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The PRIMITIVE LOGIC LO introduced in my former workυ is a logic

having only two logical constants IMPLICATION -* and UNIVERSAL QUANTI-

FICATION ( ) with their usual inference rules which are admitted even in the

INTUITIONISTIC PREDICATE LOGIC LJ. LO is really a very simple logic,

maybe the simplest possible logic as one can imagine, but it is very important

because of its universal character. In fact, popular logics such as the LOWER

CLASSICAL PREDICATE LOGIC LK, the INTUITIONISTIC PREDICATE LOGIC

LJ, the MINIMAL PREDICATE .LOGIC LM2), etc. can be faithfully interpreted

in it. Speaking frankly, I am further expecting that all the important logics

would be interpreted faithfully in it and would disclose their intrinsic charac-

teristics by being interpreted in it. Main purpose of this paper is to show

the universal character of the primitive logic LO by pointing out that a series

of typical logics are faithfully interpretable in LO.

The lower classical predicate logic LK and the intuitionistic predicate logic

LJ may be the most popular logics. LK is a logic stronger than LJ in the

sense that all the propositions provable in LJ are surely provable in LK but

propositions provable in LK are not always provable in LJ. However, we can

not expect that any pair of logics are always in such situation. For example,

we can really reason in a logic in which tertium non datur holds but not the

principle that contradiction implies everything. Let us denote this logic by LD

according to Curry3). Then, propositions provable in LJ are not always prov-

Received June 23, 1965.
J> See ONO [1], The PRIMITIVE LOGIC LO is called the PRIMITIVE SYSTEM OF

POSITIVE LOGIC in ONO [1]. LO is a notation introduced in the present paper.
2> See JOHANSSON [1], See also ONO [1], especially, the system O-PLM.
3 ) See CURRY [1], [2]. See also (2.2 R). It is really an interesting task to interpret

faithfully LD in LO.
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able in LD and also propositions provable in LD are not always provable in

LJ. It may sound rather strange that the same person reasons occasionally in

LJ and occasionally in LD. In reality, however, we can really reason in such

manner at our will.

I can not imagine such situation unless something universal is hidden behind

the background of the various logics and they can be regarded as various

expressions of the same thing just as the same thing can be expressed differently

in various languages. If so, it must be our most interesting task to disclose

the something universal behind the background.

Indeed, the classical logic can be regarded as the logic for the world of

possibility, i.e. for propositions whose NEGATIONS can be denied. So, the

classical logic can be formally interpreted in the intuitionistic logic as the logic

for double-negative propositions -7-7%^. (In the intuitionistic logic, any negative

proposition can be regarded as a double-negative proposition.) Naturally, some

logical constants such as V or (3 ) must be suitably interpreted.

The way of reduction can be prolonged still further. The classical logic

LK can be reduced even to the primitive logic LO. In LO, we have no

NEGATION notion, but NEGATION notion can be interpreted easily, assuming

that there is a fixed contradictory proposition Λ5) which implies everything.

Naturally, I would not assume such a thing from the beginning. However,

even if we give up the proper meaning of Λ in LK and regard it just a

SYMBOL FOR A FIXED PROPOSITION, we have a logic somewhat similar

to LK by regarding 21-* Λ as -»-2I, or shortly -> Λ as -*. Main difference is

that Λ does not imply everything. So, we might take a step forward by taking

Λ just a NEW SYMBOL and by dealing with only such propositions that are

deducible from Λ, i.e. propositions expressible in the form 21 -> Λ.

But, what is a NEW SYMBOL? To speak more exactly on interpretation

of a logic in another logic, we had better establish a convention to use the

words LOGIC and LOGICAL SYSTEM in different meanings. When I speak

of LOGIC, I do not mind whatever elementary relations may be used, I deal

only with a finite set of elementary logical constants (I will call elementary

4> See GLIVENKO [1]. See also KURODA [1] and ONO [1].
5> In this paper, I employ occasionally the Gentzen's symbol A for CONTRADICTION

(See GENTZEN [1].) instead of the logical constant NEGATION-^. A is a propositional
ςonstapt and can be regarded as a primitive notion (0-ary relation symbol), if one will,
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logical constants of the logic L L-CONSTANTS, hereafter.) and inference rules

with respect to its logical constants. But when I speak of LOGICAL SYSTEM,

I presuppose a certain finite set of primitive notions for each system together

with the logic it stands on. Accordingly, any logical system has its own set

of elementary relations called its VOCABULARY and its own logic. Formal

systems usually assume further something proper to their respective vocabularies,

but I assume nothing of this kind for logical systems6).

Accordingly, in any logical system, we can not find out any difference in

properties of any pair of elementary relations of the same number of variables

in its vocabulary. For example, in formal theories such as set theories, e

and = are two distinct elementary relations having different properties, the one

satisfies x = x and the other does not satisfy #e#. However, this distinction

comes from assumptions proper to e and = , i.e. from assumptions of the

formal theories, but not from their logical systems. We can consider a logical

system having the pair of distinct elementary relations e and = , but if a

proposition 3ί is provable with respect to e (e.g. x^y-*x^y), then it must

be also provable in the same logical system with respect to = (i.e. x =jy-># = jy).

In the logical system, e and — are merely two distinct binary relations.

Any logical system standing on a logic L is called an L-SYSTEM, e.g. LO-

system, LK-system, etc. The L-system having the vocabulary a is denoted by

L(α), e.g. LOU), LK(α), etc.7) NEW RELATION SYMBOLS (including prop-

ositions regarded as 0-ary relations) can be given for any logical system, but

not for logic itself. Namely, any relation symbol S lying outside of the vocab-

ulary of a logical system can be called a NEW SYMBOL for the logical

system. Accordingly, our previous surmise can be stated as follows: LKU)

would be faithfully interpreted in LO({F} U a) assuming that F does not belong

to a, or I would rather say that LK(α) is embedded into LO({F} ϋ <x). I will

introduce in (1) the notion FAITHFUL INTERPRETATION of a logic L in

another logic L* after defining EMBEDDING of a logical system LU) into

another logical system L*U*).

Now, by introducing a new symbol F for any LK-system, we can make an

6> See Foot-note 5).
7> In this paper, I assume that the vocabulary a of any logical system is a finite

set of elementary relations.
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exact copy of the LK-system in a certain LJ-system. Furthermore, we can

continue the reduction even to LO. In fact, -» F can be taken as the copy of

—, so the F-CLOSURE 9f of 91 defined as standing for (91 -* F) -> F is the copy

of double negation of 9ί. Hence, the characteristic property of double negative

proposition 9ί can be described as F-CLOSED which means that 9f implies 9ί.

Since all the logical constants of LK can be defined by means of - > , ( ) , and

-", we may make the copies of all the logical constants of LK in terms of ->,

( ), and the new symbol F. Indeed, any LK-system LK(αr) can be embedded

into an LO-system LO({F} ϋ a) assuming that F does not belong to a.

It must be a matter of course of our free thinking to seek for a similar

interpretation of LJ in LO. However, we are confronted with an essential

difficulty in defining copies of logical constants of LJ other than -> and ( ) in

LO. For example, we can not define 91 Λ 23 by --(9l-> — 33) or by (9I-* (25->F))~*

F, because 9ίΛS should not be equivalent to -"(9I->-*33) in general in LJ.

At present, I am rather of the opinion that the copies of logical constants A,

V, and (3 ) of LJ can be defined only by making use of predicate-logical device

in LO.

The leading idea of the method I am going to introduce here for this pur-

pose is that the conditions of the form (ξ)((3l-»9l(£)) -* 9ϊ(?)) is much stronger

than and quite different from the usual double-negative form -* -r3ί or its

interpretation O - ^ ^ ) - * ^ for any fixed proposition $, if the relation 31 is able

to express sufficiently large class of propositions in the form 9ϊ(£). (I denote

by small greek letters ξ series of variables such as -#i, . . . , # * . If ξ denotes

%u . . > Xn, (?)9I(?) naturally denotes (xλ) (*Λ)9ί(#i, . . . , *„).) In LJ, we

can not expect that 91 is deducible from (31-> $)-> $ for any fixed $. However,

we can really find out even in LJ such $ for any 9ϊ that (5ί -> 3) -̂  fy implies

91. (Take for example 9ί for g.) If the class of propositions JR(f) is wide

enough, the class of such propositions that (f)((9ί->8ΐ(£))-»9ϊ(£)) implies 9ί

can be taken as the domain of propositions of LJ. I will call the proposition

(f)((3ϊ->ίR(f))->9?(f)) the SR-CLOSURE of 31 and denote it by 9ίm. 9ί is called

3ί-CL0SED if and only if 91^ implies 91. Evidently, the notion SR-CLOSED

PROPOSITION is a generalization of the notion ^-CLOSED PROPOSITION

regarding $ as a 0-ary relation. The class of 9ΐ-closed propositions is closed

with respect to the logical constants -» and ( ).
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In reality, it would be impossible to confirm for any relation 3? that the

class of propositions expressible in the form ΐfϊiσ) is wide enough for our pur-

pose. However, if we take up a new relation symbol R, it would be also im-

possible to confirm that the class of propositions expressible in the form R(σ)

is not wide enough for our purpose. The assertion that a proposition 21 con-

taining a new relation symbol R is provable is really a very strong assertion

for 51. 3ί would not be logically provable unless 91 is provable in the imaginary

case that every proposition is expressible in the form R{σ).

In this connection, I would like to show another example for usage of new

symbols. In LO, we have no NEGATION, and we can not confirm that there

is surely a fixed contradictory proposition. However, we are also unable to

confirm that there is no contradictory proposition at all. Accordingly, any

proposition 31 containing a new proposition symbol F would not be provable

unless 3ί is provable in the imaginary case that F is a contradiction. This

would show a merit of our usage of NEW proposition- or relation-symbols.

With respect to any relation $, we can define ^-CONJUNCTION Λ , $-
m

DISJUNCTION V, and 3Ϊ-EXISTENTIAL QUANTIFICATION (3 ) by the foi-
st st

lowing:

at

According to the above definitions, % A 35, 2ί V33, and (3u)%(u) are all 9ί-closed

mm m
for any 31, 23, and 5ί(£), and Λ , V , and (3 ) together with the LO-constants

mm m
-> and ( ) satisfy in LO the usual inference rules for CONJUNCTION,

DISJUNCTION, EXISTENTIAL QUANTIFICATION, IMPLICATION, and UNI-

VERSAL QUANTIFICATION of the POSITIVE LOGIC LP9 ), i.e. the intui-

tionistic predicate logic without NEGATION notion, for Oϊ-closed propositions.

If we take up for any LP-system LP(αr) a new n-ary relation symbol R (NEW

in the sense that R does not belong to a) for a sufficiently large nt then ->,

( ), Λ , V, and (3 ) can be taken as the copies of -*, ( ), Λ, V, and ( 3 )
RE R

β ) Propositions of the form 2ϊ=33 denote that 5ί stands for S3, or in other words, 51 is
denned by 33.

9> See HILBERT and BERNAYS [1], LORENZEN [1], CURRY [1], [2], and ONO [I"].
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of LP(ar) in LO({R} U or), respectively, regarding the i?-closure of every elemen-

tary proposition of LP(α) as the copy of the elementary proposition. The way

from LP to LJ is rather easy. (See (2.9T)10).) We can thus interpret the

intuitionistic predicate logic LJ in the primitive logic LO.

I can further show in the present paper that any one of the following

logics can be faithfully interpreted in LO.

LP: Positive predicate logic without NEGATION.

LQ: Positive predicate logic fortified by Peirce's rule that (2ϊ-»33)-»9ί

implies 21U).

LM: Minimal predicate logic.

LN: Minimal predicate logic fortified by Peirce's rule.

LJ •' Intuitionistic predicate logic.

LK: Lower classical predicate logic.

These logics are defined by their inference rules with respect to their logical

constants. I will give a sketch of these logics in (2). LP, LM, and LJ are

called J-SERIES LOGICS, and LQ, LN, and LK are called K-SERIES LOGICS.

Any logic can be characterized by the class of propositions provable in it.

Accordingly, two logics can be duly called EQUIVALENT if and only if the

respective classes of propositions provable in them are the same. (If every

proposition provable in a logic L is also provable in another logic L*, L is called

WEAKER than L*.) If either of two logics can be faithfully interpreted in

the other, the two logics can be duly called INTERPRETABLY EQUIVALENT.

The logics LO, LP, LM, and LJ are not equivalent to each other, but they are

interpretably equivalent to each other as shown later.

Any propsoition (or any relation) expressible without employing any logical

constants other than -* and ( ) is called an O-PROPOSITION (O-RELATION),

and any proposition (relation) expressible without employing any logical con-

stants other than - > , ( ) , Λ, V, and (3 ) is called a P-PROPOSITION (P-

RELATION). J- and K-series logics are so defined that any P-proposition

10> The symbols D, T, and R in numberings of the forms (m, nD), (m, nT), and
(m, nR) denote that (m, nD), (m, nT), and (m, nR) are a DEFINITION, a THEOREM,
and a REMARK, respectively.

Π ) See PEIRCE [1] (fifth icon). As for detailed comparison of tertium non datur
and Peirce's rule, see (2.2 R). As for LP and LQ, see LORENZEN [1] (Positiver Logik-
kalkul and Positiver Logikkalkϋl nach Hinzunahme der PEIRCEschen Aussage).
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provable in a J-series logic is also provable in any other J-series logic and

that any P-proposition provable in a K-series logic is also provable in any

other K-series logic. (See (2.6 T) and (2.7 T).) Mutual interpretable equivalence

of J-series logics as well as of K-series logics is shown in (2).

In (3), I describe some fundamental properties, especially of 9ϊ-closure for

any relation 9ί. Fundamental properties of ^-conjunction Λ , ^-disjunction

V , and Oϊ-existential quantification (3 ) are described in (4).
m an

By making use of these notions, I will show in (5) that LP and LQ can

be faithfully interpreted in LO. It is rather easy to prove that the copy 91*

of 91 is provable in the corresponding LO-system for any proposition 9ί provable

in the original LP- or LQ-system. It is also easy to see conversely for LQ

that 91 is provable in any LQ-system as far as 91* is provable in the corresponding

LO-system.

To illustrate how to prove the same assertion for LP, I begin with the

following speculations: Let us at first consider an LP-system having only one

n-avy elementary relation A. Let us denote by 91[/?J the copy of 91 with respect

to the new relation symbol R. If 9I[/?] is provable for any w-ary relation symbol

R in LO({#, A)), then S O ] must be provable in LO({A}). Hence, S O ] is

also provable in LP({A}). On the other hand, every elementary formula

A(pit . - . , pn) would be Λ-closed, and moreover, Λ , V , and (3 ) would show
A A A

no distinction from Λ , V , and ( 3 ) for A-closed formulas, respectively. So, 3ί

itself must be provable in LP({i4}).

Next, let us consider the positive proposition logic. If we associate to each

elementary proposition A% a free variable a% and take up a predicate symbol

P regarding it as a 1-ary relation, then any proposition 91 is provable in LP

if and only if the proposition 91* obtained on replacing all the elementary prop-

osition Ai by P(ad is provable in LP. Now, 91* is a proposition of the logical

system LP({P}) having only one elementary relation P, so the positive prop-

osition logic LP can be embedded in the logical system LO({P}).

The leading idea of my proof for the general case is just a modification

of these speculations. I will illustrate it taking up again LP as an example

logic. Broadly speaking, for any LP-system LP(αr), we have only to introduce

a system having only one elementary relation which behave similarly as LP(αr).

Namely, let the vocabulary a be the set {Au . . . , Ak), Ai be an w(ι)-ary
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relation for every i, and n be a number no less than any one of n(iYs. Further,

let P be an (w-f-l)-ary relation symbol not belonging to the vocabulary a, and

let fli, . . . , a**, and d be mutually distinct free variables which do not occur

in 9ί. The variables aι serve for expressing Ai(pu . . . , pmi)) in the form

P(βf , A, ,ί>rt(ύ> d, . . . , d), d being a dummy symbol.

If 9ϊ[/£] is provable in LQ({R}Όa) for an (w-f Ό-ary relation symbol R,

the proposition 51DΏ* obtaind on replacing all the elementary formulas of the

form Aiipu . . . 9 Pmi)) in ?![/£] by P(ai,pl9 . . . , £Λι, ), d, . . . , d) would be
n-n(t)

provable in LO({/?}). Accordingly, 9X*Ĉ 3 would be provable in LO({P}), so

9fLP] would be provable in LP({P}). Because every proposition P(cn, p\, . . ., j£>*)

is P closed, and moreover, Λ, V, and (3 ) would show no distinction from
P P P

Λ, V, and (3 ) for P-closed propositions, respectively, so the proposition 91*

obtained on replacing every elementary formula of the form Ai(pu . . . , pmi))

in 9ί by P(cn, pi, . . . , pnd), d,. . . , d) would be also provable in LP({P}).

This leads to the conclusion that 91 itself is provable in LF(a)12).

Proofs in this paper are described rather informally. I am planning to

write a book which contains the whole theory of the present work described

formally in details.

(1) Embedding of a logical system in another logical system
and faithful interpretation of a logic in another logic

For any logic L, we assume a finite set of L-constants, and for any L-

system L(α), we assume a finite vocabulary a of it. We call any proposition

31 a PROPOSITION OFL(a) if and only if % is a proposition expressible in terms

of the vocabulary a together with L-constants. By making use of any series

of mutually distinct variables pi, . . . , ps which do not occur in the proposition

ίUtfi, . . . , Qs) of L(α), an s-ary relation of plf . . . ,ps is defined by

9ί(i>i, . . . ,ps), which is simply called an s-ARY RELATION OF L(α) and

simply denoted by 91 if there is no fear of ambiguity.

For any logical system L(a), we assume that the proposition obtained on

replacing every s-ary elementary relation Ri of any proposition 91 provable in

L(a) by an s-ary relation 9f* of L(a*) is provable in

12 > The device adopted in this proof for denoting elementary propositions in a single
standard type is closely connected with the method employed in my old work, ONO [2].
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We can define also logical constants in logical systems. We need in the

present paper only the following four kinds of logical constants:

OPERATORS for propositions which map every proposition (w-ary relation)

to a proposition (w-ary relation). (Examples. NEGATION: 31—»-3I. 9ϊ-

CLOSURE: 3ί—>%m.)

Binary CONNECTIVES which map every pair of propositions to a proposi-

tion. (Examples. IMPLICATION: 21, 23—>2ί-*S. CONJUNCTION: 31, S—->

3IΛ93. ^-DISJUNCTION: 31, ®—>31VS.)

OPERATORS for predicates which map every predicate ((w-hl)-ary

relation) to a proposition (wary relation). (Examples. UNIVERSAL QUANTI-

FICATION : predicate 3ί—> proposition (xY)l(χ). ^-EXISTENTIAL QUANTI-

FICATION: predicate 31—proposition (3*)3l(#).)

PROPOSITIONAL CONSTANTS. (Example. CONTRADICTION: Λ.)

(1.ID) Embedding of a logical system into another logical system. Let

h(a) and L*(a*) be any pair of logical systems. Any word-for-word translation

E of propositions of hi a) into propositions of h*(a*) is called an EMBEDDING

of h(a) into h*(a*) if and only if the following holds: Any proposition S2ί of

h(a) is provable in hi a) if and only if the word-for-word translation 31* of

3ί by E is provable in L*(α*). Evidently, any embedding E translates every

L-constants λi into a logical constants λ* (defined in L*(α*)) of the same kind

as λi and every elementary n(j) ary relation Rj in a into an n(j)-ary relation

3ί/ of L*(α:*). Conversely, E is characterized by the mapping

E: λi—+λ?, Rj—>SR/

for every ί and /. A* and SR/ are called the COPIES of λi and Ri by the embedding

E, respectively.

(1.2D) Any logic L is called a SUBLOGIC of another logic L* if and

only if every L-constant is an LΛconstant and any proposition expressible in

h is provable in L if and only if it is provable in L*. If either of two logics

is a sublogic of the other, they are called EQUIVALENT.

Any sublogic L of a logic L* is a logic weaker than L*.

Any logical system h(a) can be embedded into another logical system

L*(α*) if L is a sublogic of L* and a is a subset of α*.
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(1.3R) Embedding is transitive in the sense that any logical system L(<x)

can be embedded into another logical system L*(α:*) if h(a) can be embedded

into a logical system L**'(α**) and L**(α**) can be embedded into L*(α*).

(1.4 D) Faithful interpretation of a logic in another logic. Let L and L*

be a pair of logics. Any rule I which associates to every vocabulary a a

vocabulary a* and an embedding E of Ha) into L*(α*) is called a FAITHFUL

INTERPRETATION of L in L*. I say that L is faithfully interpreted in L*

if a faithful interperetation of L in L* is given. Broadly speaking, L can be

faithfully interpreted in L* if and only if every L-system can be embedded

into an L*-system.

If either of two logics can be faithfully interpreted in the other, they are

called INTERPRETABLY EQUIVALENT.

(1.5 R) Any sublogic L of a logic L* can be faithfully interpreted in L*.

Two logics are interpretably equivalent if they are equivalent.

(1.6 R) Faithful interpretation is transitive in the sense that any logic L

can be faithfully interpreted in another logic L* if L is faithfully interpreted

in the third logic L** and L** is faithfully interpreted in L*.

Interpretable equivalence of logics is surely reflexive, symmetric, and

transitive.

(1.7 R) It should be remarked that a faithful interpretation I of L in L*

do not always associate to the same L-constant the same logical constant in

L* for distinct L-systems.

(2) A short sketch of logics

In this section, I will sketch out logics to be dealt with in the present

paper by their inference rules with respect to their logical constants. The

logical constant NEGATION -̂  is occasionally replaced by the prosositional

constant CONTRADICTION Λ. If we adopt Λ in place of -*, we have to

replace the inference rules with respect to -* by the inference rules with

respect to Λ. A number of logics are defined by inference rules with respect

to their logical constants.

(2.1) Inference rules. The lower classical predicate logic LK is the

strongest logic among popular logics such as LK itself, the intuitionistic pred-
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icate logic LJ, and the minimal predicate logic LM in the sense that it has

all the inference rules with respect to all the usual logical constants ->, ( ),

Λ , V, ( 3 \ -r, and Λ . The following is a list of inference rules described

informally with respect to these logical constants.

I. One can deduce 9ί-»33, if 33 is deducible from the assumption 91 or

without the assumtpion 9ί.

II. S3 is deducible from %->"& and 91.

III. One can deduce ixYΆ(x), if 91 (ft) is deducible for every h i.e. for any

new variable h which does not occur in any assumption for 91 ί h) nor in

(*)«(*). (By my notation: V/*!13))

IV. 91U) is deducible from (xY)i(x).

V. One can deduce -^9ί, if 33 and --33 are deducible from the assumption

9ί or without the assumption 91.

VI. One can deduce 91, if 33 and -*33 are deducible from the assumption

-"9ί or without the assumption -^9ί.

VII. 91A S is deducible from 9ί and ».

VIII. 91 is deducible from 9ίΛ33 as well as from 8Λ9ί.

IX. 91V 33 is deducible from 91 as well as from 33.

X. 91 is deducible from 23 V&, $8-*91, and (£->9I.

XI. (3*)9l(z) is deducible from Ίί(h).

XII. One can take an h satisfying 9ί(Λ) (by my notation: 3hl 9IU)1 4 )),

if O*)9I(*) is deducible.

XIII. 91 is deducible from Λ.

XIV. 91 is deducible from (91->S) -*9ί. (Peirce's rule l 5 ))

XV. 9ί is deducible from 191 -• Λ ) -» Λ. (reductio ad absurdum)

If we translate -r 91 into 9ί -> A or Λ into & A -* ̂  for any fixed &, Rules V

and VI altogether become equivalent to Rules XIII and XIV altogether, as far

13> See ONO [1] and [3]. V ! and 3 ! are called DENOMINATING QUANTIFIERS.
It should be noticed that in reality we are interested in proving only such propositions
that contain no free variables introduced by denominations.

14 > See Foot-note 13).
15> See PEIRCE [1]. In my former work, ONO [1], I have adopted a more com-

plicated form

XIV0. 5ί is deducible from (£-»2l and ((£-»»)-»2l

in place of XIV, because XIV0 seemed more convenient in practical usage. Anyway,
is equivalent to XIV0 as fa,r as I and II are valid.
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as Rules I and II are valid. However, if we compare them more in details,

Rule XIII is equivalent to Rule V and

VIj. One can deduce 9ί from 8 and -"33.

Accordingly, one should adopt Rule VIj for LJ instead of Rule VI.

Rule XV can be regarded as superfluous because it is equivalent to the

pair of Rules XIII and XIV as far as Rules I and II are valid. If I am mostly

interested in the classical logic only, I might as well adopt this simple form

in defining the logic straightforwardly. In the present paper, however, I am

rather interested in development of various logics and in their mutual rela-

tions. The pair of Rules XIII and XIV look like more convenient for our

present purpose.

(2.2 R) Peirce's rule that (9l->33)-»2I implies 91 is just a modification of

tertium non datur that s)i V (9ί-> Λ ) holds, or in other form, that (2l-> Λ ) -»2ί

implies 91. I adopt Peirce's rule in defining J-series logics not only because I

would like to have the defining rule expressible in terms of -» only, but es-

sentially because I would like to have LQ as a sublogic of all the K-series

logics. (See (2.7T).)

If I adopt 91V (31 -> Λ ) or the rule that (21 -> Λ ) -»2l implies 91 in place of

Rule XIV, I would have Curry's LD instead of LN. LD is a logic slightly

weaker than LN.

(2.3) The primitive logic LO is the logic having the inference rules I-IV

only with respect to the two logical constants -» and ( ). LO can be regarded

as the simplest possible predicate logic. The lower classical predicate logic

LK can be taken as the logic having the inference rules I-IV and VII-XIV

with respect to the logical constants - * , ( ) , A, V, (3 ), and A. Other

logics dealt with in this paper are logics lying between LO and LK.

(2. 4) Table of logics dealt with in this paper characterized by means of

their inference rules and their logical constants.

Logical
systems

LO
LP
LQ
LM
LN
LJ
LK

Logical constants

-M )

*
*

*
*

A, V . O )

*
*

*

*

Λ

*

Inference rules
I-IV

*

VII-XII

*
*
*
*

*

XIII

*
*

XIV

*
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One can easily see that LJ and LK defined here are equivalent to Gentzen's

LJ and LKlδ), respectively, if we identify -* with -» Λ.

(2.5 T) LO is a sublogic of LP.

Proof. LO is surely a logic weaker than LP, and LP is a logic weaker

than LJ which is a logic equivalent to Gentzen's LJ as has been pointed out

in (2.4). Hence, any O-proposition 91 provable in LP is provable in Gentzen's

LJ. According to Gentzen's theorem17), 91 is provable by making use of O-

propositions only. Any proof of this kind can be followed in LO as can be

checked without difficulty.

(2.6T) LP is a sublogic of LM as well as of LJ. Namely, any P-prop-

osition is provable in LP if and only if it is provable in LJ (or in LM).

Proof. Since LP is a logic weaker than LM and LM is a logic weaker

than LJ, we have only to prove that any P-proposition 91 provable in LJ is

provable in LP. Since LJ is equivalent to Gentzen's LJ as remarked in (2.4),

9ί is provable in Gentzen's LI by making use of P-propositions only. This

proof of 91 can be followed in LP as can be checked without difficulty.

(2.7 T) LQ is a sublogic of LN as well as of LK. Namely, any P-pro-

position is provable in LQ if and only if it is provable in LK (or in LN).

Proof. Just as in the preceeding theorem, we have only to prove that any

P-proposition 9ί provable in LK is provable in LQ. Since LK is equivalent to

Gentzen's LK as remarked in (2.4), 9ί is provable in Gentzen's LK by making

use of P-propositions only. Hence, we have to check whether Rules I-IV, VII-

XII, and XIV are powerful enough to show that all the Gentzen's inference

rules18) except for those concerning NEGATION hold by suitable interpretation.

I do not describe this check thoroughly here, I will exhibit here only an es-

sential part of the examination namely, the inference from Γ, 9ί -> J, 25 to

Γ-»J, 91^23 and the inference from Γ->J,%(h) to Γ-» J,{xM(x) assuming

that h does not occur in the latter sequent. These inferences in Gentzen's

formulation can be interpreted in our system as the inference from

16> See GENTZEN [1].
17> See GENTZEN [1].

J8> See GENTZEN [1].
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to &-*ΦV(9ί-»<B) and the inference from K->ΦV9ί(/i) to ®

assuming that h does not occur in the latter proposition.

The first inference can be proved in LQ as follows: Assume . Λ9ί-»ΦV33.

If we assume &, then 9ί ->Φ V S holds. Now, to prove Φ V (91 -> 33), it is enough

to show (ΦV(»->8)->3l)->ΦV(2l->33) because Rule XIV holds in LQ. To

show this, assume Φ V (21->S9)->2l. Then, (?1-» S3)-> sfl holds, and this implies

91 by Rule XIV. Hence, ΦV33 holds. On the other hand, Φ-*Φ V (9ί ~*$) as

well as 33-*© V (91-*$) is easily provable, so ΦV(9ί->23) is provable too.

The second inference can be proved as follows: Assume that (&-*ΦV2KΛ)

holds for any arbitrary variable h. To prove ΦV (x)%(x) in assuming £, it is

enough to show that Φ V (*)«(#) -»U)2l(*) implies Φ V (#)9ί(*>, because Rule XIV

holds in LQ. To show this, assume Φ V (#)9ίU) -»(*)«(#). Then, Φ-»(*)2iU)

holds. Now, I show U)9ίU). To show this, take any #. Then, <£-*©V2I(£)

holds by assumption, so ΦV9Π#) holds. Now, Φ implies (xWU.x) which implies

2I(#). So, 5ί(#) holds anyway. (x)%(x) implies clearly ®V(#)9l(*).

These are the only inference rules which need Rule XIV for proving them

in LQ.

(2.8 T) LM is interpretably equivalent to LP and LN is interpretably

equivalent to LQ.

Proof. According to (2.6 T), LP is a sublogic of LM, and the sublogic LP

of LM can be faithfully interpreted in LM by virtue of (1.5 R). Accordingly,

we have only to prove that LM can be faithfully interpreted in LP in proving

the former half of the theorem. To show this, take any LM-system LM(α),

and also take up a proposition symbol C lying outside of a. Let a be

{Ai, . . . , Ak), Ai being nii) ary. Then, an embedding E of LM(α) in

LP(α: U {C}) can be defined by

E: ->—>-», ( )—>( ), Λ—>Λ, V—>V,

(3 )—>(3 ), Λ—>C, Ai—+Ai.

The latter half of the theorem can be also proved quite similarly, by making

use of (2.7T) in place of (2.6 T).

(2.9 T) LJ is interpretably equivalent to LP, and LK is interpretably

equivalent to LQ.
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Proof. According to (2.6 T), LP is a sublogic of LJ, and the sublogic LP

of LJ can be faithfully interpreted in LJ by virtue of (1.5 R). Accordingly,

we have only to prove that LJ can be faithfully interpreted in LP in proving

the former half of the theorem. To show this, take any LJ-system LJ(αr), and

also take up a propositional symbol C lying outside of a. Let a be {Au . . . , Ak\,

Ai being w(f)-ary. Then, an embedding E of LJ(α) in LP(α:U{C}) can

be defined by

E: -»—>->, ( )—>( ), A—>Λ, V—>V,

(3 )—>(3 ), Λ—>S, Ai—>Aiy

where fj stands for the proposition

C A (σi)AΛσi) Λ Λ {σk)Ak(σk),

each ai being a sequence of mutually distinct bound variables of length n(i).

The latter half of the theorem can be proved quite similarly, by making

use of (2.7 T) in place of (2.6 T).

(2.10 R) By virtue of (2.8 T) and (2.9 T), we can see that all the J-

series logics are interpretably equivalent to each other and also that all the

K-series logics are interpretably equivalent to each other.

(3) Elementary properties of ΪR-closures and 9ϊ-closed propositions

In this section, we study the 9ί-CLOSURE 9191 of any proposition 91 and 9ΐ-

CLOSED PROPOSITIONS for any wary relation 91 (w = 0, 1, 2, . . . ). The

logic L we stand on in this section can be taken as LO. More precisely, L

may have logical constants other than -> and ( ), but the inference rules I-IV

only are assumed in this section.

All the theorems in this section except for (3.12 T) hold for any Λ-ary

relation 9? in general. Theorem (3.12 T) discloses a distinctive feature of the

case n - 0. In the following, I will denote by ξ a sequence of mutually distinct

bound variables of length n and by -η as well as by C a sequence of mutually

distinct free variables of length n.

is called the 3Ϊ-CLOSURE of 91.

(3.2D) 51 is called 3Ϊ-CLOSED if and only if 91* implies 91,
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(3.3 T) 3ί implies 3Im.

(3.4 T) 31 ->33 implies Sί9* -> S8 1.

Proof. Assume 31->S. Then, I will prove 33^ by assuming a 9 1 i.e.

(?)((3I->3H£))-»9N£)). To prove S391 take any C satisfying 23->9ί(C). Since we

assume 3ί->Φ, holds 3ί->3i(C>. On the other hand, (3ί->3Hθ)->3HC) holds by

assumption, so we have 3ϊ C). Hence, 3I^->35^ holds.

(3.5 T) 31* is 3?-closed. 3?(O is SR-closed.

Proof. I will prove at first that 3 1 ^ implies 3ίSJΪ. Namely, assume 3 1 ^ .

To prove 3ί^, take any C satisfying 3ί-*3l(C). Then, 9ί^->3UC) holds, since

%m implies <3ί->9i(C))-*M(C). On the other hand, the assumption %mm implies

(3l*->3t(C))->ίR(C). So, we have OKC).

To prove next that 9ί(C) is Ή-closed, assume Λ θ i.e. (£ )((3t(C) ->3ί(£)) ->

5R(f)). Then, we have easily 3KC).

(3.6 R) By virtue of (3.3 T) and (3.5T), any proposition 3ί is 3?-closed

if and only if it is expressible in the form 91s*.

(3.7 T) (3ί->S)9ft implies %m-^

Proof. I will prove S8* by assuming ( }l->S)afl and 3191. To prove 3331,

take any C satisfying 93->3t(C). Then, 31->s3 implies 3I->3l(C). On the other

hand, 31->5R(C) implies SR(C) because 3191 is assumed. So, 3ί->S implies 3f(C).

Now, (3I-* sΰ)-*$(C) implies »(C) because (Sί-^S)3 1 is assumed. So, 3KC)

holds. S59* is thus proved.

(3.8 T) (Λr)m«(Λ:) implies ( ^ ^ ( A Γ ) 1 9 * .

Proof. Assume ( # ) % ( # ) . To prove ( ^ ^ ( Λ ; ) i.e. (*)(C)((3ϊ(*)->9t(C))-*

SR(O), take any λ and C satisfying 3I(λ)->3KC). Then, (x)%(x) -*ϋϊ(C) holds.

On the other hand (*)3Ϊ(*>-»3ϊ(C) implies 3ί(O because we assume

Hence 9?(C) holds. (*)31SΛU) is thus proved.

(3.9 R) I can not expect commutativity of the sJ?-closure operation with

the logical operations -> and ( ). However, we can see by virtue of (3.3 T) -

(3.8T) that the class of Dΐ-closed propositions is closed for the ^-closure

Formulas of the forms W(p) and (x)W&(x) stand naturally for (5ί(/>))^ and
s&t respectively.
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operation and the S-closure operation commutes with the logical constants -»

and ( ) in the class of K-closed propositions.

(3.10T) (£)(2ϊ->gi(£)) is-SR-closed.

Proof. Assume (ξ)m(<Ά-»3l(ξ)). Then, by virute of (3.8 T), (£)(9I-^3H£))^

holds. Now, we prove (f)(9ί->$(£)). To prove this, take any C. Then,

(9ί->3ί(C))mi.e. (v)(((3ί->»(C))->3ί(^))->3ί(v)) holds. Hence, (?I->3ϊ(C))->3ϊ(C))

implies 3HO. (2t->3KC)) ->ίR(C) holds if we assume 91. Hence, 3I-»<R(C) holds

for any C.

(3.11 T) (f)3Hf) implies every SR-closed proposition.

(3.12 T) Let $ be any proposition. Then, (9*£->33S) ->3i$ implies 91 ,̂

regarding g as a 0-ary relation. Namely Peirce's rule holds for g-closed pro-

positions.

Proof. Assume (2lδ-*$3)->»3. To show 9ί̂ , assume 9ϊ ->fy. Then, 91^

implies g evidently. On the other hand, according to (3.5 T) and (3.11 T)

(taking w = 0), g implies $3f. Hence, 9I^-*S£ holds. Since (3l^-*S^)->aδf is

assumed, we have 21$. So, we have g.

Peirce's rule holds for g-closed propositions by virtue of the above mentioned

fact and (3.6 R).

(4) Logical constants relative to relations

Outline of this section: With respect to any n-ary relation 9?, I will define

the logical constants 3Ϊ-CONJUNCTION A, SR-DISJUNCTION V , and 3Ϊ-EXIS-
ffi 8ft

TENTIAL QUANTIFICATION (3 ). With respect to A , V , and (3 ) together
3t 8ft 8ft 8ft

with the logical constants -» and ( ), the class of 9ϊ-closed propositions is

closed. Inference rules I-IV and VII-XII hold for 3R-closed propositions with

respect to - » , ( ) , A, V, and (3 ). If 3t is an O-relation, 2ί A 8 as well as
ffi m 8ft 8ft

9ΪV23 is an O-proposition for any O-propositions 91 and SS, and (3x)%(x) isan O-proposition for any O-proposition 9l(j^). T h e proof that inference rules

I-IV and VII-XII hold for 9f-closed propositions with respect to - > , ( ) , A ,
3ft

V, and (3 ) can be carried out in LO.
3ft 8ft

In this section, I assume only the inference rules I-IV, unless specially

noticed otherwise,
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(4.ID) Let ϊft be any wary relation, and ζ be a sequence of n mutually

distinct variables which occur neither in 91 nor in S nor in 9I(ΛΓ). Then,

I define A, V , and (3) by
m an 8ft

» Λ 3J = (£>< ( a - * ( » - 9 ϊ < £ ) ) > - > » ( £ ) ) ,

(
Sft

The logical constants A , V , and (3 ) are called 9ί-CONJUNCTION, 3ί-DISJUNC-

m m m
TION, and SR-EXISTENTIAL QUANTIFICATION, respectively.

(4.2 R) Let R be any O-relation, According to the definitions of A and

m
V, 91 AS as well as 91 V23 is an O-proposition for any O-propositions 9ί and

mm m
23. According to the definition of (3 ), (3x)%{x) is an O-proposition for any

si m
O-proposition %(p).

(4.3T) 9ί A 58, 91 VS, and (3*)9I(#) are all 9?-closed for any relation ».

mm m
Proof. For A as well as ( 3 ), we can prove this theorem easily by making

9ft an
use of (3.10 T) and (4.1 D). For V, we had better prove the generalized

3ft
theorem of (3.10 T) that

(£)(9I->(S->( «S->3ί(£)) . ))

is 3?-closed, beforehand. Then, we can prove the theorem just as we proved

(3.10 T).

(4.4 T) 31 and 5B imply 91 AS.
8ft

Proof. Assume 91 and S3. To prove 9ί AS i.e. (?)((9I->(S->9U5))) ->3ΐ(?)),
m

take any C satisfying 2I-»($->9i(C)). Then, 9i(C) holds since we assume 91

and S. Hence, 91 AS holds.
9ft

(4.5 T) 9ImAS implies 91^ and 91AS3* implies S^. Accordingly, 91 AS

m m m
implies 9ί as well as S for any ^-closed 91 and S.

Proof. I will prove only that 91stAS implies 9I91. To show this," assume
9ft

and take any C satisfying 2l-*9i(C). Then, 9191 implies %i(ζ), because
9ft

implies (3l->3ϊ(ζ))^3i(O. Hence, 9ί9l->(S^3KC)) holds. On the other
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hand, (3t3t-*(»->3i(C)))-*?R(C) holds by assumption, so 3ϊ(O holds. Thus, ^

is proved.

(4.6 T) 9ί as well as S3 implies 2ίV$.
m

Proof. I will prove only that 91 implies 2ίVS i.e. (f)((8Γ->3?(f))->((©-*
Si

3ί(£))-*3ί(£))). To prove this, assume % and take any C satisfying 2l-»9ϊ(C).

Then, 3ϊ(O holds as far as 3t holds. Hence, (33->ίR(C)) ->3KC) holds as far as

% holds. Therefore 9ίVS holds.
se

(4.7T) 9ίV33, 21-><£*, and %-»$* imply Sm.

Proof. Assume 91 V$, 3 ί - ^ , and 33-*(^. Then, I will prove at first

δ w s l To prove this, take any C satisfying £ m ^S(C). Then, 9i-^sJί(C) as well

as 33-»SR(C) holds because we assume 2I-*δw and SB->6W. On the other hand,

and 3B-»3KO imply 3ί(C) because we assume?ίV® i.e.

»(£))). ® ^ implies S^ by virtue of (3.5 T).

(4.8 T). SKA) implies (3x)%(x).
m

Proof. Assume SI(A)- To show (3#)δί(*), take any C satisfying (x)(%(χ)

31(0). Then, 3ί(O holds, because 9KA)-*3ί(C) holds by assumption.

(4.9T) (3*)9l(*) and (x)(3i(^)->Sm) imply 3S91. Accordingly, (Ξx)%(x)

implies any 9ΐ-closed S satisfying (Λ)(31(ΛP) -»33).

Proof. Assume (3x)?I(^) and U)(?IU) ->Sm). Then, I prove at first "8

To prove this, take any C satisfying 39^->9ί(C). I will prove now (#)($[(#)-»

SR(O). To prove this, take any h satisfying %\h). Then, Wh)-*^ holds

because we assume (̂ ΓH9X(ΛΓ> ->58^). Accordingly, 9ί(fe) implies SR(C). So,

(ΛΓ)(9Ϊ<ΛΓ) ->3ϊ(O) holds. On the other hand, the assumption CBχ)%(x) i.e.

(£)((#)(?!(*>-*3M£))-*$(?)) implies (*)(«(*) ->SR(O) ->»(C). Hence, 9ί(0

holds. Φ9191 is thus proved. According to (3.5 T), S m m implies ϋδm.

(4.10 R) With respect to the logical constants Λ, V, and (3 ) together

with the original logical constants -> and ( ), Rules I-ΪV and VII-XII can be

employed for ^-closed propositions for any relation 9?. Furthermore, Rule

XIV can be employed for 3ΐ-closed propositions for any 0-ARY RELATION 3ί.

Illustration for Rules I-IV and VII -XI would be needless for any relation
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3ί. As for Rule XII, the DENOMINATING QUANTIFICATION 3 ! must be
at

suitably introduced105. For any O-relation 3f, I assert that any proof employing

Rules VII-XII for Λ, V, and (3 ) together with Rules I-IV for -> and ( )
at m 3ft

can be transformed into a right proof in LO. (4.4 T) -(4.8 T) indicate that
this is the case for Rules VII-XI. When Rule XII is employed for (3x)%(x),

m
we denominate a free variable, say h, satisfying %(h) under the assumption
( As far as the denomination is valid, we can assert (x){%ix)

instead of the original assertion 2M&). If the original assertion S(/&) becomes

independent of h, then we can assert 25(&), becasue (x)(%(x) -*23(#)) and

(3x)%(x) imply S3(ft) by (4.9 T) for any SR-closed

By virtue of (3.12 T), Rule XIV holds for g-closed propositions for any

proposition g regarding it as a 0-ary relation.

(4.11 R) Let us now consider the matter in J- and K-series logics. Even

in these logics, the ίR-closure operation and the new logical constants Λ , V,
m 3ft

and (3 ) can be introduced in the same way as in (4.1 D) for any relation 9ΐ.
9ft

In LP as well as in LQ, we can show without difficulty that

V

( *

8ft

are all provable as (3.9 R) and (4.10 R) suggest it.

(5) Interpretable equivalence of J-series logics to LO and
faithful interpretations of K-series logics in LO

Any J-series logic can be proved interpretably equivalent to the primitive

logic LO, and any K-series logic can be proved faithfully interpretable in the

same logic LO. According to (2.10 R), any J-series logic is interpretably

equivalent to LP and K-series logic is interpretably equivalent to LQ, so we

have only to prove that LP is interpretably equivalent to LO and that LQ can

20 > As for details of the denominating quantifications, see ONO [1] and [3]. Here
we deal with proofs naturally containing variables introduced by denominations, but only
proofs of propositions containing no variables introduced by denominations. See Foot-
notes 13)-14).

21> Any proposition of the form 91=23 denotes naturally (9ί->33)Λ ($-*$) as far as Λ
is defined in the logic.
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be faithfully interpreted in LO.

(5.1 T) LP is interpretably equivalent to LO.

Proof. According to (2.5 T), LO is a sublogic of LP. Hence, according

to (1.5 R), the sublogic LO of LP can be faithfully interpreted in LP. Con-

sequently, we have only to prove that LP can be faithfully interpreted in LO.

To show this, let us take up any LP-system LP(α ). Let a be {Au . . . , Ak),

every A, be n(i)-ary relation, and n be the maximum number of niiYs.

Let us further take up any (w + D-ary relation symbol /?, which lies naturally

outside of a.

Now, I can define an embedding E of LP(α) into LO (α:U{7?}) by the

following rule of associations-

E : - > — • - » , ( ) — » ( ) , Λ — - > Λ , V — - > V , ( 3 ) — > ( 3 ), Ar->Af
B B B

Naturally, Af denotes an n(i)-ary relation defined by

Af(pu. . . ,p*i))ϊ

Now, let 91 be any proposition (naturally a P-proposition) of LP(α), and

be its word-for-word translation in hθ(a U {R}) by E. By making use of (3.9 R),

(4.3 T), and (4.10 R), we can easily prove that 5ί[£] is provable in

LOU U {R}) as far as 91 is provable in LP(α).

Next, I prove that % is provable in LP(α:) as far as 3ί[/?] is provable in

LO( a U (R)). To prove this, let us assume that 3OD is provable in LO(αr U {/?})

by a proof 77. Since LO is a logic weaker than LP, Π is a right proof

of ?t[/?] in LP(α:U{#}). Now, take up k +1 mutually distinct free variables

αi, . . . , ak, and d which do not occur in Π. We can now define a word-for-

word translation T of the whole proof 77 and the proposition % by

T: ->—»-*, ( ) — > ( ) , Λ—>Λ, V—>V, (3 ) — > O ),

Ai(pι, . . . , pmi))—>R(aιfpu . . . ,pnti), d,. . . , d\

R(Po, P., . , Pn)—>R(Po, Pi ... , Pn). n"i(i)

Let ?Γ, 9l*C/a, and 77* be the translations of 31, 3 O ] , and 77 by T, respectively.

Then, we can easily see that 77* is a right proof of 3l*C/?] in LP({/?}). We

can also see easily that 3I*[/£] is the word-for-word translation of 91* by the

translation S defined by

S = - > — > - > , ( ) — > ( ) , Λ — > Λ , V — > V , ( 3 ) — > ( 3 ) , 7 ? — ^ ^ .
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Then, by virtue of (3.6 R), (3.9 R), and (4.11 R), 21* must be equivalent to

9I*[/?] in LP( {/?}). Hence, 91* must be provable in LP({#}). Now, taking into

consideration the situation that 91* consists of elementary propositions exclu-

sively of the form Ricti, pu . . . ,pnd)f dy . . . , d)> we can prove in LP also the

proposition obtained on replacing every elementary proposition Ricti, pi, . . . ,

pnd)t d, . . . , d) by AApu . . ,Pnd)), which is nothing but the proposition 9ί.

Hence, 51 must be provable in LP.

Thus E is proved to be an embedding of LP(α) into hθ(a U {R}).

(5.2 T) Any J-series logic is interpretably equivalent to LO.

Provable by making use of (1.6 R), (2.10R), and (5.1 T).

(5.3 T) LQ can be faithfully interpreted in LO.

Proof. Let LQ(α) be any LQ-system and a be {Ai, . . . , Ak}. Let us

take up a proposition symbol F (0-ary relation symbol) lying outside of a.

I can now define an embedding E of LQ(α) in LO(ct U {F}) by the following

rule of associations:

E : - * — • - > , ( ) — > ( ) , A — > A , V — > V , ( 3 ) — > ( 3 ) , A t — + A f .
F F F

Let 9ί be any proposition (naturally a P-proposition) of LQ(α), and 9ί[F] be

its word-for-word translation in LO(aΌ{F}) by E. By virtue of (3.12 T),

also the translation of Rule XIV holds in LO, so we can see taking (3.6 R),

(4.3 T), and (4.10R) into consideration that WFl is provable in LO(a:U{F})

as far as 21 is provable in LQ(αr).

Next, I will show that 91 is provable in LQ(α) as far as 9I[F] is provable

in hθ(a U {F}). As LO is a logic weaker than LK, 9I[F] is surely provable

in LK(αr U {F}) as far as it is provable in LO(α: U {F}).

Accordingly, the proposition ϊfCAl i.e. the proposition obtained on replacing

every F in 9ί[FΊ by A is surely provable in LK. Since LQ is a logic weaker

than LK, 91 is equivalent to 9IΓA] in LK according to (3. 6 R), (3.9 R), (4.11 R),

and a remark in (2.1) that Aϊ i.e. (Ai-»Λ)-*Λ is equivalent to A, in

LK. Hence, 91 is provable in LK. Because 9ί is a P-proposition of LQ(α ), 9ί

is also provable in LQ(α). (See (2.7 T).)

Thus, E is proved to be an embedding of LQ(α) into LO(α: U {F}).

(5.4 T) Any K-series logic can be faithfully interpreted in LO.

Provable by making use of (1.4D), (1.6 R), (2.10R), and (5.3T).
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