, s)+ A8(k, p, q)Q( p, t, s)QH(q, t, s)

]

=
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

k2

p
(z − xy − 2y2z)GH(k, t, s)QH( p, t, s)Q(q, t, s)

=
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

× GH(k, t, s)
[

p(xy + z3)QH( p, t, s)Q(q, t, s)− p2

q
z(x+yz)Q( p, t, s)QH(q, t, s)

]
,

(B4c)

where we adopt the symmetry in p and q. Finally, we use (see e.g. Leslie 1971)∫
d3p

∫
d3q δ(k − p − q) = 2π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

pq
k

(B5)

and obtain (2.35) with (2.43a–e).
Multiplying by iεijnkn in (2.27) yields(
∂

∂t
+ 2νk2

)
QH(k, t, t)

=
∫

d3p
∫

d3q δ(k − p − q)
∫ t

t0
ds

×
{[

AH
1 (k, p, q)G( p, t, s)QH(k, t, s)+ AH

2 (k, p, q)G(k, t, s)QH( p, t, s)
]

Q(q, t, s)
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Scale-similar structures of non-mirror-symmetric turbulence

+
[
AH

3 (k, p, q)G( p, t, s)Q(k, t, s)+ AH
4 (k, p, q)G(k, t, s)Q( p, t, s)

]
QH(q, t, s)

+
[
AH

5 (k, p, q)GH( p, t, s)Q(k, t, s)+ AH
6 (k, p, q)GH(k, t, s)Q( p, t, s)

]
Q(q, t, s)

+
[
AH

7 (k, p, q)GH( p, t, s)QH(k, t, s)

+AH
8 (k, p, q)GH(k, t, s)QH( p, t, s)

]
QH(q, t, s)

}
, (B6)

where

AH
1 (k, p, q) = 2εijnknMi�m(k)Mabc(p)Pma(p)P�b(q)εjcd

kd

k2 = −kp(xy + z3), (B7a)

AH
2 (k, p, q) = εijnknMi�m(k)Mabc(k)Pja(k)εmcd

pd

p2 P�b(q) = k3

2p
(z − xy − 2y2z), (B7b)

AH
3 (k, p, q) = −2εijnknMi�m(k)Mabc(p)Pma(p)ε�bd

qd

q2 Pjc(k) = k2p
q

z( y + xz), (B7c)

AH
4 (k, p, q) = εijnknMi�m(k)Mabc(k)Pja(k)Pmc(p)ε�bd

qd

q2 = k3

2q
( y − xz − 2yz2), (B7d)

AH
5 (k, p, q) = −2εijnknMi�m(k)Mabc(p)εmad

pd

p
P�b(q)Pjc(k) = −k2pz(z + xy), (B7e)

AH
6 (k, p, q) = −εijnknMi�m(k)Mabc(k)εjad

kd

k
Pmc(p)P�b(q) = k3

2
(1 − xyz − 2y2z2),

(B7f )

AH
7 (k, p, q) = −2εijnknMi�m(k)Mabc(p)εmad

pd

p
ε�be

qe

q2 εjcf
kf

k2 = kp
q

z(x + yz), (B7g)

AH
8 (k, p, q) = εijnknMi�m(k)Mabc(k)εiad

kd

k
εmce

pe

p2 ε�bf
qf

q2 = − k3

2pq
(x + yz). (B7h)

Using (B4a)–(B4c), we obtain (2.36).
On the two-time correlation equations, we obtain

ηia(k, t, s)Qai(k, t, s) = π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

pq
k

B(k, p, q)
∫ t

s
ds′ Q( p, t, s′)Q(k, t, s),

(B8)
where

B(k, p, q) = Pib(k)
qaqbq�qm

q2 P�m(p)Pai(k) = k2(1 − y2)(1 − z2), (B9)

in which we adopt q2(1 − x2) = k2(1 − z2). By performing the p integral, we obtain (2.37)
with (2.41) and (2.42) (Kaneda 1986). Similarly, we have

iεijnknηia(k, t, s)Qaj(k, t, s)

= π

∫ ∞

0
dp
∫ ∞

0
dqΔkpq

pq
k

BH(k, p, q)
∫ t

s
ds′ Q( p, t, s′)QH(k, t, s), (B10)
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K. Inagaki

where

BH(k, p, q) = εijnknPib(k)
qaqbq�qm

q2 P�m(p)εajc
kc

k2 = k2(1 − y2)(1 − z2). (B11)

Hence, the equation for QH(k, t, s) yields the same equation as Q(k, t, s). We can derive
the equations for G(k, t, s) and GH(k, t, s) in the same manner.

Appendix C. Detailed balance for energy and helicity spectra in closure equations

For the closure equation, S(k, p, q, t) provided by (2.44) can be decomposed into four parts
as S(k, p, q, t) = S1(k, p, q, t)+ S2(k, p, q, t)+ S3(k, p, q, t)+ S4(k, p, q, t) where

S1(k, p, q, t) = 4π2Δkpq

∫ t

t0
ds kpq

[
k2(bkpq + bkqp)G(k, t, s)Q( p, t, s)Q(q, t, s)

− k2bkpqG( p, t, s)Q(k, t, s)Q(q, t, s)

−k2bkqpG(q, t, s)Q(k, t, s)Q( p, t, s)
]
, (C1a)

S2(k, p, q, t) = −4π2Δkpq

∫ t

t0
ds kpq

[
(ckpq + ckqp)G(k, t, s)QH( p, t, s)QH(q, t, s)

− ckpqG( p, t, s)QH(k, t, s)QH(q, t, s)

−ckqpG(q, t, s)QH(k, t, s)QH( p, t, s)
]
, (C1b)

S3(k, p, q, t) = 4π2Δkpq

∫ t

t0
ds kpq

[
bkpqkGH(k, t, s)QH( p, t, s)Q(q, t, s)

+ bkqpkGH(k, t, s)Q( p, t, s)QH(q, t, s)

− ckpqpGH( p, t, s)QH(k, t, s)Q(q, t, s)

−ckqpqGH(q, t, s)QH(k, t, s)Q( p, t, s)
]
, (C1c)

S4(k, p, q, t) = −4π2Δkpq

∫ t

t0
ds kpq

[
p2

k
ckpqGH(k, t, s)Q( p, t, s)QH(q, t, s)

+ q2

k
ckpqGH(k, t, s)QH( p, t, s)QH( p, t, s)

− ckpqpGH( p, t, s)Q(k, t, s)QH(q, t, s)

− ckqpqGH(q, t, s)Q(k, t, s)QH( p, t, s)
]
. (C1d)

By employing k2bkpq = p2bpkq and ckpq = cpkq, we readily confirm that

S1(k, p, q, t)+ S1( p, q, k, t)+ S1(q, k, p, t) = 0, (C2)

S2(k, p, q, t)+ S2( p, q, k, t)+ S2(q, k, p, t) = 0. (C3)

In contrast, although S3(k, p, q, t) and S4(k, p, q, t) do not satisfy the detailed balance
independently, their summations satisfy it:

S3(k, p, q, t)+ S4(k, p, q, t)+ S3( p, q, k, t)+ S4( p, q, k, t)
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Scale-similar structures of non-mirror-symmetric turbulence

+ S3(q, k, p, t)+ S4(q, k, p, t) = 0. (C4)

This is validated by employing bkpq − q2ckqp/k2 − cpkq + cqkp = 0.
Similarly, SH(k, p, q, t) provided by (2.45) is decomposed as SH(k, p, q, t) =

SH
1 (k, p, q, t)+ SH

2 (k, p, q, t)+ SH
3 (k, p, q, t)+ SH

4 (k, p, q, t) where

SH
1 (k, p, q, t) = 8π2Δkpq

∫ t

t0
ds kpq

[
k2bkpqG(k, t, s)QH( p, t, s)Q(q, t, s)

+ k2bkqpG(k, t, s)Q( p, t, s)QH(q, t, s)

− k2bkpqG( p, t, s)QH(k, t, s)Q(q, t, s)

−k2bkqpG(q, t, s)QH(k, t, s)Q( p, t, s)
]
, (C5a)

SH
2 (k, p, q, t) = −8π2Δkpq

∫ t

t0
ds kpq

[
p2ckpqG(k, t, s)Q( p, t, s)QH(q, t, s)

+ q2ckpqG(k, t, s)QH( p, t, s)Q(q, t, s)

− k2ckpqG( p, t, s)Q(k, t, s)QH(q, t, s)

−k2ckqpG(q, t, s)Q(k, t, s)QH( p, t, s)
]
, (C5b)

SH
3 (k, p, q, t) = 8π2Δkpq

∫ t

t0
ds kpq

[
k3(bkpq + bkqp)GH(k, t, s)Q( p, t, s)Q(q, t, s)

− k2pckpqGH( p, t, s)Q(k, t, s)Q(q, t, s)

−k2qckqpGH(q, t, s)Q(k, t, s)Q( p, t, s)
]
, (C5c)

SH
4 (k, p, q, t) = −8π2Δkpq

∫ t

t0
ds kpq

[
k(ckpq + ckqp)GH(k, t, s)QH( p, t, s)QH(q, t, s)

− pckpqGH( p, t, s)QH(k, t, s)QH(q, t, s)

−qckqpGH(q, t, s)QH(k, t, s)QH( p, t, s)
]
. (C5d)

In contrast with S(k, p, q, t), each term satisfies the detailed balance for its helicity
counterpart, namely we have

SH
1 (k, p, q, t)+ SH

1 ( p, q, k, t)+ SH
1 (q, k, p, t) = 0, (C6)

SH
2 (k, p, q, t)+ SH

2 ( p, q, k, t)+ SH
2 (q, k, p, t) = 0, (C7)

SH
3 (k, p, q, t)+ SH

3 ( p, q, k, t)+ SH
3 (q, k, p, t) = 0, (C8)

SH
4 (k, p, q, t)+ SH

4 ( p, q, k, t)+ SH
4 (q, k, p, t) = 0, (C9)

where we employ k2(bkpq + bkqp)− p2cpkq − q2cqkp = 0.
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Appendix D. Relation between skew-symmetric third-order moments and helicity
flux

We introduce the following correlations for homogeneous turbulence:

Cij�(r, r′, t) = 〈ui(x + r, t)uj(x + r′, t)ũ�(x, t)
〉
, (D1)

Ti | j�(r, t) = 〈ui(x + r, t)uj(x, t)u�(x, t)
〉 = Cij�(r, 0, t). (D2)

Their Fourier transformations read

Cij�(r, r′, t) =
∫

d3k
∫

d3k′ C̃ij�(k,k′, t) ei(k·r+k′·r′), (D3)

C̃ij�(k,k′, t) = 1
(2π)6

∫
d3r
∫

d3r′ Cij�(r, r′, t) e−i(k·r+k′·r′), (D4)

Ti | j�(r, t) =
∫

d3k C̃ij�(k, t) eik·r, (D5)

C̃ij�(k, t) = 1
(2π)3

∫
d3r Ti | j�(r, t) e−ik·r, (D6)

where

C̃ij�(k, t) =
∫

d3k′C̃ij�(k,k′, t). (D7)

By employing isotropy to the field with the solenoidal condition of the velocity, we obtain
(Chkhetiani 1996; L’vov et al. 1997; Gomez et al. 2000; Kurien 2003)

Ti | j�(r, t) = δj�
ri

r
D(r, t)−

(
δij

r�
r

+ δi�
rj

r

)(
1 + r

2
∂

∂r

)
D(r, t)

+ rirjr�
r3

(
r
∂

∂r
− 1
)

D(r, t)+
(
εijm

rmr�
r2 + εi�m

rmrj

r2

)
DH(r, t), (D8)

where D(r, t) is related to the longitudinal third-order velocity correlation, whereas
DH(r, t) denotes the skew-symmetric third-order velocity correlation. The triple velocity
correlation in the Fourier space reads〈

ũi(k, t)ũj(−p, t)ũ�(−q, t)
〉 = C̃ij�(k,−p)δ(k − p − q). (D9)

Therefore, the right-hand side of (2.4) reads

1
2

∫ ∞

0
dp
∫ ∞

0
dq SH(k, p, q, t)

= −4πk2(εijmk� + εi�mkj)kmRe[C̃ij�(k, t)]

= −8πk2 1
(2π)3

Re
[∫

d3r εijmk�kmTi | j�(r, t) e−ik·r
]

= − 8
π

k4
∫ ∞

0
dr r2

(
sin kr

kr
+ 3 cos kr

(kr)2
− 3 sin kr

(kr)3

)
DH(r, t). (D10)
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Hence, the helicity flux provided by (2.11) yields

ΠH(k, t) = − 8
π

∫ ∞

0
dr
(

4k3 cos kr − 6
k2

r
sin kr − 15

k
r2 cos kr + 15

1
r3 sin kr

)
DH(r).

(D11)
Using the homogeneity and solenoidal condition, we obtain that DH(r = 0, t) =
∂DH(r, t)∂r|r=0 = 0. Therefore, for the small r, we can evaluate that DH(r) = O(r2) at
least. Assuming the convergence of DH(r, t) at r → ∞, the partial integration of (D11)
yields

ΠH(k, t) = 8
π

∫ ∞

0
dr sin kr

(
3
r3 − 3

r2
∂

∂r
− 6

r2
∂2

∂r2 − ∂3

∂r3

)
DH(r, t)

= 2
π

∫ ∞

0
dr

sin kr
r

DH(r, t) = 2
π

∫ ∞

0
dx

sin x
x

DH(x/k, t), (D12)

where x = kr and

DH(r, t) = 4
(

3
r2 − 3

r
∂

∂r
− 6

r2
∂2

∂r2 − ∂3

∂r3

)
DH(r, t)

= −4
(

1 + r
∂

∂r

)(
4
r

+ ∂

∂r

)(
1
r

+ ∂

∂r

)
DH(r, t). (D13)

In the wavenumber range L−1 � k � η−1, where L denotes the integral length scale and
η(= (ν3/ε)1/4) denotes the Kolmogorov length scale, (D12) can be approximated as (see
Frisch 1995)

ΠH = εH � DH(r)
2
π

∫ ∞

0
dx

sin x
x

= DH(r), (D14)

where we assume the statistical steadiness in the range L−1 � k � η−1. Equation (D14)
yields

DH(r) = − 1
60
εHr2, (D15)

which is derived by Chkhetiani (1996) in a different procedure. As presented by Kurien
(2003), (D15) is equivalent to (3.29) because

〈ΔuL(x, r, t) · uT(x + r, t)× uT(x, t)〉 = −4DH(r, t). (D16)

Appendix E. Calculation details for alternative Lagrangian response function

The equation for GAL(k, t, s) reads(
∂

∂t
+ νk2

)
GAL(k; t, s)

= −1
2

∫
d3p

∫
d3q δ(k − p − q)

∫ t

s
ds′

×
[
B1(k, p, q)Q(q; t, s′)GAL(k; t, s)+ B2(k, p, q)QH(q; t, s′)GAL,H(k; t, s)

+ B3(k, p, q)GAL( p; t, s′)Q(q; t, s′)GAL(k; s′, s)

926 A14-37

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

70
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.708


K. Inagaki

+ B4(k, p, q)GAL,H( p; t, s′)QH(q; t, s′)GAL(k; s′, s)

+ B5(k, p, q)GAL,H( p; t, s′)Q(q; t, s′)GAL,H(k; s′, s)

+ B6(k, p, q)GAL( p; t, s′)QH(q; t, s′)GAL,H(k; s′, s)
]

(t > s), (E1)

where

B1(k, p, q) = Pia(k)
(

pap�
p2 − 1

2
δa�

)
pmkc = k2dkpq − p2ckqp, (E2a)

B2(k, p, q) = Pia(k)
(

pap�
p2 − 1

2
δa�

)
pmkcε�cd

qd

q2 εmie
ke

k
= p2

k
(ckpq + ckqp), (E2b)

B3(k, p, q) = Pia(k)kmMcde(p)Pmc(p)Pad(q)Pei(k) = k2

2
(bkpq − ckpq), (E2c)

B4(k, p, q) = −Pia(k)kmMcde(p)εmcf
pf

p
εadg

qg

q2 Pei(k) = −p
2

ckpq, (E2d)

B5(k, p, q) = −Pia(k)kmMcde(p)εmcf
pf

p
Pad(q)εeig

kg

k
= kp

2
cpqk, (E2e)

B6(k, p, q) = −Pia(k)kmMcde(p)Pmc(p)εadf
qf

q2 εeig
kg

k
= k

2
(cpqk − ckpq). (E2f )

Accordingly, we obtain (4.5). Here, we adopt∫
d3p

∫
d3q δ(k − p − q)p2ckqpf (k, q) =

∫
d3p

∫
d3q δ(k − p − q)kqy(1 − y2)f (k, q)

= 2π

∫ ∞

0
dq
∫ 1

−1
dy kqy(1 − y2)f (k, q) = 0.

(E3)

Notably, we adopt a slightly different expression for the geometrical factor from that of the
previous study, namely B3(k, p, q) in Kaneda (1981) reads

k2

2
(bkpq − ckqp) = k2bkpq − p2a1,pkq, (E4)

where

a1,kpq = akpq + 1
2(z

2 − y2), akpq = 1
2 (bkpq + bkqp) = 1

2 (1 − xyz − 2y2z2). (E5a,b)

Similarly, the equation for GAL,H(k, t, s) reads(
∂

∂t
+ νk2

)
GAL,H(k; t, s)

= −1
2

∫
d3p

∫
d3q δ(k − p − q)

∫ t

s
ds′

×
[
BH

1 (k, p, q)Q(q; t, s′)GAL,H(k; t, s)+ BH
2 (k, p, q)QH(q; t, s′)GAL(k; t, s)

+ BH
3 (k, p, q)GAL( p; t, s′)Q(q; t, s′)GAL,H(k; s′, s)
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+ BH
4 (k, p, q)GAL( p; t, s′)QH(q; t, s′)GAL(k; s′, s)

+ BH
5 (k, p, q)GAL,H( p; t, s′)Q(q; t, s′)GAL(k; s′, s)

+ BH
6 (k, p, q)GAL,H( p; t, s′)QH(q; t, s′)GAL,H(k; s′, s)

]
(t > s), (E6)

where

BH
1 (k, p, q) = εijn

kn

k
Pia(k)

(
pap�
p2 − 1

2
δa�

)
pmkc = k2dkpq − p2ckqp, (E7a)

BH
2 (k, p, q) = −εijn

kn

k
Pia(k)

(
pap�
p2 − 1

2
δa�

)
pmkc = p2

k
(ckpq + ckqp), (E7b)

BH
3 (k, p, q) = εijn

kn

k
Pia(k)kmMcde(p)Pmc(p)Pad(q)εejf

kf

k
= k2

2
(bkpq − ckpq), (E7c)

BH
4 (k, p, q) = εijn

kn

k
Pia(k)kmMcde(p)Pmc(p)εadf

qf

q2 Pej(k) = k
2
(cpqk − ckpq), (E7d)

BH
5 (k, p, q) = εijn

kn

k
Pia(k)kmMcde(p)εmcf

pf

p
Pad(q)Pej(k) = kp

2
cpqk, (E7e)

BH
6 (k, p, q) = −εijn

kn

k
Pia(k)kmMcde(p)εmcf

pf

p
εadg

qg

q2 εejh
kh

k
= −p

2
ckpq. (E7f )

Accordingly, we obtain (4.6).
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