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Abstract

We describe a variant of Fermat’s factoring algorithm which is competitive with SQUFOF in practice but
has heuristic run time complexity O(n1/3) as a general factoring algorithm. We also describe a sparse
class of integers for which the algorithm is particularly effective. We provide speed comparisons between
an optimised implementation of the algorithm described and the tuned assortment of factoring algorithms
in the Pari/GP computer algebra package.
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1. Introduction

Most modern methods of factoring are variants of Fermat’s method of writing the
number n to be factored as a difference of two squares, n = (x − y)(x + y). In its
simplest form, one starts with y = b

√
nc and decrements y until n − y2 is a square.

Fermat’s method is only practical if n has a factor very close to
√

n. The run time
complexity of Fermat’s method is O(n1/2+ε), as there are up to

√
n possible values of y.

If n has factors whose ratio is relatively close to the fraction u/v then applying
Fermat’s method to nuv will find the factors faster. Lehman [4] devised a method for
searching over a space of small fractions u/v that finds a factor of n in time O(n1/3+ε).

More recently McKee [5] described a variant of Fermat’s algorithm which can find
a factor in expected time O(n1/4+ε). This method searches for solutions (x, y, z) to
z2 = (x + d

√
ney)2 − ny2 with small x and y. The method achieves the stated run time

complexity by observing that if m is an integer dividing z, then m2 must divide the
right-hand side of the equation. By computing a square root of n mod m2 one can
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search for solutions in residue classes mod m2. McKee gives timings which suggest
that his algorithm is competitive with the factoring algorithms in Maple and Pari.

Most modern computer packages implement numerous algorithms for factoring.
For numbers that fit into a single machine word, Shanks’ SQUFOF (SQUare FOrms
Factoring) algorithm (see [2, 7]) is popular as it has run time O(n1/4) with a very small
implied constant. As with McKee’s algorithm, this is due to the fact that SQUFOF
works with numbers of about half the bit size of n and that, in many cases, very few
iterations are necessary to find a factor of n.

SQUFOF works by searching for square forms on the principal cycle of the binary
quadratic forms of discriminant n or 4n. A description of SQUFOF in terms of
continued fractions and in terms of binary quadratic forms is given by Gower and
Wagstaff in [2]. That paper also gives a set of heuristics for speeding up SQUFOF. The
authors claim that SQUFOF is the ‘clear champion factoring algorithm for numbers
between 1010 and 1018’, at least on a 32-bit machine.

For larger numbers, subexponential algorithms such as the quadratic sieve and
number field sieve are favoured, due to their lower asymptotic complexity.

In this paper we describe a variant of Fermat’s algorithm which is somewhat similar
in concept to Lehman’s algorithm and compare it to the ‘best of breed’ factoring
assortment in Pari/GP.

We call our algorithm the ‘one line’ factoring algorithm, as it can be implemented
as a single (albeit long) line in some computer algebra systems, such as Pari/GP [6] or
Sage [8]. (Our optimised implementation in C is obviously much more than one line.)

In a final section of the paper, we describe a sparse class of numbers which our
algorithm is particularly efficient at factoring. In fact, numbers of many thousands of
digits in this form may be factored easily by this algorithm.

2. Description of the factoring algorithm

We begin with a description of the algorithm. As mentioned in the introduction, the
algorithm is a variant of Lehman’s algorithm in that n is given a multiplier. However
unlike Lehman’s algorithm, which applied Fermat’s algorithm to nuv for various u/v,
the only thing to be iterated in this algorithm is the multiplier itself.

OLF (n, iter)
1 for i← 1 . . . iter do
2 s← d

√
nie

3 m← s2 (mod n)
4 if (m) then
5 t←

√
m

6 return GCD(n, s − t)
7 endif
8 endfor

In alternative terms, we search for a solution to t2 = (d
√

nie)2 − ni by iterating i and
looking for squares after reduction modulo n.
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As advertised, the algorithm can be implemented in a single line of Pari code:

OLF(x)=;i=1;while(i<x,if(issquare(ceil(sqrt(i*x))ˆ2%x),return \

(gcd(x,floor(ceil(sqrt(i*x))-sqrt((ceil(sqrt(i*x))ˆ2)%x)))));i++)

As an example of its use, one may try

\p38 /* set precision to 38 digits */

n = nextprime(10ˆ29+5342347)*nextprime(10ˆ31+2232788)

OLF(n)

which will instantly produce the factors of n.

3. Practical and theoretical speedups of the algorithm

A speedup of the algorithm can be obtained by multiplying n by a certain multiplier
M =
∏

pni
i , for some small prime factors pi, and applying the algorithm to Mn. One

must ensure that n has been stripped of all its factors of pi by trial division before
running the algorithm. One avoids the factors pi being returned by the algorithm by
taking the GCD with n not Mn.

Another immediate saving is made by noting that to reduce modulo Mn at step 3,
one may simply subtract Mni from s2.

In practice the multiplier M = 480 was observed to speed up the algorithm
considerably as compared with a smaller multiplier or M = 1. Larger multipliers mean
that we have to look for a square after reduction modulo the larger value Mn or that
we have to reduce modulo n instead of Mn, both of which are costly, thus it is not
practical to work with a very large multiplier.

A further theoretical speedup may be obtained as follows. Suppose that one wishes
to factor a composite number n. Pick C = dlog log ne small primes qi which are
1 mod 4. Now perform a search for prime numbers ni which are squares modulo all of
the qi. By the law of quadratic reciprocity the qi are all squares modulo each of the ni.

Now replace step 4 of the algorithm with a step which checks whether m is a square
modulo each of the ni. If the ni are small enough, this can be performed by table
lookup.

This set of tests will now pass any number which is of the form
∏

qmi
i t2 where the

mi are in {0, 1} and t is an arbitrary nonnegative integer. Numbers of this form are
clearly more plentiful than squares.

We easily test whether m is really of this special form by removing factors of qi by
trial division and then testing whether the cofactor is a square.

The algorithm is repeated until C such ‘relations’ m are found. Linear algebra over
Z/2Z, with the mi as entries, can then be used to find a product of such ‘relations’
which yields a perfect square.

This trick is essentially a variant of Dixon’s method (see [1] for details).
It should be noted that whilst this trick yields more opportunities to factor n in

theory, we did not observe a significant speedup in the range of practicality for this
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algorithm, that is, of general integers up to around n = 240. For numbers in this range,
a square value m is found so quickly that it is rare that C relations are needed to factor n.

4. Heuristic analysis of the algorithm

We give a heuristic analysis of the algorithm showing that it has heuristic running
time O(n1/3+ε).

First of all, we assume that n has been trial factored up to n1/3. This takes n1/3

iterations, which can clearly be done in the given run time. This ensures that n has at
most two prime factors, both of which are larger than n1/3 and smaller than n2/3.

To simplify the analysis in what follows we assume that the fixed multiplier M
is 1. We will also suppose n is not a perfect square. This can be checked before the
algorithm begins.

Let us suppose that ni = u2 + a where 0 < a < 2u + 1. As n is not a perfect square
and has no factors less than n1/3 it is clear that a > 0. Then we have that d

√
nie2 − ni =

(u + 1)2 − (u2 + a) = 2u + 1 − a. This is the value m in the algorithm.
Clearly we have 0 < m ≤ 2u < 2

√
in. We are searching for values for which m is a

square. There are approximately
√

2(ni)1/4 squares less than 2
√

in. Thus the probability
of hitting a square at random is k(i) = 1/

√
2(ni)1/4.

We assume that each iteration gives an independent chance of finding a square.
If we complete n1/3 iterations then i is bounded by n1/3 so that each k(i) is at least

1/
√

2(n)1/3. It is clear that after O(n1/3) iterations, in the limit, we are likely to factor n.
We note that the largest factor our algorithm will find is d

√
nie +

√
m; however, the

first term is limited by n2/3 and the second by
√

2n1/3. In other words, the largest factor
cannot be much bigger than n2/3 if we do around n1/3 iterations. However, as we have
found all factors of n up to n1/3 by trial factoring, then, assuming n is not prime, this
condition is satisfied.

Note that the algorithm finds a nontrivial factor of n for a similar reason. It cannot
find n as a factor, as it is too large, and it cannot return a factor of i, since the other
factor in the difference of squares must then be a multiple of n.

5. Practical performance of the algorithm

In this section, we report on a relatively efficient implementation of the algorithm
in the C language. This implementation is part of the FLINT [3] library.

We compare this implementation against the factor command in the Pari/GP
package [6]. According to its documentation, Pari/GP has a highly developed
assortment of factoring algorithms, including pure powers, trial division, Shanks’
SQUFOF, Pollard–Brent Rho, Lenstra’s ECM and a multiple polynomial quadratic
sieve. It outputs Baillie-PSW pseudoprimes.

This implementation has been developed over many years and is considered highly
optimised.

The constant multiplier M that we used in the implementation of our algorithm was
480. Arithmetic was performed in a single 64-bit machine word. To factor n of 3k bits,
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T 1. Comparison of One Line Factor and Pari.

Bits One Line Pari
(µs) (µs)

4 0.10 0.26
5 0.11 0.26
6 0.13 0.36
7 0.16 0.36
8 0.18 0.43
9 0.20 0.43

10 0.22 0.44
11 0.26 0.48
12 0.32 0.55
13 0.43 0.57
14 0.47 0.64
15 0.68 0.71
16 0.82 0.78
17 1.05 0.94
18 1.51 1.10
19 1.83 1.30
20 2.25 1.59
21 3.90 2.06
22 4.48 2.60

Bits One Line Pari
(µs) (µs)

22 4.48 2.60
23 5.59 3.21
24 5.77 4.16
25 7.36 5.68
26 9.11 7.14
27 9.91 9.86
28 12.7 13.6
29 15.5 23.0
30 18.2 33.2
31 22.8 44.4
32 28.9 58.5
33 32.8 71.5
34 41.2 88.5
35 50.2 95.7
36 61.6 116
37 74.4 133
38 99.6 162
39 115 171
40 145 194

we require about 4k + 9 bits, as the multiplier i can be up to about n1/3, and the constant
multiplier is about 9 bits. Thus we expect to be able to factor integers up to around 41
bits without a significant number of failures. In fact, from 41 bits onward, a significant
number of failures occurred, and below that point it was hard to find failures.

In Table 1, we give timings for our algorithm compared to that of the factor
command in Pari/GP.

Because we are not interested in comparing the time for trial division, we first
constructed an array of integers which had already been tested for small factors (up
to n1/3) using trial division. The two implementation then factored only numbers in
this array. Thus neither implementation could crack the numbers using trial factoring
up to n1/3.

However, as the Pari/GP time would include significant overheads from trial
factoring up to n1/3, detecting perfect powers and from interpreter overhead, we
ensured that our implementation still used trial factoring up to n1/3 (even though no
factors would be found at this step) and perfect power detection. We also timed the
Pari/GP interpreter overhead separately and subtracted it from the Pari/GP timings for
a fairer comparison.
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We counted failures and found that our algorithm did not fail to factor integers in our
test runs up to 40 bits. Thus our tables give timings up to that point. Beyond that point
we would be merely comparing SQUFOF implementations, that being the fallback
factoring routine in FLINT if the one line factoring algorithm fails. Furthermore, it
becomes inefficient to check for factors up to n1/3 from about this point on.

Timings were performed on a single core of a 2.4 GHz AMD K10 (Opteron)
machine.

Clearly, in the range up to 26 bits, Pari wins by a small margin. However,
factorisation in this range can be achieved purely with trial factoring up to n1/2, which
Pari does. We did not attempt to do this, as the speed of trial factoring is not relevant
to our algorithm.

In the range where trial factoring alone is no longer appropriate, it is clear that our
algorithm compares well with the factoring implementation in Pari. In this range, Pari
is largely cracking composites with SQUFOF.

6. Relationship to Lehman’s factoring algorithm

As mentioned in the introduction, Lehman noted that Fermat’s algorithm can be
improved through the use of multipliers.

In the case where n has three or more factors n = pqr, one of the factors is at
most n1/3. Thus it can be factored in time O(n1/3).

In the remaining cases, if n has a factor then n = pq for primes p, q. In this case,
Fermat’s algorithm will fail to find a factor quickly unless p and q are sufficiently
close. However, if p/q is approximately equal to u/v for some small integers u, v then
Fermat’s algorithm will split uvn = pv × qu relatively quickly as it has factors close
together.

Lehman’s idea was to apply Fermat’s algorithm to 4kn for multipliers k such that
0 < k ≤ n1/3 + 1. In other words, he wanted 4kn = x2 − y2, and for any given k he
showed that it was only necessary to check x such that

√
4kn ≤ x ≤

√
4kn + n1/6/4k1/2

(see [4] for details).
Lehman’s algorithm has the advantage of guaranteeing a factor in time O(n1/3).

However, it has the distinct disadvantage of being more complex than our One Line
Factor algorithm. In particular, the cost of computing the intervals which should be
searched and the extra logic involved makes this a much slower algorithm in practice.

We developed a very careful implementation of Lehman’s algorithm in C using the
same fast square detection code and trial factoring routines that we developed for One
Line Factor. Table 2 gives a timing comparison.

As can clearly be seen, the timings for One Line Factor are significantly lower,
especially when the number being factored is large.

For the following observations we are indebted to the anonymous referee.
Note that as soon as k > n1/3/16, Lehman’s search interval contains just one integer.
One may therefore turn the loops in Lehman’s algorithm inside-out, starting with

one value of x from each interval and iterating the multiplier k. This gives an algorithm
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T 2. Comparison of One Line Factor and Lehman’s algorithm.

Bits One Line Lehman
(µs) (µs)

4 0.10 0.71
5 0.11 0.92
6 0.13 0.30
7 0.16 0.31
8 0.18 0.35
9 0.20 0.34
10 0.22 0.42
11 0.26 0.47
12 0.32 0.61
13 0.43 0.63
14 0.47 0.69
15 0.68 1.05
16 0.82 1.20
17 1.05 1.47
18 1.51 2.05
19 1.83 2.22
20 2.25 2.76
21 3.90 4.00
22 4.48 4.87

Bits One Line Lehman
(µs) (µs)

22 4.48 4.87
23 5.59 5.40
24 5.77 7.96
25 7.36 9.28
26 9.11 11.3
27 9.91 16.9
28 12.7 21.3
29 15.5 22.5
30 18.2 93.3
31 22.8 102
32 28.9 50.1
33 32.8 73.9
34 41.2 83.0
35 50.2 100
36 61.6 148
37 74.4 173
38 99.6 202
39 115 281
40 145 341

which is similar to One Line Factor. One Line Factor can thus be used to optimise the
long tail of Lehman’s algorithm.

In this way, One Line Factor can be turned into an algorithm which guarantees a
factor. We implemented this trick and this algorithm gave the same times as the One
Line Factor algorithm up to about 40 bits. This is due to the fact that One Line Factor
rarely fails in this range so that it is almost always the only algorithm run.

7. Factorisations of a special form

The algorithm described in this paper was discovered whilst testing an
implementation of the quadratic sieve. Various test composites were generated, and
amongst them were ones of the form n = nextprime(10a) × nextprime(10b), for various
values of a, b.

Interestingly, the algorithm in this paper factors numbers n of this form
rather quickly. Once a, b are sufficiently large, Fermat’s algorithm and its usual
improvements are unable to factor numbers of this form in a reasonable time, unless
additional information about the factors is known.
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More generally, the one line factoring algorithm is able to deal with integers of the
form n = nextprime(ca ± d1) × nextprime(cb ± d2) for a > b and relatively close, and
any small integers c, d1, d2. An example of such a factorisation is given in Section 2;
however, numbers of many thousands of digits in this form can be factored.

As this class of integers is sparse, it is easy to concoct a contrived algorithm to
factor such numbers. However, it is perhaps mildly interesting that this algorithm is
completely general and still has this property.

We can see why our algorithm so easily cracks such composites if we recall
the well-known fact that Fermat’s algorithm will factor numbers of the form n =

nextprime(a) × nextprime(a + j) for j less than approximately a1/2 in a single iteration.
In the case of our algorithm, once the multiplier i reaches ca−b we are essentially

applying a single iteration of Fermat’s algorithm to a number of this special form.

8. Summary

We have demonstrated a very simple-to-implement algorithm for factoring general
integers in heuristic time O(n1/3), with a very low implied constant.

We have demonstrated that this algorithm is very competitive for factoring numbers
below about 42 binary bits (in combination with trial factoring) and can be used to
quickly factor numbers in a certain sparse class, even when such numbers become
very large.

Although the algorithm is not amenable to ‘sieving’ techniques, as per the quadratic
and number field sieves, it may be useful in implementations of the large prime variants
of such algorithms, as these require subordinate factorisations of small integers in their
large prime phases. Often a highly optimised SQUFOF algorithm is used for this
purpose, with which this algorithm is competitive.
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