THE CENTRALISER OF THE INJECTIVE TENSOR PRODUCT

Wend Werner

The aim of this note is to obtain an intrinsic product formula for the centraliser of the injective tensor product of a couple of Banach spaces, $Z\left(X \widehat{\otimes}_{\mathbf{a}} Y\right)$. More precisely, we are going to prove that

$$
Z\left(X \widehat{\otimes}_{c} Y\right)=C^{b}\left(Z_{X} / \mathfrak{F}_{X} \times_{k} Z_{Y} / \mathfrak{F}_{Y}\right)
$$

Here, the spaces Z_{X} / \mathfrak{F}_{X} and Z_{Y} / \mathcal{F}_{Y} depend only on X and Y, respectively, and X_{k} denotes the topological k-product.

A counterexample used to demonstrate that the k-product cannot be avoided serves also as an answer to a question posed by W . Rueß and D . Werner concerning the behaviour of M-ideals on $X \widehat{\boldsymbol{\otimes}}_{\boldsymbol{c}} Y$.

1. Introduction

Let X be a Banach space, B_{X} its unit ball and denote by ex K the set of extreme points of some subset $K \subseteq X$. Suppose for the moment that X is a real space and put

$$
Z(X):=\left\{T \in L(X) \mid \forall p \in \operatorname{ex} B_{X^{\prime}} \exists a_{T}(p) \in \mathbb{R} \quad T^{\prime} p=a_{T}(p) p\right\}
$$

In the operator norm, $Z(X)$ is a commutative C^{*}-algebra. (For the definition in the complex case see the following section.)

The aim of the present note is to obtain an intrinsic product formula for $Z\left(X \widehat{\otimes}_{\varepsilon} Y\right)$, that is, an expression which does not resort to any properties of the injective tensor product as such. More precisely, we are going to show that the equation

$$
Z\left(X \widehat{\otimes}_{e} Y\right)=C^{b}\left(Z_{X} / \mathfrak{F}_{X} \times_{k} Z_{Y} / \mathfrak{F}_{Y}\right)
$$

holds within the frame of Banach algebras. Here, the spaces Z_{X} / \mathcal{F}_{X} and Z_{Y} / \mathcal{F}_{Y} depend only on X and Y, respectively, and x_{k} denotes the topological k-product.

A related formula was obtained in [24], where it was shown that

$$
Z\left(X \widehat{\otimes}_{e} Y\right)=[Z(X) \otimes Z(Y)]^{-}
$$

Received 14 November 1990
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/91 \$A2.00+0.00.

Here, the closure has to be taken with respect to the strong operator topology on the space $X \widehat{\otimes}_{\varepsilon} Y$. For a different approach to this result see [3]. (For some similar results in more special situations the reader is referred to $[3,5,13,14,22,23]$ where, however, sometimes a slightly different notation is used.)

Let us indicate the source of interest in $Z(X)$. First, its subalgebras appear quite naturally whenever X is represented as a space of (all continuous) sections in a Banach bundle, and in fact the whole algebra gives rise to such a representation which in some sense is maximal. (See [4]; in light of this property of $Z(X)$, the above equation can be used to obtain a maximal bundle representation of the injective tensor product without any of the restrictions on the involved Banach spaces as in [3] - but we won't touch this here.) The interest in Banach bundles in turn is manifold, see for example [4, 9, 11]. In [6] this concept has recently become a tool in the biholomorphic classification of domains in infinite dimensional Banach spaces. (Note, however, that the pertinent definitions frequently differ.) Second, in the theory of non associative Banach algebras, $Z(A)$ quite often provides a concept of centroid, which seems to be more manageable than the pure algebraic definition. For a more recent application of this sort see [17]. For the question of how $Z(X)$ looks like in some more concrete examples, the reader is referred to the following section.

Let us explain how this paper is organised: The following section collects some necessary notation as well as two auxiliary results. To one of them, a theorem of Stone-Weierstraß type, we briefly sketch some further applications. In the third section we state and prove our main theorem. We finally present an example in Section 4 that serves for two purposes: First, it provides a counterexample to a more ambitious conjecture in connection with the main result. On the other hand, it answers a question of W. Rueß and D. Werner posed in [20].

2. Notation and useful results

We begin with
Definition 1: The Banach algebra Mult X consists of all those operators T for which each $p \in \operatorname{ex} B_{X^{\prime}}$ is an eigenvector of T^{\prime} with eigenvalue $a_{T}(p)$.

Those $T \in$ Mult X that possess a natural adjoint in Mult X, that is for which there exists $T^{*} \in M u l t X$ with $a_{T^{*}}(p)=\overline{a_{T}(p)}$ for all $p \in$ ex $B_{X^{\prime}}$, are said to belong to the centraliser, denoted by $Z(X)$.

Clearly, when X is a real space, both algebras coincide. Note that both algebras are function algebras and that $Z(X)$ is a $C K$-space for a suitable compact K. For a more detailed presentation of this topic see [4].

Suppose that X is a closed subspace of $C_{0} L$, the space of all continuous functions
on the locally compact space L vanishing at infinity, and let

$$
\begin{aligned}
\operatorname{Mult}\left(X, C_{0} L\right) & :=\left\{f \in C^{b} L \mid f X \subseteq X\right\} \\
Z\left(X, C_{0} L\right) & :=\left\{f \in \operatorname{Mult}\left(X, C_{0} L\right) \mid \bar{f} \in \operatorname{Mult}\left(X, C_{0} L\right)\right\}
\end{aligned}
$$

We further denote by

$$
\mathfrak{F}\left(X, C_{0} L\right)
$$

the set of equivalence classes which are obtained by

$$
l \sim k \Longleftrightarrow f(l)=f(k) \quad \forall f \in Z\left(X, C_{0} L\right)
$$

The reader should observe that $Z\left(X, C_{0} L\right)$ is always a closed subalgebra of $Z(X)$. Furthermore, when X is canonically embedded into the space $C_{0} Z_{X}$, where Z_{X} := $\overline{\operatorname{ex} B_{X^{\prime}}}{ }^{*} \backslash\{0\}$, then $Z(X)=Z\left(X, C_{0} Z_{X}\right)$ as well as $\mathfrak{F}\left(X, C_{0} Z_{X}\right)=\mathfrak{F}_{X}$. A result similar to the following can be found in [10, Theorem 13.2].

Theorem 2. Let X be a closed subspace of $C_{0} L$. Then $f \in C_{0} L$ belongs to X if and only if

$$
f_{\mid F} \in X_{\mid F} \quad \forall F \in \mathfrak{F}\left(X, C_{0} L\right)
$$

The proof of this theorem is nothing but a slight modification of the argument Glicksberg gave in order to prove Bishop's version of the classical Stone-Weierstraß theorem (see for example [10]), and in fact, if X is a function algebra then Theorem 2 reduces to Bishop's theorem. (Note that in this case \mathfrak{F}_{X} is the maximal antisymmetric decomposition of X 's Shilov boundary.) We therefore omit it. Instead, let us see what is going on for special spaces:

Corollary 3.
(i) $A C^{*}$-algebra A is commutative if and only if its centroid separates the points in the w^{*}-closure of the set of pure states of A.
(ii) A compact convex set K in a LCTVS is a Bauer simplex if and only if the order bounded operators on $A(K)$ separate the points in $\overline{\operatorname{ex~} K}$.
(iii) Denote by $\left(Z_{X}\right)_{\sigma}$ the quotient space obtained from identifying points of the form γp with $|\gamma|=1$. Then X is a C_{σ}-space if and only if $Z(X)$ separates the points of $\left(Z_{X}\right)_{\sigma}$.

Let us briefly sketch the proofs : For (i), one has to use the fact that for C^{*}-algebras $Z(A)$ coincides with the centroid of $A,[12]$. In the unital case, this is of course a special case of Théorème 11.3 .1 in [7]. To see why (ii) holds, one has to take into account that an operator T on $A(K)$ is order bounded if and only if $T \in Z(A(K))$, see [1, II Section 7], and that the Bauer simplices represent precisely the sets $M_{1}^{+}(C)$ for some
compact space C [1, II Section 4]. The statement of (iii), the proof of which follows readily from Theorem 2 and [15, p.218], should be compared to the central results of [18] and [21], where two other classes of L^{1}-preduals are classified in a similar way. To see this connection (and for the sake of preparing the counterexample announced in the introduction), we need

Theorem 4. ([2]) Denote by (ex $\left.B_{X^{\prime}}\right)_{\sigma}$ the space obtained from ex $B_{X^{\prime}}$ by identifying points of the form γp with $|\gamma|=1, p \in \operatorname{ex} B_{X^{\prime}}$. Then the sets of the form

$$
\left(\operatorname{ex} B_{X^{\prime}} \cap J^{\circ}\right)_{\sigma}
$$

where J runs through the M-ideals of X, form the closed sets of a topology called the structure topology of X.

Recall that a subspace J of a Banach space X is called an M-ideal, if and only if for some subspace J^{*} of X^{\prime}

$$
X^{\prime}=J^{\circ} \oplus_{1} J^{*}
$$

The point here is that the functions a_{T} (introduced in Definition 1) correspond to the bounded structurally continuous functions (see [4, Chapter 3]). Now, in [18] the L^{1} preduals with the property that the elements of $Z(X)$ separate the points of (ex $\left.B_{X^{\prime}}\right)_{\sigma}$ have been characterised, whereas in [21] it was shown that a Banach space is G-space if and only if (ex $\left.B_{X^{\prime}}\right)_{\sigma}$ is Hausdorff.

Let us finally point out that the version of the Stone-Weierstraß theorem which is valid in the context of function modules on some compact space K (see for example [11]), can also be obtained using Theorem 2.

The reason we are interested in Theorem 2 at this place is
Corollary 5. Denote by \mathfrak{F}_{X} the set of equivalence classes on Z_{X} defined by

$$
p \sim q \Longleftrightarrow \Phi^{\prime} p=\Phi^{\prime} q \quad \forall \Phi \in Z(X)
$$

The algebra $Z\left(X, C_{0} L\right)$ consists exactly of those $f \in C^{b} L$ which are constant on each $F \in \mathfrak{F}_{\boldsymbol{X}}$.

We have to fix some further notation: Let T be a Hausdorff space. The space $k(T)$ is the set T together with the topology in which a set is open if and only if its intersection with the compact subsets of T is (relatively) open. $k(T)$ belongs to the class of k-spaces, which means that its topology is generated by the compact subsets of $k(T)$. In the same vein, the mapping

$$
k(f): k\left(T_{1}\right) \rightarrow k\left(T_{2}\right)
$$

differs from $f: T_{1} \rightarrow T_{2}$ by change of topologies only, and it is continuous whenever f is. We will also follow the convention to write

$$
T_{1} \times{ }_{k} T_{2}:=k\left(T_{1} \times T_{2}\right)
$$

The most exhaustive reference on this topic known to the author is [8]. The following lemma contains the topological ingredients of the proof of Theorem 7. Since we couldn't locate one in the literature, we include a proof.

Lemma 6. Suppose that $T_{1,2}$ are Hausdorff spaces, that T_{1} is locally compact, and that there are given equivalence relations $R_{1,2}$ on $T_{1,2}$ with appertaining quotient maps $\pi_{1,2}$ such that T_{i} / R_{i} is Hausdorff and the space $\left(T_{1} \times T_{2}\right) /\left(R_{1} \times R_{2}\right)$ is a k -space. Then

$$
\left(T_{1} \times T_{2}\right) /\left(R_{1} \times R_{2}\right) \cong T_{1} / R_{1} \times k T_{2} / R_{2}
$$

where the homeomorphism is given by $k(H)$ with

$$
H\left(\left[\left(t_{1}, t_{2}\right)\right]\right)=\left(\left[t_{1}\right],\left[t_{2}\right]\right)
$$

Here, $[\cdots]$ refers to the formation of equivalence classes in either of the equivalence relations.

Proof: By definition of the respective topologies, H and hence $k(H)$ are continuous. Thus we are left with showing that the map $k(H)^{-1}=k\left(H^{-1}\right)$ is continuous, which is the same as showing that H^{-1} is continuous when restricted to compact subsets K of $T_{1} / R_{1} \times T_{2} / R_{2}$. By assumption on T_{i} / R_{i}, we may think of K as having the form $K=K_{1} \times K_{2}$ with K_{i} compact in T_{i} / R_{i}. Denote by π_{12} the quotient mapping that belongs to the relation $R_{1} \times R_{2}$ on $T_{1} \times T_{2}$. By [8, 3.3.28],

$$
\psi:=\pi_{1} \times \pi_{\left.2\right|_{\pi_{1}^{-1}\left(K_{1}\right) \times \pi_{2}^{-1}\left(K_{2}\right)}}
$$

is a quotient map and so the continuity of $H^{-1}{ }_{\mid K}$ follows from the fact that

$$
H^{-1}\left|K \psi=\pi_{12}\right|_{\pi_{1}^{-1}\left(K_{1}\right) \times \pi_{2}^{-1}\left(K_{2}\right)}
$$

is continuous.

3. Main theorem and proof

Theorem 7. For Banach spaces X and Y we have

$$
Z\left(X \widehat{\otimes}_{\mathcal{E}} Y\right) \cong C^{b}\left(Z_{X} / \mathfrak{F}_{X} \times_{k} Z_{Y} / \mathfrak{F}_{Y}\right)
$$

where the (algebraic) isomorphism between these spaces can be chosen so that the operator $\sum T_{i} \otimes S_{i}$, which is in $Z\left(X \widehat{\otimes}_{e} Y\right)$, may be identified with the map $\sum a_{T_{i}} \otimes a_{S_{i}}$.

Note that the quotient spaces involved need not be completely regular. Therefore the Gelfand space of $Z\left(X \widehat{\otimes}_{e} Y\right)$ has to be written

$$
\beta \varrho\left(Z_{X} / \mathfrak{F}_{X} \times{ }_{k} Z_{Y} / \mathfrak{F}_{Y}\right)
$$

where ρT denotes the complete regularisation of T, which in our case is nothing but the weak $C^{b} T$ topology of T.

Proof: In the following we shall make use of the fact that $Z_{X \widehat{\otimes}_{C} Y}=Z_{X} \otimes Z_{Y}$, which follows from results in [19] and [16]. Our proof consists mainly in showing that

$$
\mathfrak{F}_{X \widehat{\otimes}_{\mathbb{E}} Y}=\mathfrak{F}_{X} \otimes \mathfrak{F}_{Y}
$$

To show this, observe first that for $p \in Z_{X}$ and $f \in X \widehat{\otimes}_{c} Y$

$$
f_{p}(t):=f(p \otimes t) \quad t \in Z_{Y}
$$

belongs to Y. Analogously, f^{q} belongs to X for each $q \in Z_{Y}$. Representing $Z\left(X \hat{\otimes}_{e} Y\right)$ as a space of bounded continuous functions on $Z_{X \widehat{\otimes}_{c} Y}$ we may define Φ_{p} with $p \in Z_{X}$ as above. We have for $e \in X$ with $p(e)=1$

$$
\Phi_{p} x=\Phi(p, \cdot) p(e) y(\cdot)=[\Phi(e \otimes y)]_{p}
$$

and so, by the Bishop-Phelps Theorem, $\Phi_{p} \in$ Mult Y. Since $\overline{\Phi_{p}}=(\bar{\Phi})_{p}$ we also have $\Phi_{p} \in Z(Y)$. In the same way, $\Phi^{q} \in Z(X)$ for all $q \in Y$. Now let $\xi_{1,2} \otimes \eta_{1,2} \in F \otimes G \in$ $\mathfrak{F}_{X} \otimes \mathfrak{F}_{Y}$. Then

$$
\Phi\left(\xi_{1} \otimes \eta_{1}\right)=\Phi_{\xi_{1}}\left(\eta_{1}\right)=\Phi_{\xi_{1}}\left(\eta_{2}\right)=\Phi_{\eta_{2}}\left(\xi_{1}\right)=\Phi_{\eta_{2}}\left(\xi_{2}\right)=\Phi\left(\xi_{2} \otimes \eta_{2}\right)
$$

and thus, each $\Phi \in Z\left(X \widehat{\otimes}_{e} Y\right)$ is constant on $F \otimes G$. On the other hand, by definition of \mathfrak{F}_{X} and \mathfrak{F}_{Y}, two different sets $F_{1} \otimes G_{1}$ and $F_{2} \otimes G_{2}$ in $\mathfrak{F}_{X} \otimes \mathfrak{F}_{Y}$ are separated by elements $\Xi \otimes \Psi \in Z(X) \otimes Z(Y) \subseteq Z\left(X \widehat{\otimes}_{\varepsilon} Y\right)$, which settles our claim.

To finish the proof, let τ and π_{X} denote the quotient maps from $Z_{X} \times Z_{Y}$ to $Z_{X} \otimes Z_{Y}$ and from Z_{X} to $Z_{X} / \mathfrak{F} X$, respectively. Clearly, the quotient topologies on $Z_{X \widehat{\otimes}_{c} Y} / \mathcal{F}_{X \widehat{\otimes}_{c} Y}$ induced by $\pi_{X \widehat{\otimes}_{f} Y}$ and $\pi_{X \widehat{\boldsymbol{\theta}}_{\boldsymbol{c}} Y}{ }^{\circ} \tau$ coincide, and because

$$
\pi_{X \widehat{\otimes}_{\boldsymbol{C}} Y} \circ \tau=\pi_{X} \times \pi_{Y},
$$

we may use Lemma 6 to obtain (note that the class of k-spaces is stable under the formation of quotient mappings)

$$
Z_{X \widehat{\otimes}_{⿷} Y} / \mathfrak{F}_{X \widehat{\otimes}_{\varepsilon} Y} \cong\left(Z_{X} \times Z_{Y}\right) /\left(\mathfrak{F}_{X} \times \mathfrak{F}_{Y}\right) \cong Z_{X} / \mathfrak{F}_{X} \times_{k} Z_{Y} / \mathfrak{F}_{Y}
$$

By Corollary 5 we are done.
The following corollary is essentially known (combine Example 5 on page 155 of [4] with Theorem 4.5 of [3]).

Corollary 8. Suppose that X and Y are dual spaces. Then

$$
Z\left(X \widehat{\otimes}_{e} Y\right)=Z(X) \widehat{\otimes}_{e} Z(Y)
$$

Proof: To keep this proof within reasonable limits, we adopt the notation of [4, Chapter 4]. It is not very difficult to see that a maximal function module representation of a Banach space X can be obtained by putting $K_{X}^{*}:=Z_{X} / \mathcal{F} X, K_{X}:=\beta K_{X}^{*}$, choosing the fibre above $F \in \mathfrak{F}_{X}$ to be $X_{\mid F}$ (this is in fact a Banach space) and to be $\{0\}$ elsewhere, and, finally, letting $\|x(F)\|=\left\|x_{\mid F}\right\|$. Theorem 5.13 of [4] then shows that in each dual space X there is an element $e \in X$ such that

$$
\left\|e_{\mid F}\right\|=1 \quad \forall F \in \mathfrak{F}_{X}
$$

But $\left\{F \in Z_{X} / \mathcal{F}_{X} \mid\left\|x_{\mid F}\right\| \geqslant \alpha\right\}$ is compact for all $x \in X$ and for each $\alpha>0$ and hence, Z_{X} / \mathfrak{F}_{X} is compact. The conclusion follows from this.

Observe that in the above proof we have essentially profited from the compactness of the space Z_{X} / \mathfrak{F}_{X}. With a similar reasoning, the above proof transfers to the case of $A(K)$-spaces and unital C^{*}-algebras.

4. An example

Let us first observe that in general the statement of Corollary 4.2 is wrong : Whenever $L_{1,2}$ are locally compact spaces, then
whereas

$$
Z\left(C_{0} L_{1} \widehat{\otimes}_{e} C_{0} L_{2}\right) \cong C \beta\left(L_{1} \times L_{2}\right)
$$

$$
Z\left(C_{0} L_{1}\right) \widehat{\otimes}_{\varepsilon} Z\left(C_{0} L_{2}\right) \cong C\left(\beta L_{1} \times \beta L_{2}\right)
$$

However, these two spaces are known to be different in general $[8,3.12 .21]$.
The following example shows that one cannot dispose of the index k in the statement of Theorem 7: Let $X=\left\{f \in C_{0} \mathbb{R} \mid n f(n)=f(1) \forall n \in \mathbb{N}\right\}$. We have $Z_{X}=\left\{ \pm \delta_{k} \mid k \in \mathbb{R}\right\}$ and so $Z(X)=\left\{f \in C^{b} \mathbb{R} \mid f_{\mid N}=\right.$ constant $\}$. It is also straightforward to check that $X \widehat{\otimes}_{\varepsilon} X=\left\{f \in C_{0} \mathbb{R}^{2} \mid m n f(m, n)=f(1,1)\right\}$ as well as $Z\left(X \widehat{\otimes}_{\varepsilon} X\right)=C^{b} \mathbb{R}^{2} / \mathbb{N}^{2}$. We will show that $C^{b} \mathbb{R}^{2} / \mathbb{N}^{2} \neq C^{b}(\mathbb{R} / \mathbb{N})^{2}$. To this end, denote for $m, n \in \mathbb{N}$ by $D_{m, n}$ the (open) disk with radius $(m+n)^{-1}$ centered at (m, n). Let f be any function $f \in C^{b} \mathbb{R}^{2}$ that vanishes on $\mathbb{R}^{2} \backslash \bigcup_{m, n=1}^{\infty} D_{m, n}$ and attains the value 1 on \mathbb{N}^{2}. Since a neighbourhood of \mathbb{N} always contains a set of the form $\left.\left.\sum_{\mu \in \mathbb{N}}\right] a_{\mu}, b_{\mu}\right]$ with $\mu \in] a_{\mu}, b_{\mu}\left[, f\right.$ cannot be continuous when it is considered as a function on $(\mathbb{R} / \mathbb{N})^{2}$.

Pursuing the above example a little further, we arrive at

Proposition 9. In general, the structure topology on $\left(\mathrm{ex} B_{X \widehat{\otimes}_{c} Y}\right)_{\sigma}$ is not the product of the structure topologies of $\left(\mathrm{ex} B_{X}\right)_{\sigma}$ and (ex $\left.B_{Y}\right)_{\sigma}$.

This gives an answer to a question posed in [20]. Note that, as an equation of sets, we always have

$$
\left(\operatorname{ex} B_{X \widehat{\otimes}_{c} Y}\right)_{\sigma}=\left(\operatorname{ex} B_{X}\right)_{\sigma} \times\left(\operatorname{ex} B_{Y}\right)_{\sigma}
$$

Proof: In fact, since the space X constructed above is a G-space, one can use [21, Theorem 97] and the fact that

$$
\operatorname{ex} B_{X^{\prime}}=\left\{ \pm \delta_{k} \mid k \in \mathbb{R} \backslash\{2,3, \ldots\}\right\}
$$

to see that (ex $\left.B_{X^{\prime}}\right)_{\sigma}$ provided with the structure topology is homeomorphic to \mathbb{R} / \mathbb{N}. But then

$$
\left(\operatorname{ex} B_{X^{\prime}}\right)_{\sigma} \times\left(\operatorname{ex} B_{X^{\prime}}\right)_{\sigma} \not \neq\left(\operatorname{ex} B\left(x \widehat{\otimes}_{\varepsilon} X\right)^{\prime}\right)_{\sigma}
$$

since the latter space provided with the structure topology is homeomorphic with $\mathbb{R}^{2} / \mathbb{N}^{2}$.

References

[1] E. M. Alfsen, Compact convex sets and boundary integrals (Springer-Verlag, Berlin, Heidelberg, New York, 1971).
[2] E. M. Alfsen and E. G. Effros, 'Structure in real Banach spaces. Part I and II', Ann. of Math. 96 (1972), 98-173.
[3] E. Behrends, 'The centralizer of tensor products of Banach spaces (a function space representation)', Pacific J. Math. 81 (1979), 291-301.
[4] E. Behrends, M-Structure and the Banach-Stone Theorem: Lecture Notes in Math. 736 (Springer-Verlag, Berlin, Heidelberg, New York, 1979).
[5] C.-H. Chu, 'On standard elements and tensor products of compact convex sets', J. London Math. Soc. 14 (1976), 71-78.
[6] S. Dineen, M. Klimek, and R.M. Timoney, 'Biholomorphic mappings and Banach function modules', J. Reine Angew. Math. 387 (1988), 122-147.
[7] J. Dixmier, Les C^{*}-algèbres et leurs représentations, second edition (Gauthier-Villars, Paris, 1969).
[8] R. Engelking, General topology (Warszawa, 1977).
[9] J.M.G. Fell and R.S. Doran, Representations of *-algebras, locally compact groups, and *-alebraic bundles I,II: Pure Appl. Math 125, 126 (Academic Press, New York, London, 1988).
[10] T. W. Gamelin, Uniform algebras (Prentice-Hall, Englewood Cliffs, 1969).
[11] G. Gierz, Bundles of topological vector spaces and their duality: Lecture Notes in Math. 955 (Springer-Verlag, Berlin, Heidelberg, New York, 1982).
[12] P. Harmand, D. Werner, and W. Werner, ' M-ideals in Banach spaces and Banach algebras', (in preparation).
[13] R. Haydon and S. Wassermann., 'A commutation result for tensor products of C^{*}-algebras', Bull. London Math. Soc. 5 (1973), 283-287.
[14] J.W. Kitchen and D.A. Robbins, 'Tensor products of Banach bundles', Pacific J. Math. 94 (1981), 151-16.
[15] H.E. Lacey, The isometric theory of classical Banach spaces (Springer-Verlag, Berlin, Heidelberg, New York, 1974).
[16] \AA. Lima and G. Olsen, 'Extreme points in duals of complex operator spaces', Proc. Amer. Math. Soc. 94 (1985), 437-440.
[17] A. Rodríguez-Palacios and A.R. Villena Muñzz, 'Centroid and extended centroid of $J B^{*}$-algebras', (preprint 1989).
[18] N.M. Roy, 'A characterization of square Banach spaces', Israel J. Math. 17 (1974), 142-148.
[19] W. Ruess and Ch. Stegall, 'Extreme points in duals of operator spaces', Math. Ann. 261 (1982), 535-546.
[20] W. Ruess and D. Werner, 'Structural properties of operator spaces', Acta Univ. Carolin. - Math. Phys. 28 (1987), 127-136.
[21] U. Uttersrud, 'On M-ideals and the Alfsen-Effros structure topology', Math. Scand. 43 (1978), 369-381.
[22] G. F. Vincent-Smith, 'The centre of the tensor product of $A(K)$-spaces and C^{*}-algebras', Quart. J. Math. Oxford Ser. 228 (1977), 87-91.
[23] W. Werner, 'Some results concerning the M-structure of operator spaces', Math. Ann. 282 (1988), 545-553.
[24] A. W. Wickstead, 'The centraliser of $E \otimes_{\lambda} F$ ', Pacific J. Math. 65 (1976), 563-571.

Department of Mathematics
Universitāt - Gesamthochschule Paderborn
Fachbereich 17 Postfach 1621
Paderborn
Federal Republic of Germany

