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S. A. AMITSUR 

Introduction. Let R be a ring and let R[x] be the ring of all polynomials 
in a commutative indeterminate x over R. Let J(R) denote the Jacobson 
radical (5) of the ring R and let L(R) be the lower radical (4) of R. The main 
object of the present note is to determine the radicals J(R[x]) and L(R[x]). 
The Jacobson radical J(R[x]) is shown to be a polynomial ring N[x] over a 
nil ideal N of R and the lower radical L(R[x]) is the polynomial ring L(R)[x]. 
A partial result of the first case and a parallel solution to the second case have 
been obtained also independently and by different methods by N. H. McCoy 
(simultaneously with the author). 

The present method of attacking these problems can be applied to many 
other radicals arising from 7r-properties (1) of rings. Let ir(R) denote the 
7r-radical of a ring R. J(R) is an example of a radical satisfying w(R[x]) = P[x] 
where P = w(R[x]) C\R, and L(R) represents a class of radicals satisfying 
w(R[x]) = ir(R)[x]. The results obtained can be easily extended to poly
nomials in any number of variables. 

It is shown that J(R[x]) = N[x] where N is a nil ideal in R. Snapper, who 
studied the Jacobson radical of polynomial rings over commutative rings R, 
has shown (7) that N is the maximal nil ideal in R. The extension of this result 
to arbitrary rings seems to be very difficult. Though we verify this fact for 
algebras over non-denumerable fields, the general problem of determining the 
ideal N remains open. 

1. The Jacobson radical 

LEMMA 1J: Let N = J(R[x]) H R, then J(R[x]) ?* 0 implies N •£ 0. 

The proof of this Lemma, which is a keystone in the extension of the results 
on the Jacobson radical to arbitrary radicals, seems to be rather elementary 
if R is an algebra over an infinite field, or if R is of characteristic zero; but the 
proof is far more complicated in the general case. 

Recall that the Jacobson radical is a radical of the type dealt in (1). In 
particular, it follows by Corollary 1.1 of (1) that J(R[x]) remains invariant 
under the automorphisms of R[x]. For example, consider the automorphism1: 
/(#) —>f(x + 1) of R[x], or more generally the automorphism :f(x) —>/(x+\), 
where X is an endomorphism of the additive group of R satisfying X(ab) = 
(\a)b = a(\b) for a, b G R. 

Put / = J(R[x]). If the Lemma is not true, then we have a case where 
J 9^ 0 but J C\ R = N = 0. Let f(x) be a non zero polynomial of minimum 
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degree belonging to J. By the previous remarks it follows also tha t / (x +1 ) G J. 
Hence fo(x) = f(x + 1) — f(x) G J since the degree of fo(x) is less than that 
of/(x). The minimality of the latter implies that/o(x) =0 . T h u s / ( x + l ) =f(x). 

If R is of characteristic zero, then one readily verifies t h a t / ( x + 1) = f(x) 
can hold only ilf(x) = a G R. Thus 0 ^ a G J C\ R which is a contradiction. 
Another immediate contradiction is readily obtained if R is assumed to be an 
algebra over an infinite field F. Indeed, the preceding arguments can be 
applied as well to the automorphisms: g(x) —» g(x + X), X G F, of R[x]. 
This yields that f(x + X) = f(x) for all X G F. Since F is infinite, the last 
relation implies that f(x) = a G R, and thus 0 ^ a G N which contradicts 
the assumption N — 0. 

In order to obtain a contradiction in the general case we have to make some 
additional remarks: Let p be a prime number and let Rp be the set of all 
elements of R which are of characteristic p. Note that R is an ideal in R and, 
therefore RP[x] is an ideal in R[x]. We may assume tha t / (x) G RP[x]. Indeed, 
let f(x) = a0x

n + . . . + an. Since N = 0 it follows that n > 1. Hence, since 
f(x + 1) — f(x) — naoXn~1 + . . . = 0 we obtain that nao = 0. Let m be 
the minimal integer satisfying ma0 = 0 and let p be a prime dividing m. 
Thus (rn/p)ao7£0 and clearly (m/p)ao£ RQ. We may replace/(x) by the poly
nomial (m/p)f(x) which belongs also to J and which is of the same degree as 
f(x). Namely, we suppose that the highest coefficient of f(x) belongs to Rp. 
Now pf{x) G J and its degree is smaller than the degree of f(x), hence the 
minimality of the latter yields pf(x) = 0, that is, f(x) G RP[x]. 

Next we show that if a polynomial g(x) G Rp[x] satisfies g{x + 1) = g(x) 
then g(x) = h(xv — x) is a polynomial in xv — x with coefficients in Rp. The 
proof is carried out by induction on the degree of g(x). First, let g(x) be a 
polynomial of degree k < p. Since g(x + 1) = g(x) it follows that g(x + v) = 
g(x) for all integers v. Now, 

g(x + v) = gW + xgiO) + . . . + xwgmW = &o + xbx + . . . + xmbm = g(x). 

Hence, g(v) = b0 for all integers v. Clearly, Rp is an algebra over the finite 
field GF[p] of p elements. Thus we obtained that g(x) — bo vanishes for p 
elements of the field GF[p]. Since the degree of g(x) — b0 is less than p, it 
follows that g(x) — bo = 0, that is, g(x) = bo G i?p. 

Let g(x) be a polynomial of arbitrary degree,2 then g(x) = h(x)(xp — x) + 
&(x), with the degree of jfe(x) < ?̂. Hence, g(x + 1) = h(x + l)(xp — x) + 
&(x + 1) and since g(x + 1) = g(x) we obtain 

[fe(x + 1) - h(x)](xp - x) = k(x) - k(x + 1). 

The degree of the right-hand side of the last equality is less than p and the 
degree of the left-hand side, if not zero, is > £ . It follows, therefore, that 

2This holds in the ring R*p[x], where R* is obtained by adjoining a unit to R, but, clearly, 
g(x) and k(x) belong to Rp[x]. 
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k(x) = k(x + 1) and h(x + 1) = h(x). By the previous case we know that 
k(x) = ko £ Rp and by induction it follows that h(x) = ho(xp — x). Thus 
g(x) = &o(xp — x)(xp — x) + &o is a polynomial in i^,[xp — x]. 

The last preparatory remark we need before completing the proof of the 
Lemma is to the effect that if a polynomial h(xp — x) belongs to the Jacobson 
radical of Rp[x], then it belongs also to the Jacobson radical of Rp[xp — x]. 
Indeed, let k(x) £ h(xp — x) Rp[xp — x], then k(x + 1) = k(x). Clearly 
k(x) belongs to the Jacobson radical of Rp[x] hence its quasi-inverse k'(x) is 
uniquely determined. The quasi-inverse of k(x + 1) is readily seen to be 
kf(x + 1); hence k(x) = k{x + 1) implies that k'(x + 1) = k'(x). Con
sequently k'(x) 6 Rp[xp — x]. This proves that the right ideal h(xp — x) 
RP[xp — x] is quasi-regular in RP[xp — x]. Thus h(xp — x) belongs to the 
Jacobson radical of Rp[xp — x]. 

We turn now to the proof of the Lemma. Since f(x) Ç / P i Rp[x] and 
Rp[x] is an ideal in R[x], it follows tha t / (x) £ J(Rp[x]) = Rp[x] P\ J. It was 
shown t h a t / ( x + 1) = / ( # ) , hence/(x) Ç i^[xp — x]. Thus by the previous 
remarks, it follows tha t / (x) = g(xp — x) and g(xp — x) belongs to the Jacob-
son radical J(Rp[xp — x]). The mapping h(x) —> h(xp — x) determines an 
automorphism between Rp[x] and Rp[xp — x]. It follows now, by Theorem 
1.7 of (1), that J(Rp[x]) is the image of J(Rp[xp — x]). In particular, it follows 
that since g{xp — x) = f(x) £ J(i^p[xp — x]), g(x) £ J(Rp[x]). But g(x) is of 
lower degree3 than f(x); hence, g(x) £ J(Rp[x]) = / H ^ [ x ] implies that 
g(x) £ / , which contradicts the minimality of f(x). This completes the proof 
of the Lemma. 

LEMMA 2]:J(R[X]) = N[x], where N = J(R[x]) H R. 

Indeed, since N QJ = J(R[x]), it follows that N[x] R[x] C iV7?[x] C J . 
Hence N[x] C J". Consider the homomorphism : i£[x] —-> i^[x]/iV[x]. The 
kernel of this homomorphism is N[x] C J. It follows, therefore, by Theorem 
1.7 of (1) that J(i?[x]/iV[x]) = J/N[x]. Let fi = R/N, then i^[x]/iV[x]^iS[x]. 
Now: 

j(BM) r\ R ç* //iv[x] n (J2, iv[x])/iv[x] = (/ n (R, N[X]))/N[X] 
= ( / H i ? , iV[x])/7V[x] = (N,N[x])/N[x] = 0 

since J 2 iV[x]. Hence, Lemma 1 implies that Ô = J(Ë[x]) = J/N[x], 
Consequently, J = N[x], as required. 

I t remains now to determine the structure of the ideal N. 

LEMMA 3J : N is a nil ideal in R. 

Clearly, N is an ideal in R. Let r £ N Q J, then r.rx = r2x £ J. Let g(x) 
be the quasi-inverse of r2x, that is, q(x) + r2x + q(x)r2x — 0. In other words 

q(x) = — r2x — g(x)r2x. 

JThis is true since the degree of f(x) is ̂ >1. 
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Substitute q(x) on the right by the whole expression of the right-hand side 
of this equality. Repeating this process yields 

q(x) = - r2x + (r2xY + . . . + {-l)n{r2x)n + (-l)n+ l(r2x)n+l 

+ (-l)n+1q(x)(r2x)n+1. 

Choose n to be greater than the degree of q(x). Equating the coefficient of xn 

on both sides yields that r2n = 0. This proves that N is a nil ideal. 
Levitzki's locally nilpotent radical sa(R) of a ring R is defined (2, p. 130) as 

the maximal ideal of R with the property that its finitely generated subrings 
are nilpotent. One readily observes that the polynomial ring s<r(R)[x] is a nil 
ideal and, therefore, it also is quasi-regular. Consequently sa(R)[x] C / , 
and thus s<r(R) C N. Summarizing the results obtained, we have 

THEOREM 1. J(R[x]) = N[x] where TV = J(R[x]) C\ R is a nil ideal con
taining the locally nilpotent radical sa(R) of R. 

Remark. If R is commutative, or more generally satisfies a polynomial 
identity, then it is known (6) that the nil ideals of R are locally nilpoint ideals. 
Thus in this case N Ç s<r(R), and therefore, J(R[x]) is a nil ideal and N is 
the maximal nil ideal of R. 

We restrict ourselves now to the case where R is an algebra over an infinite 
field F. An ideal I in an algebra R is called an LB /-ideal (3) if / is a nil ideal 
and every finitely generated submodule of / is of bounded index. One readily 
observes that if fix) £ I[x], where I is an LB /-ideal, then / (x ) is nilpotent 
and its index is bounded by the index of the submodule of I generated by the 
coefficient of f(x). Thus, I[x] Ç J. The maximal LB /-ideal, LBI(R), of R 
is known (3) as the LB /-radical of R. Hence, the preceding arguments yield, 
in view of the fact that LBI(R) jD sa(R), that: 

COROLLARY. N 3 LBI(R) 2 s<r(R): 

It was shown in (3) that if R is an algebra over a non denumerable field F, 
then every nil ideal in R is an LB /-ideal. Consequently, for such algebras 
LBI(R) 3 JV, which in particular implies that N[x] is a nil ideal. Since the 
nil ideals are quasi-regular, it follows that: 

THEOREM 2. If R is an algebra over a non denumerable field F, then the 
Jacobson radical J(R[x]) = N[x] is the maximal nil ideal of R[x], and N is the 
maximal nil ideal of R. 

One conjectures that in all cases J(R[x]) is the maximal nil ideal of R. 
This would follow immediately if one could supply a positive answer to the 
still-open problem of Levitzki which requires to show that every nil ring is 
locally nilpotent, since in that case N = sa(R) will hold for every ring. 

2. The lower radical. Let L(R) denote the lower radical of the ring R. 
From the results of (2, Corollary 2.2), we know that the lower radical arises 
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from a property L of rings. Recall that a ring R is an L-ring if every non zero 
homomorphic image of R contains non zero nilpotent ideals. The property L 
satisfies the same requirements of (1) as the property of quasi-regularity: 
namely, L( = <y* in the notations of (1)) is an S.RZ-property of rings. We have 
also in this case: 

LEMMA IL: Let L = (R[x]) Pi R; then L(R[x]) ^ 0 implies L ^ 0. 

LEMMA 2L: L(R[X]) = L[x]. 

The proof of the two Lemmas follows in parallel lines the proof of Lemma 1J 
and Lemma 2J, except that at one place in the proof of Lemma 1J we have 
used the definition of quasi-regularity and not the general requirements of an 
SR property. The proof of this point for the lower radical is what remains to 
complete the proof of the present two Lemmas. That is: we have only to show 
that "if f(x) G Rp[xp — x] belongs to the lower radical of Rp[x]} then it belongs 
also to the lower radical of Rp[xp — x]." Indeed, the ideal generated by f(x) 
in Rp[xp — x] is a subring of the ideal generated by f(x) in Rp[x]. The latter 
is an L-ideal, since/(x) G L(Rp[x]). By Corollary 2.2 of (2), it follows that 
subrings of L-rings are L-rings; hence the ideal generated by/(x) in Rp[xv — x] 
is also an L-ideal. Consequently, f(x) G L(Rp[xp — x]). This completes the 
proof of Lemma IL and, therefore, also of Lemma 2L. 

In parallel to Lemma 3J, one has to characterize the ideal L. In the present 
case we can show that L = L(R). 

THEOREM 3. L(R[x]) = L(R)[x]. 

Indeed, since L = L(R[x]) P\ R Ç L(R[x]) and L is an ideal in R, it follows 
by Corollary 2.2 of (2) that L is an L-ideal in R. Hence L Ç L(R). The 
converse L(R) C L will follow immediately from the following: 

LEMMA 3L. If S is an L-ring then S[x] is also an L-ring. 

Indeed, let S[x] —> S[x] be a homomorphism of S[x] onto a ring S[x]. This 
homomorphism induces a homomorphism of 5 onto a ring S C S[x]. If x 
denotes the image of x, then clearly S[x] = S[x]. Thus if S[x] ^ 0 then S ^ 0. 
Since 5 is an L-ring, S contains a non zero nilpotent ideal Q. Consequently, Q[x] 
is a nilpotent ideal of S[x], which proves that S[x] is also a ring. 

To complete the proof of Theorem 3, we note that Lemma 3L implies that 
L(R)[x] is an L-ideal. Hence L(R)[x] C L(R[x]) = L[x]. Thus L(R) C L. 

3. Infinite sets of indeterminates. Let R[xa] be the ring of all poly
nomials in a set of a indeterminates {xt} where a is any cardinal number. 
A simple induction procedure, or a proof similar to that of Lemma 2J, yields 

THEOREM 4 (a). J(R[xa]) = Na[xa] where Na = J(R[xa]) C\ R is a nil ideal 
and Np^D Na^) sa(R) for all 13 < a. 

(b) L(R[xa]) = L(R)[xa]. 
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Furthermore, we have 

THEOREM 5. Let a be an infinite cardinal, then J(R[xa]) = Na[xa] is the 
maximal nil ideal of R[xa] and Na = Np for all /3 > a. If R is an algebra over 
an infinite field, then Na = LBI(R). 

Let X\ be an indeterminate of the set {xt} and let {x/} denote the rest of 
the indeterminates. Since a is not finite, the sets {xi} and {x/} have the same 
cardinal number. Hence J(R[x/]) = Na[Xi] and J(R[Xi]) = Na[Xi]. Clearly 
R[Xi] = R'[xi] where Rf = R[x/]. It follows now by Theorem 1, that 

J(R'[Xl]) = N'[xi], Nf = R' r\ JiR'lx!]). 

Since J(R'[xi]) = J(R[xt]) = Na[xi], it follows that N' = Na[x/]. By Theorem 
1 it follows that N' is a nil ideal. Since {x^ and {x/} are of the same cardinal 
number, one obtains Na[x/] ~ Na[Xi], Consequently, Na[Xi] is a nil ideal; 
thus J(R[xa]) is a nil ideal and, therefore, it is the maximal nil ideal of R[xa]. 

Let {xi} be a set of indeterminates of cardinality a > iV0 and let {y3-} 
be a finite set of new indeterminates. Since the cardinality of the set {xt} 
and {xiy jj) is a, we have J(R[xu jj]) = Na[xu yj], J(R[xt\) = Na[xi] where 
Na = R r\J(R[Xi\) = R r\ J(R[xiy yj]). By the preceding proof it follows 
that Na[Xi, yj] is a nil ideal. Hence, the ring of all polynomials over Na[Xi] 
in any number (finite or non finite) of indeterminates is a nil ring. Clearly, 
the non finite case can be reduced to the finite case which has just been proved. 

Now let jS > a and let {xi} be a set of indeterminates of cardinality a and 
{xt, Zj) a set of indeterminates of cardinality /3. By the previous remark it 
follows that Na[xi} zf\ is a nil ideal, hence Na[xu %j] Q J{R[xu Zj]). On the 
other hand J(R[xu Zj]) = Np[xu Zj]; hence, Na Q N$. Since /3 > a, it follows 
by Theorem 4 that Np C Na. Thus Np = Na. 

Let R be an algebra over an infinite field F and let ai, . . . , an be a finite 
set of elements of iVo. Since a is an infinite ordinal, we have a finite set of 
indeterminates xi, . . . , xn Ç {x^} and thus, ai#i + . . . + anxn G Na[xa]. 
It follows by the previous result that (aix± + . . . + anXn)m = 0 for some 
integer m. This immediately implies that the module generated by the set 
(ai, . . . , an) contains nil elements of index < m . Consequently, Na Q LBI(R), 
and the fact that Na 3 LBI(R) completes the proof of the theorem. 

4. x-radicals. We follow in this section the notation of (1) and (2). 
The similarity between the proofs of Lemma 1J, 2J and Lemmas IL, 2L 

exhibits the generality of the methods used. The only place where the explicit 
definitions of the quasi-regularity and the L-property were involved was in 
proving that if f(x) G Rv[xv — x] belongs to the radical considered of Rp[x], 
then it belongs also to the same type of radical of Rv[xv — x]. The proof of 
this fact for the L-property uses only the fact that a subring of an L-ring is 
an L-ring. This condition for arbitrary properties -K was denoted in (1) as 
(Ds). Thus we have: 
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LEMMA 4. If -K is an RZ-property satisfying (Ds) then ir(Rp[x]) r\ Rp[xp — x] 
QT(RP[XP - x]). 

The method used in proving Lemmas IL, 2L and Lemmas 1J, 2J, yields 
also 

THEOREM IT. If TT is an RZ-property and R is an algebra over an infinite 
field or of characteristic zero, or -K satisfies the condition that TT(RP[X]) P\ RP 

[xp - x] C TT(RP[XP - x]) then: ir(R[x]) 7* 0 implies that ir(R[x]) H R ^ 0. 

THEOREM 2TT. If -K and R are the same as in the preceding Lemma, then 
ir(R[x]) = P[x] where P = ir(R[x]) H R. 

One readily verifies also, as in the proof of Theorem 3, that: 

THEOREM 3W. If ir and R are as above and if ir satisfies the condition that a 
polynomial ring S[x] over a T-ring S is also a ir-ring then ir(R[x]) = ir(R)[x]. 

Properties satisfying the conditions of Theorem l7r are readily seen to be 
nillity, locally finiteness and locally nilpotency. The latter satisfies also 
Theorem ST. 
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