
GROUPS WITH REPRESENTATIONS OF BOUNDED 
DEGREE 

IRVING KAPLANSKY 

1. Introduction. Let G be a compact group. According to the cele­
brated theorem of Peter-Weyl there exists a complete set of finite-dimensional 
irreducible unitary representations of G, the completeness meaning that for 
any group element other than the identity there is a representation sending it 
into a matrix other than the unit matrix. If G is commutative, the repre­
sentations are necessarily one-dimensional. It is an immediate consequence 
of the Peter-Weyl theorem that the converse also holds: if every representation 
is one-dimensional, G is commutative. The main theorem in the present paper 
is a generalization of this result to the case where the representations have 
bounded degree. We may illustrate by stating the next simplest case. The 
representations are one- or two-dimensional if and only if G satisfies the fol­
lowing condition: for any 4 elements of G the 12 ( = 4!/2) products obtained 
from even permutations can be paired off in equal pairs with the 12 products 
obtained from odd permutations. The general result is stated in Theorem 3. 

Such groups exist: for example, the group extension of an abelian group by 
a finite group (Theorem 1). On the other hand, if such a group is connected 
it is abelian (Theorem 2). 

In §§2, 3 we present some preliminary remarks on matrices and groups, 
and in § 4 we review some facts on group representations needed for the exten­
sion from the compact to the locally compact case. In § 5 the main theorems 
appear, and in § 6 a connection with a theorem due to Halmos is described. 

2. Matrix identities.1 For elements xi, . • . , xr in a ring we shall write 

[Xi, . . . , Xr] = 2 db X, (i). . . X„(r) 

where the sum runs over all permutations TT and the plus or minus sign is pre­
fixed according as -K is even or odd. 

LEMMA 1. In any algebra A of order k — 1 we have [xi, . . . , # * ] = Ofor all 
X %&fjL m 

Proof, Since the relation in question is multilinear, it need only be proved 
when xi, . . . ,Xk are basis elements. In that case at least one repetition occurs, 
and consequently a transposition can be performed which leaves [xlt . . . , xk] 
unchanged. Hence 

[xl9 . . . , xk] = ~ [xi, . . . , xk] = 0. 

Received February 23, 1948. 
*I am greatly indebted to E. R. Kolchin for the contents of 2. 
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(Formally this argument is invalid for characteristic 2, but the result is still 
correct and may be proved by the usual device of a reduction mod 2.) 

We may apply Lemma 1 to the special case where A is the algebra of n by n 
matrices over a field. We shall write r(n) for the smallest integer such that 
[xu . . . , xr] = 0 for all n by n matrices.2 By Lemma 1 we have r(n) ^ n2+ 1. 

The following argument gives a lower bound for r. Write / = r(n — 1)— 1. 
Suppose xu . . . , Xt are n — 1 by n — 1 matrices with [xu . . . , # * ] 5^0, and we 
may suppose to be explicit that [xu . . . , xt] contains a non-zero term in ehk> 
where {en} denote the usual matrix units. Embed the matrix Xi in an n by n 
matrix y» by adjoining a row and column of zeros. Then it is evident that 

[yu . . • , yt, eknj enn] ^ 0. 
This proves the following result. 

LEMMA 2. r(n) è r(n — 1 ) + 2. 

It is clear that r(l) = 2 and by Lemma 2 we deduce the lower bound r(n)^ 
2n. For w = 2, r(2) is in fact precisely 4. This apparently exhausts the 
known facts concerning r(n). 

3. A certain class of groups. Let us say that a group G satisfies the con­
dition Pn(n è 2) if the following is true: for any n elements in G the set of n\/2 
products obtained from even permutations coincides with the w!/2 products 
obtained from odd permutations. It should be noted that it is not asserted 
that there is a fixed way of carrying out the pairing once for all ; the particular 
correspondence presumably depends upon the particular n elements in question. 

It is fairly evident that Pk implies Pk+u Pi simply asserts commutativity, 
and so does P 3 as can be seen by taking one of the three elements to be the 
identity. Starting at k = 4 there exist non-abelian groups satisfying Pk: 
for example, the symmetric group on three elements satisfies P±. The following 
theorem provides us with a substantial class of such groups. 

THEOREM 1. A group extension of an abelian group by a finite group of order 
n satisfies Pn

2+u 
Proof. We suppose that G is abelian, H oî order w, and K/G ^ H. Choose 

fixed representatives fei, . . . , kneK for the cosets of K mod G. Every element 
of K can be uniquely written gku g*G. Let b be a product of n2+ 1 elements 
of K. In such a product some fe, say ku must be repeated at least n + 1 times. 
Let gk\ be the element appearing at the first occurrence of ku a n d g'k\ one of 
the later occurrences. Write x for the product of the &'s intervening between 
these two instances of ku The interchange of the pair gki and g'k\ will leave 
b unchanged provided that k\X lies in G. Since we have n + 1 or more occur­
rences of k\ and only n cosets of K mod G, it will have to happen at least once 
that an interchange of two of the terms comprising b leaves b unchanged. 

2It is conceivable that r(n) depends on the coefficient field, or rather on the characteristic 
of the latter. To be explicit, one may take the characteristic 0 case throughout the paper. 

https://doi.org/10.4153/CJM-1949-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-011-9


REPRESENTATIONS OF BOUNDED DEGREE 107 

We now specifically pick out the first element in the product b whose inter­
change with a later element is legal. In all the (n2+ 1)! permutations we do 
the same thing, and thus set up a one-to-one correspondence between the even 
permutations and the odd permutations. This proves Theorem 1. 

Theorem 1 does not give the best possible result. Indeed we shall show 
below that a group extension of an abelian group by a group of order n actually 
satisfies PS(n), where 
(1) s(n) = r(n) for r(n) even 

= r(n)+ 1 for r(n) odd, 
and r(n) is the integer defined in § 2. Thus for n = 2 we get Pi instead of the 
P 5 of Theorem 1. However I am unable to prove this refinement without the 
detour to group representations and Banach algebras. 

We shall conclude this section by showing that there are no connected non-
abelian groups of the kind under discussion. Actually we prove a (formally 
at least) stronger result, in order to carry through an induction. 

THEOREM 2. Let G be a connected topological group having for some fixed 
n ^ 2 the following property: any product a\ai. . • anis equal to a proper permu­
tation. Then G is abelian. 

Proof. We shall show that G has the same property for n — 1 and hence 
finally reach n = 2. Let then au . . . , an-i be elements in G. For any 6 in G 
the product a\. . . an-ib must be equal to a proper permutation. We may sup­
pose that there is a neighbourhood U of the identity such that for b in U the 
proper permutation in question keeps the order of au • • • » &n-i fixed ; for other­
wise we can take the limit as b approaches the identity and conclude that 
au . . a«_i equals a proper permutation. Thus for each b in U we have one 
of the n — 1 possible equations 

au • • Q>n—ib = a\. . . aibai+u • • dn~i(i = 0, . . . , n — 2). 
The ith equation asserts that b commutes with az+ i . . . an-\ and hence is valid 
in a closed set. Thus U is covered by a finite number of these closed sets, and 
one of them must have a non-void interior. This says that the centralizer of 
ai+u . . fln-i is open. Since G is connected, this centralizer must be all of G 
and hence ai+u . . an~i is in the centre. For i ^ 1 this yields the desired result 
obviously, while for i = 0 the assertion that au • • #n-i is in the centre implies 

COROLLARY. / / a connected topological group satisfies Pn it is abelian. 

4. Group representations. In order to formulate our main theorem for a 
locally compact group G, it would not suffice to assume that the finite-dimen­
sional irreducible unitary representations of G have bounded degree; for there 
exist groups (e.g. the Lorentz group) for which the only finite-dimensional 
unitary representation is the trivial one. Thus we must impose a further 
condition which will entail the existence of a respectable number of finite-
dimensional representations. For our purposes a convenient hypothesis of 
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this kind can be formulated in terms of the representations introduced by 
Segal [4]. We devote this section to a brief statement of the necessary facts. 

Let A denote the Li-algebra of the locally compact group G, that is, the 
algebra of all complex-valued functions summable with respect to the left 
Haar measure of G, with convolution as multiplication: 

fg(x) •• f(y)g(y lx)dy. 

Let E be the algebra of bounded operators on a Banach space. A ^-repre­
sentation [4, p. 79] of G is a multiplicative homomorphism Toi G into E which 
sends the identity into the unit operator, is continuous in the strong topology 
of E, and is such that | j T(a) 11 is bounded for a eG. A ^-representation is 
irreducible if it admits no proper closed invariant subspaces. Irreducible B-
representations may be constructed as follows. Let M be a regular maximal 
left ideal in A, and associate with a eG the operator Ta'. u + K —* ua+ K, 
where ua{x) = u(a~lx). We shall call these representations primitive, a desig­
nation suggested by the fact that the extension of the representation to A 
has as its kernel the ideal P consisting of all x with xA ^ M ; P is a primitive 
ideal in the sense of Jacobson [2], Conversely every primitive ideal in A is 
associated in this fashion with at least one primitive representation of G. 

The following facts are known: (1) all primitive representations are irre­
ducible, (2) any irreducible finite-dimensional unitary representation is similar 
to a primitive representation, (3) if G is compact or abelian, all primitive 
representations of G are finite-dimensional. It is an open question whether 
every irreducible ^-representation is similar to a primitive representation. 

5. Main theorem. In terms of the concepts introduced in the previous 
sections, the principal result can be stated as follows. 

THEOREM 3. The following two statements are equivalent for a unimodular 
locally compact group G:z 

(a) All primitive representations of G are finite-dimensional and of degree at 
most n, 

(b) G satisfies the condition PS(n), where s(n) is defined by (1). 
It is to be observed that if G is compact, the theorem simplifies percep­

tibly: compact groups are unimodular, and their primitive representations are 
automatically finite-dimensional. 

Proof. Suppose that (a) holds. Then it follows virtually from the defini­
tion of the primitive representations that for every primitive ideal P in A = 
Li(G), A — P is finite-dimensional and is in fact a total matrix algebra of 
degree at most n. Hence A — P satisfies the identity [xi, • • • , %k] — 0 for 
k = r(n) and a fortiori f or k = 5 = s(n). Now the intersection of the primitive 
ideals of A is 0: this is a consequence of the semi-simplicity of A: [4, Th. 1.5] 

3A group is unimodular if its right and left Haar measures coincide—cf. [5, p. 39]. 
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and [2, Th. 25]. Hence [fu . . . , / J = 0 holds for all fM. The 5-fold con­
volution of functions is given by 

(2) / i . . . / . ( * ) 

h(yi)h(y%)- • • fs-i(ys-i)fs[(yi... y*-i)~lx]dyi... dys^. 

We shall now study the effect of a permutation ir on / i . . .fs. If 7r does not 
involve the letter s, its effect on (2) may be described as carrying out w on the 
y s in (y i. . . j s _ i ) _ 1 , and otherwise leaving the right side of (2) unchanged. 
Next we try the case ir = (is). We carry out the interchange of/; a n d / s in (2) 
and then replace yi by 

(3) (ji. . . yi-i)~lxyï~l(yi+i. . . ys-i)~\ 

(a legal change of variable in view of the assumed unimodularity of G). This 
replaces 
(4) (yi. . . ys-i)-^ 

by yi and so finally gives us the right side of (2) changed by the substitution 
of (3) for (4). In view of the fact that 5 is even, it can be verified that the 
permutation (4) —» (3) is odd. 

The general permutation TT which does involve s can be written uniquely as 
T = (is)wij where in is independent of s. The effect of T on the right side of 
(2) can thus be described as changing the argument of fs by the permutation 
(4) —> (3), followed by the permutation wi on the y's. This is a one-to-one 
correspondence: given the induced permutation on the argument of fs we can 
unambiguously reconstruct TT; for the position of x (in the ith place) gives 
us the portion (is), and the position of the y's then determines TTI. Moreover, 
the correspondence preserves the parity of 7r, as we have seen. 

We may summarize as follows. We have 

(5) J . . . fi(yx)h(y2) . . • fs-x(ys~i)Zdyi. . . dys^= 0, 

where we have written Z for 

z = S ±/.(*i), 
j 

Zj being the general permutation of (4), and the plus or minus sign being taken 
according to the parity of the permutation Zj. Since (5) holds for all /»• in A 
and in particular for all continuous /*• in A we deduce that Z — 0 for all con­
tinuous fs in A. Since a continuous function in A can take arbitrary values 
at any finite subset of G, we conclude that G must satisfy the condition Ps. 

We now proceed to the proof of the converse. Suppose that (b) holds. Then 
the computation above is reversible to the point where we have [/i, . . . , f8] = 0 
for fieA. Let P be a primitive ideal in A ; the identity [xi, . . . , xs] = 0 is of 
course inherited by A —P. Theorem 1 of [3] asserts that a primitive algebra 
satisfying a polynomial identity is finite-dimensional over its center. Hence 
A — Pis finite-dimensional over its centre C. By the Gelfand-Mazur theorem 
on normed fields, C is just the complex numbers. Hence A — P is an algebra 

-
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of finite order over the complex numbers, and is indeed a full matrix algebra. 
As for the degree of these matrices, it cannot exceed n; for by Lemma 2, 
5 ^ r(n)+ 1 < r(n + 1) and consequently matrices of degree n + 1 fail to 
satisfy [x\, . . . , xs] = 0. This shows that the primitive representations of G 
are finite-dimensional and of degree at most n, and concludes the proof of 
Theorem 3. 

The criterion provided by Theorem 3 is in many cases easy to apply. For 
example, let G and H be unimodular locally compact groups whose primitive 
representations have bounded degree ; then from Theorem 3 it follows that the 
same is true for GXH, any unimodular homomorphic image of G, and any closed 
unimodular subgroup of G. Also the following result is a corollary of Theorems 
2 and 3. 

COROLLARY. Let G be a connected unimodular locally compact group whose 
primitive representations are finite-dimensional and of bounded degree. Then G 
is abelian. 

This corollary may be derived in another way which we shall now describe. 
Let G be a connected locally compact group which is maximally almost-
periodic, that is, G has a complete set of finite-dimensional unitary representa­
tions. (This hypothesis is weaker than the assumption that the primitive repre­
sentations of G are finite-dimensional.) By a theorem of Freudenthal [5, p. 129], 
G is the direct product of a compact group and a finite number of copies of 
the additive group of real numbers. The question as to when the irreducible 
unitary representations are of bounded degree is thereby reduced to the com­
pact case; and by considering the images under the representations, we further 
reduce to the case of a compact Lie group. In fact, our problem becomes pre­
cisely the following : prove that a connected compact simple Lie group possesses 
irreducible representations of arbitrarily high degree. That this is in fact the 
case follows from known classical results. 

The corresponding theorem for Lie algebras asserts that a simple Lie algebra 
has irreducible representations of arbitrarily high degree. In this form, the 
theorem has recently been given a purely algebraic proof by Harish-Chandra 
[6]. It is perhaps worth remarking that, by standard devices, the theorem on 
Lie algebras can conversely be derived from the group theorem. 

We return to the study of the group K of Theorem 1, and shall derive the 
purely group-theoretic fact that K satisfies P s ( n ) . We give K the discrete 
topology, which assures its local compactness and unimodularity. Then by 
Theorems 1 and 3 we have that the primitive representations are finite-dimen­
sional and of bounded degree. Theorems 1 and 3 also yield a bound for the 
degree in question, but a better bound can be obtained by a simple direct 
argument. In fact we assert that any finite-dimensional irreducible unitary 
representation T of K is of degree at most n. For the induced representation 
of G decomposes into one-dimensional representations, since G is abelian. 
Let a be a non-zero vector in one of these G-invariant one-dimensional sub-
spaces. Then for geG, aT(g) is a multiple of a. Using the notation of the 
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proof of Theorem 1, we deduce that the invariant subspace generated by a is 
spanned by aT(ki), . . . , aT(kn) and hence is at most ^-dimensional, as desired. 
Quotation of Theorem 3 proves that K satisfies P«(n>. 

We shall conclude this section with a variant of Theorem 3 : 

THEOREM 4. The following two statements are equivalent for a unimodular 
locally compact group G: 

(a) The primitive representations of G are finite-dimensional and of bounded 
degree. 

(b) The Li-algebra of G satisfies a polynomial identity. 

Proof. The proof coincides with the corresponding portions of the proof of 
Theorem 3, except for the following remark. In proving that (b) implies (a) 
we take a primitive ideal P in A ~ Li(G) and quote Theorem 1 of [3] to sustain 
the claim that A — P is finite-dimensional. But more than that: Theorem 1 
of [3] shows that the dimension of A — P has a fixed upper bound depending 
only on the polynomial identity in question (cf. remark (b) on p. 580 of [3]). 
The rest of the proof proceeds unchanged. 

6. A theorem of Halmos. The study of groups with bounded represen­
tations arose in connection with an attempt to generalize a theorem of Halmos, 
which we shall now describe. Let G be a compact group and S a continuous 
automorphism of G. The uniqueness of Haar measure shows that S induces a 
measure preserving transformation on G, which in turn induces a unitary 
operator U:f—*fs on L2(G). We say that S is ergodic if the only solutions of 
fs =f are constant. In [1] Halmos studied the case where G is commutative, 
and showed (Th. 3) that if 5 is ergodic, the spectral type of U is entirely deter­
mined by the cardinal number of the character group of G. We refer the reader 
to [1] for the precise result. 

Now let G be a compact group which is not necessarily commutative. The 
automorphism S induces in a natural way a permutation irs of the irreducible 
representations of G. This permutation leaves the trivial representation \p 
fixed (^ sends every element into the matrix (1)). The analogue of Halmos's 
[1, Th. 1] is now valid: 5 is ergodic if and only if irs has no finite orbits other 
than \p. The proof is virtually the same as that given by Halmos: one uses 
the coordinates of irreducible representations in place of characters. 

Supposing that S is ergodic, we can now proceed to discuss the spectral type 
of U. Of course U{yp) — \p. By appropriate choice of the remaining coordin­
ates of irreducible representations, which together with \p form an orthonormal 
base of L2(G)} we can arrange them in a double array </>*,/ such that U(<t>uj) = 
U((j>i, y+i). Here the index j runs over all integers, and the index i over the 
orbits of TS. If we let c denote the number of orbits in question, we have 
proved Halmos's [1, Th. 3] except for the assertion that c is infinite.4 If the 

4If there are an uncountable number of irreducible representations, it is clear that c is infinite 
(and equal to that number). Thus further discussion is really needed only for the case of a 
countable number of irreducible representations. 

https://doi.org/10.4153/CJM-1949-011-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1949-011-9


112 IRVING K A P L A N S K Y 

representations have unbounded degree, then it is clear that c is infinite, for 
the permutation ITS necessarily preserves degree. At the other extreme, if all 
the representations are one-dimensional (G commutative), Halmos provided 
a group-theoretic argument on the character group to show that c is infinite 
[1, Th. 2]. There remains the case of representations of bounded degree, where 
it would be necessary to generalize suitably Halmos's argument. I have been 
unable to supply such an argument, but possibly the results in this paper will 
point the way toward the completion of this problem. 

POSTSCRIPT (December 1, 1948) 

Since this manuscript was completed, a paper by F. W. Levi has appeared: 
''On Skew Fields of a Given Degree," J. Indian Àïath. Soc, vol. II (1947), 
85-88. Reference is made there to a paper to be published in the Mathe-
matische Annalen. In the notation of § 2, this latter paper proves (among 
other things) that r (n) is even and r (3) =6 . The distinction between r (n) 
and 5 (n) may therefore be suppressed. 
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