(C) Canadian Mathematical Society 2010

A Combinatorial Reciprocity Theorem for Hyperplane Arrangements

Christos A. Athanasiadis

Abstract. Given a nonnegative integer m and a finite collection \mathcal{A} of linear forms on $(\mathbb{O})^{d}$, the arrangement of affine hyperplanes in \mathbb{O}^{d} defined by the equations $\alpha(x)=k$ for $\alpha \in \mathcal{A}$ and integers $k \in[-m, m]$ is denoted by \mathcal{A}^{m}. It is proved that the coefficients of the characteristic polynomial of \mathcal{A}^{m} are quasi-polynomials in m and that they satisfy a simple combinatorial reciprocity law.

1 Introduction

Let V be a d-dimensional vector space over the field \mathbb{O} of rational numbers and \mathcal{A} be a finite collection of linear forms on V which spans the dual vector space V^{*}. We denote by \mathcal{A}^{m} the essential arrangement of affine hyperplanes in V defined by the equations $\alpha(x)=k$ for $\alpha \in \mathcal{A}$ and integers $k \in[-m, m$] (we refer to [9, 13] for background on hyperplane arrangements). Thus \mathcal{A}^{0} consists of the linear hyperplanes which are the kernels of the forms in \mathcal{A} and \mathcal{A}^{m} is a deformation of \mathcal{A}^{0}, in the sense of $[1,10]$.

The characteristic polynomial [9, Section 2.3] [13, Section 1.3] of \mathcal{A}^{m}, denoted $\chi_{\mathcal{A}}(q, m)$, is a fundamental combinatorial and topological invariant which can be expressed as

$$
\begin{equation*}
\chi_{\mathcal{A}}(q, m)=\sum_{i=0}^{d} c_{i}(m) q^{i} \tag{1.1}
\end{equation*}
$$

The coefficient $c_{i}(m)$ is equal to the sum of the values $\mu(y)$ of the Möbius function on the intersection poset of \mathcal{A}^{m} (see Subsection 1.1 for definitions), taken over all elements y in this poset of dimension i. Alternatively, $(-1)^{d-i} c_{i}(m)$ can be defined as the rank of the $(d-i)$-th singular cohomology group of the complement of the union of the complexified hyperplanes of \mathcal{A}^{m} in the d-dimensional complex vector space $V \otimes_{\mathbb{Q}} \mathbb{C}$ (see [8]).

We will be concerned with the behavior of $\chi_{\mathcal{A}}(q, m)$ as a function of m. Let $\mathbb{N}:=$ $\{0,1, \ldots\}$ and recall that a function $f: \mathbb{N} \rightarrow \mathbb{R}$ is called a quasi-polynomial with period N if there exist polynomials $f_{1}, f_{2}, \ldots, f_{N}: \mathbb{N} \rightarrow \mathbb{R}$ such that $f(m)=f_{i}(m)$ for all $m \in \mathbb{N}$ with $m \equiv i(\bmod N)$. The degree of f is the maximum of the degrees of the f_{i}. Our main result is the following theorem.

[^0]Theorem 1.1 Under the previous assumptions on \mathcal{A}, the coefficient $c_{i}(m)$ of q^{i} in $\chi_{\mathcal{A}}(q, m)$ is a quasi-polynomial in m of degree at most $d-i$. Moreover, the degree of $c_{0}(m)$ is equal to d and

$$
\begin{equation*}
\chi_{\mathcal{A}}(q,-m)=(-1)^{d} \chi_{\mathcal{A}}(-q, m-1) \tag{1.2}
\end{equation*}
$$

In particular we have $\chi_{\mathcal{A}}(q,-1)=(-1)^{d} \chi_{\mathcal{A}}(-q)$, where $\chi_{\mathcal{A}}(q)$ is the characteristic polynomial of \mathcal{A}^{0}. Let $\mathcal{A}_{\mathbb{R}}^{m}$ denote the arrangement of affine hyperplanes in the real d-dimensional vector space $V_{\mathbb{R}}=V \otimes_{\mathbb{Q}} \mathbb{R}$ defined by the same equations defining the hyperplanes of \mathcal{A}^{m}. Let $r_{\mathcal{A}}(m)=(-1)^{d} \chi_{\mathcal{A}}(-1, m)$ and $b_{\mathcal{A}}(m)=(-1)^{d} \chi_{\mathcal{A}}(1, m)$ so that, for $m \in \mathbb{N}, r_{\mathcal{A}}(m)$ and $b_{\mathcal{A}}(m)$ count the number of regions and bounded regions, respectively, into which $V_{\mathbb{R}}$ is dissected by the hyperplanes of $\mathcal{A}_{\mathbb{R}}^{m}[13$, Section 2.2] [14].

Corollary 1.2 Under the previous assumptions on \mathcal{A}, the function $r_{\mathcal{A}}(m)$ is a quasipolynomial in m of degree d, and for all positive integers $m,(-1)^{d} r_{\mathcal{A}}(-m)$ is equal to the number $b_{\mathcal{A}}(m-1)$ of bounded regions of $\mathcal{A}_{\mathbb{R}}^{m-1}$.

Theorem 1.1 and its corollary belong to a family of results demonstrating some kind of combinatorial reciprocity law; see [11] for a systematic treatment of such phenomena. Not surprisingly, the proof given in Section 2 is a simple application of the main results of Ehrhart theory [12, Section 4.6]. More specifically, equation (1.2) will follow from the reciprocity theorem [12, Theorem 4.6.26] for the Ehrhart quasi-polynomial of a rational polytope. An expression for the coefficient of the leading term m^{d} of either $c_{0}(m)$ or $r_{\mathcal{A}}(m)$ is also derived in that section. Some examples, including the motivating example in which $\mathcal{A}_{\mathbb{R}}^{0}$ is the arrangement of reflecting hyperplanes of a Weyl group, and remarks are discussed in Section 3 In the remainder of this section we give some background on characteristic and Ehrhart (quasi-)polynomials needed in Section 2. We will denote by \#S or $|S|$ the cardinality of a finite set S.

1.1 Arrangements of Hyperplanes

Let V be a d-dimensional vector space over a field \mathbb{K}. An arrangement of hyperplanes in V is a finite collection \mathcal{H} of affine subspaces of V of codimension one (we will allow this collection to be a multiset). The intersection poset of \mathcal{H} is the set $L_{\mathcal{H}}=\{\bigcap \mathcal{F}: \mathcal{F} \subseteq \mathcal{H}\}$ of all intersections of subcollections of \mathcal{H}, partially ordered by reverse inclusion. It has a unique minimal element $\widehat{0}=V$, corresponding to the subcollection $\mathcal{F}=\varnothing$. The characteristic polynomial of \mathcal{H} is defined by

$$
\chi_{\mathcal{H}}(q)=\sum_{x \in L_{\mathcal{H}}} \mu(x) q^{\operatorname{dim} x}
$$

where μ stands for the Möbius function on $L_{\mathcal{H}}$ defined by

$$
\mu(x)= \begin{cases}1 & \text { if } x=\widehat{0} \\ -\sum_{y<x} \mu(y) & \text { otherwise }\end{cases}
$$

Equivalently [9, Lemma 2.55] we have

$$
\begin{equation*}
\chi_{\mathcal{H}}(q)=\sum_{\mathcal{G} \subseteq \mathcal{H}}(-1)^{\# \mathcal{G}} q^{\operatorname{dim}(\cap \mathcal{G})} \tag{1.3}
\end{equation*}
$$

where the sum is over all $\mathcal{G} \subseteq \mathcal{H}$ with $\bigcap \mathcal{G} \neq \varnothing$.
In the case $\mathbb{K}=\mathbb{R}$, the connected components of the space obtained from V by removing the hyperplanes of \mathcal{H} are called regions of \mathcal{H}. A region is bounded if it is a bounded subset of V with respect to a usual Euclidean metric.

1.2 Ehrhart Quasi-Polynomials

A convex polytope $P \subseteq \mathbb{R}^{n}$ is said to be a rational or integral polytope if all its vertices have rational or integral coordinates, respectively. If P is rational and P° is its relative interior, then the functions defined for nonnegative integers m by the formulas

$$
i(P, m)=\#\left(m P \cap \mathbb{Z}^{n}\right), \quad \bar{i}(P, m)=\#\left(m P^{\circ} \cap \mathbb{Z}^{n}\right)
$$

are quasi-polynomials in m of degree $d=\operatorname{dim}(P)$, related by the Ehrhart reciprocity theorem [12, Theorem 4.6.26]

$$
\begin{equation*}
i(P,-m)=(-1)^{d} \bar{i}(P, m) . \tag{1.4}
\end{equation*}
$$

The function $i(P, m)$ is called the Ehrhart quasi-polynomial of P. The coefficient of the leading term m^{d} in either $i(P, m)$ or $\bar{i}(P, m)$ is a constant equal to the normalized d-dimensional volume of P (meaning the d-dimensional volume of P normalized with respect to the lattice $V_{P} \cap \mathbb{Z}^{n}$, where V_{P} is the parallel translate of the affine span of P in \mathbb{R}^{n} through the origin). If P is an integral polytope then $i(P, m)$ is a polynomial in m of degree d, called the Ehrhart polynomial of P.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 and Corollary 1.2 and derive a formula for the coefficient of the leading term m^{d} of $r_{\mathcal{A}}(m)$. In what follows \mathcal{A} is as in the beginning of Section 1 We use the notation $[a, b]=\{x \in \mathbb{R}: a \leq x \leq b\}$ and $[a, b]_{\mathbb{Z}}=$ $[a, b] \cap \mathbb{Z}$ for $a, b \in \mathbb{Z}$ with $a \leq b$.

Proof of Theorem 1.1 and Corollary 1.2 Using formula (1.3), we get

$$
\begin{equation*}
\chi_{\mathcal{A}^{m}}(q)=\sum_{\mathcal{G} \subseteq \mathcal{A}^{m}}(-1)^{\# \mathcal{G}} q^{\operatorname{dim}(\cap \mathcal{G})} \tag{2.1}
\end{equation*}
$$

where the sum is over all $\mathcal{G} \subseteq \mathcal{A}^{m}$ with $\bigcap \mathcal{G} \neq \varnothing$. Clearly for this to happen \mathcal{G} must contain at most one hyperplane of the form $\alpha(x)=k$ for each $\alpha \in \mathcal{A}$. In other words we must have $\mathcal{G}=\mathcal{F}_{b}$ for some $\mathcal{F} \subseteq \mathcal{A}$ and map $b: \mathcal{F} \rightarrow[-m, m]_{\mathbb{Z}}$ sending α to b_{α}, where \mathcal{F}_{b} consists of the hyperplanes $\alpha(x)=b_{\alpha}$ for $\alpha \in \mathcal{F}$. Let us denote by $\operatorname{dim} \mathcal{F}$
the dimension of the linear span of \mathcal{F} in V^{*} and observe that $\operatorname{dim}\left(\bigcap \mathcal{F}_{b}\right)=d-\operatorname{dim} \mathcal{F}$ whenever $\bigcap \mathcal{F}_{b}$ is nonempty. From the previous observations and (2.1) we get

$$
\begin{aligned}
\chi_{\mathcal{A}}(q, m) & =\sum_{\mathcal{F} \subseteq \mathcal{A}} \sum_{\substack{b: \mathcal{F} \rightarrow[-m, m]]_{\mathcal{Z}} \\
\cap \mathcal{F}_{b} \neq \varnothing}}(-1)^{\# \mathcal{F}_{b}} q^{\operatorname{dim}\left(\cap \mathcal{F}_{b}\right)} \\
& =\sum_{\mathcal{F} \subseteq \mathcal{A}}(-1)^{\# \mathcal{F}} q^{d-\operatorname{dim} \mathcal{F}} \#\left\{b: \mathcal{F} \rightarrow[-m, m]_{\mathbb{Z}}, \bigcap \mathcal{F}_{b} \neq \varnothing\right\}
\end{aligned}
$$

Let us write $\mathcal{F}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ and $b_{i}=b_{\alpha_{i}}$, so that b can be identified with a column vector in $\left(\mathbb{O}^{n}\right.$. Then $\bigcap \mathcal{F}_{b}$ is nonempty if and only if the linear system $\alpha_{i}(x)=b_{i}, 1 \leq i \leq n$, has a solution in \mathbb{O}^{d} or, equivalently, if and only if b lies in the image $\operatorname{Im} T_{\mathcal{F}}$ of the linear transformation $T_{\mathcal{F}}:(\mathbb{O})^{d} \rightarrow(\mathbb{O})^{n}$ mapping $x \in(\mathbb{O})^{d}$ to the column vector in $\left(\mathbb{O}^{n}\right.$ with coordinates $\alpha_{1}(x), \alpha_{2}(x), \ldots, \alpha_{n}(x)$. It follows that

$$
\begin{aligned}
\#\left\{b: \mathcal{F} \rightarrow[-m, m]_{\mathbb{Z}}, \cap \mathcal{F}_{b} \neq \varnothing\right\} & =\# \operatorname{Im} T_{\mathcal{F}} \cap\left([-m, m]_{\mathbb{Z}}\right)^{n} \\
& =\# \operatorname{Im} T_{\mathcal{F}} \cap[-m, m]^{n} \cap \mathbb{Z}^{n} \\
& =\#\left(m\left(\operatorname{Im} T_{\mathcal{F}} \cap[-1,1]^{n}\right) \cap \mathbb{Z}^{n}\right) \\
& =\#\left(m P_{\mathcal{F}} \cap \mathbb{Z}^{n}\right),
\end{aligned}
$$

where $P_{\mathcal{F}}=\left(\operatorname{Im} T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R}\right) \cap[-1,1]^{n}$. Clearly $P_{\mathcal{F}}$ is a rational convex polytope of $\operatorname{dimension} \operatorname{dim}\left(\operatorname{Im} T_{\mathcal{F}}\right)=\operatorname{dim} \mathcal{F}$ and $\#\left(m P_{\mathcal{F}} \cap \mathbb{Z}^{n}\right)=i\left(P_{\mathcal{F}}, m\right)$ is the Ehrhart quasi-polynomial of $P_{\mathcal{F}}$. From the above we conclude that

$$
\begin{equation*}
\chi_{\mathcal{A}}(q, m)=\sum_{\mathcal{F} \subseteq \mathcal{A}}(-1)^{\# \mathcal{F}} q^{d-\operatorname{dim} \mathcal{F}} i\left(P_{\mathcal{F}}, m\right) \tag{2.2}
\end{equation*}
$$

Equivalently we have

$$
\begin{equation*}
c_{i}(m)=\sum_{\substack{\mathcal{F} \subseteq \mathcal{A} \\ \operatorname{dim} \overline{\mathcal{F}}=d-i}}(-1)^{\# \mathcal{F}} i\left(P_{\mathcal{F}}, m\right) \tag{2.3}
\end{equation*}
$$

for $0 \leq i \leq d$, where the $c_{i}(m)$ are as in (1.1). Since $i\left(P_{\mathcal{F}}, m\right)$ is a quasi-polynomial in m of degree $\operatorname{dim} \mathcal{F}$, it follows from (2.3) that $c_{i}(m)$ is a quasi-polynomial in m of degree at most $d-i$ and that $r_{\mathcal{A}}(m)=\sum_{i=0}^{d}(-1)^{d-i} c_{i}(m)$ is a quasi-polynomial in m of degree at most d. Moreover we have $r_{\mathcal{A}}(m) \geq(2 m+2)^{d}$ for $m \geq 0$ since \mathcal{A} contains d linearly independent forms and the corresponding hyperplanes of $\mathcal{A}_{\mathbb{R}}^{m}$ dissect $V_{\mathbb{R}}$ into $(2 m+2)^{d}$ regions. It follows that the degree of $r_{\mathcal{A}}(m)$ is no less than d, which implies that the degrees of $r_{\mathcal{A}}(m)$ and $c_{0}(m)$ are, in fact, equal to d.

It remains to prove the reciprocity relation (1.2). For $\mathcal{F} \subseteq \mathcal{A}$ with $\# \mathcal{F}=n$ let $W_{\mathcal{F}}$ be the real linear subspace $\operatorname{Im} T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R}$ of \mathbb{R}^{n}, so that $P_{\mathcal{F}}=W_{\mathcal{F}} \cap[-1,1]^{n}$. We have

$$
\begin{aligned}
m P_{\mathcal{F}}^{\circ} \cap \mathbb{Z}^{n} & =\left(W_{\mathcal{F}} \cap[-m, m]^{n}\right)^{\circ} \cap \mathbb{Z}^{n} \\
& =W_{\mathcal{F}} \cap[-(m-1), m-1]^{n} \cap \mathbb{Z}^{n} \\
& =(m-1) P_{\mathcal{F}} \cap \mathbb{Z}^{n}
\end{aligned}
$$

and hence $\bar{i}\left(P_{\mathcal{F}}, m\right)=i\left(P_{\mathcal{F}}, m-1\right)$. The Ehrhart reciprocity theorem (1.4) implies that

$$
\begin{equation*}
i\left(P_{\mathcal{F}},-m\right)=(-1)^{\operatorname{dim} \mathcal{F}} i\left(P_{\mathcal{F}}, m-1\right) . \tag{2.4}
\end{equation*}
$$

Equation (1.2) follows from (2.2) and (2.4).
The following corollary is an immediate consequence of the case $i=0$ of (2.3), the equation $r_{\mathcal{A}}(m)=\sum_{i=0}^{d}(-1)^{d-i} c_{i}(m)$, and the fact that the degree of $c_{i}(m)$ is less than d for $1 \leq i \leq d$.

Corollary 2.1 The coefficient of the leading term m^{d} in $r_{\mathcal{A}}(m)$ is equal to the expression

$$
\sum_{\substack{\mathcal{F} \subseteq \mathcal{A} \\ \operatorname{dim} \mathcal{F}=d}}(-1)^{\notin \mathcal{F}-d} \operatorname{vol}_{d}\left(P_{\mathcal{F}}\right),
$$

where $P_{\mathcal{F}}$ is as in the proof of Theorem 1.1 and $\operatorname{vol}_{d}\left(P_{\mathcal{F}}\right)$ is the normalized d-dimensional volume of $P_{\mathcal{F}}$.

The coefficient of the leading term m^{d} in $r_{\mathcal{A}}(m)$ can also be described as the limit $\lim _{m \rightarrow \infty} r_{\mathcal{A}}(m) / m^{d}$.

3 Examples and Remarks

In this section we list a few examples, questions, and remarks.
Example 3.1 If $V=\mathbb{O}$) and \mathcal{A} consists of two forms $\alpha_{1}, \alpha_{2}: V \rightarrow \mathbb{O}$ with $\alpha_{1}(x)=x$ and $\alpha_{2}(x)=2 x$ for $x \in V$, then \mathcal{A}^{m} consists of the affine hyperplanes (points) in V defined by the equations $x=k$ and $x=k / 2$ for $k \in[-m, m]_{\mathbb{Z}}$. One can check that

$$
\chi_{\mathcal{A}}(q, m)= \begin{cases}q-3 m-1, & \text { if } m \text { is even } \\ q-3 m-2, & \text { if } m \text { is odd }\end{cases}
$$

and that (1.2) holds. Moreover we have

$$
r_{\mathcal{A}}(m)= \begin{cases}3 m+2, & \text { if } m \text { is even } \\ 3 m+3, & \text { if } m \text { is odd }\end{cases}
$$

Note that $\operatorname{vol}_{d}\left(P_{\mathcal{F}}\right)$ takes the values 2,2 , and 1 when $\mathcal{F}=\left\{\alpha_{1}\right\},\left\{\alpha_{2}\right\}$ and $\left\{\alpha_{1}, \alpha_{2}\right\}$, respectively.

Example 3.2 If $V=(\mathbb{O})^{d}$ and \mathcal{A} consists of the coordinate functions $\alpha_{i}(x)=x_{i}$ for $1 \leq i \leq d$, then \mathcal{A}^{m} consists of the affine hyperplanes in V given by the equations $x_{i}=k$ with $1 \leq i \leq d, k \in[-m, m]_{\mathbb{Z}}$ and $\chi_{\mathcal{A}}(q, m)=(q-2 m-1)^{d}$, which is a polynomial in q and m satisfying (1.2).

Example 3.3 Let Φ be a finite, irreducible, crystallographic root system spanning the Euclidean space \mathbb{R}^{d}, endowed with the standard inner product (\cdot, \cdot) (we refer to $[4,5,7]$ for background on root systems). Fix a positive system Φ^{+}and let Q_{Φ} and W be the coroot lattice and Weyl group, respectively, corresponding to Φ. Let also \mathcal{A}_{Φ}^{m} denote the m-th generalized Catalan arrangement associated to $\Phi[1,2,10]$, consisting of the affine hyperplanes in \mathbb{R}^{d} defined by the equations $(\alpha, x)=k$ for $\alpha \in \Phi^{+}$and $k \in[-m, m]_{\mathbb{Z}}$ (so that \mathcal{A}_{Φ}^{0} is the real reflection arrangement associated to Φ). If V is the (\mathbb{O})-span of Q_{Φ} then there exists a finite collection \mathcal{A} of linear forms on V (one for each root in Φ^{+}) such that, in the notation of Section $1, \mathcal{A}_{\mathbb{R}}^{m}$ coincides with \mathcal{A}_{Φ}^{m}. In [2, Theorem 1.2] a uniform proof was given of the formula

$$
\begin{equation*}
\chi_{\mathcal{A}}(q, m)=\prod_{i=1}^{d}\left(q-m h-e_{i}\right) \tag{3.1}
\end{equation*}
$$

for the characteristic polynomial of \mathcal{A}_{Φ}^{m}, where $e_{1}, e_{2}, \ldots, e_{d}$ are the exponents and h is the Coxeter number of Φ. Thus the reciprocity law (1.2) in this case is equivalent to the well-known fact [5, Section V.6.2] [7, Lemma 3.16] that the numbers $h-e_{i}$ are a permutation of the e_{i}. As was already deduced in [2, Corollary 1.3], it follows from (3.1) that

$$
r_{\mathcal{A}}(m)=\prod_{i=1}^{d}\left(m h+e_{i}+1\right) \quad \text { and } \quad b_{\mathcal{A}}(m)=\prod_{i=1}^{d}\left(m h+e_{i}-1\right)
$$

are polynomials in m of degree d (a fact which was the main motivation behind this paper). Setting $N(\Phi, m)=\frac{1}{|W|} r_{\mathcal{A}}(m)$ and $N^{+}(\Phi, m)=\frac{1}{|W|} b_{\mathcal{A}}(m)$, as in [3, 6], our Corollary 1.2 implies that

$$
(-1)^{d} N(\Phi,-m)=N^{+}(\Phi, m-1)
$$

It was suggested in [6, Remark 12.5] that this equality, first observed in [6, (2.12)], may be an instance of Ehrhart reciprocity. This was confirmed in [3, Section 7] using an approach which is different from the one followed in this paper. Finally we note that Corollary 2.1 specializes to the curious identity

$$
\begin{equation*}
h^{d}=\sum_{F}(-1)^{\# F-d} \operatorname{vol}_{d}\left(P_{F}\right) \tag{3.2}
\end{equation*}
$$

where in the sum on the right hand-side F runs through all subsets $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\}$ of Φ^{+}spanning \mathbb{R}^{d}, P_{F} is the intersection of the cube $[-1,1]^{n}$ with the image of the linear transformation $T_{F}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{n}$ mapping $x \in \mathbb{R}^{d}$ to the column vector in \mathbb{R}^{n} with coordinates $\left(\alpha_{1}, x\right),\left(\alpha_{2}, x\right), \ldots,\left(\alpha_{n}, x\right)$ and $\operatorname{vol}_{d}\left(P_{F}\right)$ is the normalized d dimensional volume of P_{F}. If Φ has type A_{d} in the Cartan-Killing classification, then (3.2) translates to the equation

$$
(d+1)^{d}=\sum_{G}(-1)^{e(G)-d} \operatorname{vol}_{d}\left(Q_{G}\right),
$$

where in the sum on the right hand-side G runs through all connected simple graphs on the vertex set $\{1,2, \ldots, d+1\}, e(G)$ is the number of edges of G, and Q_{G} is the
d-dimensional polytope in \mathbb{R}^{d} defined in the following way. Let τ be a spanning tree of G with edges labelled in a one to one fashion with the variables $x_{1}, x_{2}, \ldots, x_{d}$. For any edge e of G which is not an edge of T let R_{e} be the region of \mathbb{R}^{d} defined by the inequalities $-1 \leq x_{i_{1}}+x_{i_{2}}+\cdots+x_{i_{k}} \leq 1$, where $x_{i_{1}}, x_{i_{2}}, \ldots, x_{i_{k}}$ are the labels of the edges (other than e) of the fundamental cycle of the graph obtained from T by adding the edge e. The polytope Q_{G} is the intersection of the cube $[-1,1]^{d}$ and the regions R_{e}.

Remark 3.4. It is well known [13, Corollary 3.5] that the coefficients of the characteristic polynomial of a hyperplane arrangement strictly alternate in sign. As a consequence, in the notation of (1.1), we have $(-1)^{d-i} c_{i}(m)>0$ for all $m \in \mathbb{N}$ and $0 \leq i \leq d$. We do not know of an example of a collection \mathcal{A} of forms for a which a negative number appears among the coefficients of the quasi-polynomials $(-1)^{d-i} c_{i}(m)$.
Remark 3.5. If the matrix defined by the forms in \mathcal{A} with respect to some basis of V is integral and totally unimodular, meaning that all its minors are $-1,0$ or 1 , then the polytopes $P_{\mathcal{F}}$ in the proof of Theorem 1.1 are integral and, as a consequence, the functions $c_{i}(m)$ and $r_{\mathcal{A}}(m)$ are polynomials in m. This assumption on \mathcal{A} is satisfied in the case of graphical arrangements, that is, when \mathcal{A} consists of the forms $x_{i}-x_{j}$ on \mathbb{O}^{r}, where $1 \leq i<j \leq r$, corresponding to the edges $\{i, j\}$ of a simple graph G on the vertex set $\{1,2, \ldots, r\}$. The degree of the polynomial $r_{G}(m):=r_{\mathcal{A}}(m)$ is equal to the dimension of the linear span of \mathcal{A}, in other words to the rank of the cycle matroid of G.

Remark 3.6. Let \mathcal{A} and \mathcal{H} be finite collections of linear forms on a dimensional ${ }^{(0)}$-vector space V spanning V^{*}. Using the notation of Section 1 , let \mathcal{H}_{m} denote the union of $\mathcal{A}_{\mathbb{R}}^{m}$ with the linear arrangement $\mathcal{H}_{\mathbb{R}}^{0}$. It follows from Theorem 1.1 the Deletion-Restriction theorem [9, Theorem 2.56], and induction on the cardinality of \mathcal{H} that the function $r\left(\mathcal{H}_{m}\right)$ is a quasi-polynomial in m of degree d. Given a region R of $\mathcal{H}_{\mathbb{R}}^{0}$, let $r_{R}(m)$ denote the number of regions of \mathcal{H}_{m} which are contained in R, so that

$$
r\left(\mathcal{H}_{m}\right)=\sum_{R} r_{R}(m)
$$

where R runs through the set of all regions of $\mathcal{H}_{\mathbb{R}}^{0}$. Is the function $r_{R}(m)$ always a quasi-polynomial in m ?

References

[1] C. A. Athanasiadis, Deformations of Coxeter hyperplane arrangements and their characteristic polynomials. In: Arrangements-Tokyo 1998, Adv. Stud. Pure Math. 27, Kinokuniya, Tokyo, 2000, pp. 1-26.
[2] , Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull. London Math. Soc. 36(2004), no. 3, 294-302. doi:10.1112/S0024609303002856
[3] C. A. Athanasiadis and E. Tzanaki, On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements. J. Algebraic Combin. 23(2006), no. 4, 355-375. doi:10.1007/s10801-006-8348-8
[4] A. Björner and F. Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics 231, Springer, New York, 2005.
[5] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Springer-Verlag, Berlin, 2002.
[6] S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005, no. 44, 2709-2757.
[7] J. E. Humphreys, Reflection groups and Coxeter groups. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
[8] P. Orlik and L. Solomon, Combinatorics and topology of complements of hyperplanes. Invent. Math. 56(1980), no. 2, 167-189. doi:10.1007/BF01392549
[9] P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, Berlin, 1992.
[10] A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Series A 91(2000), no. 1-2, 544-597. doi:10.1006/jcta.2000.3106
[11] R. P. Stanley, Combinatorial reciprocity theorems. Advances in Math. 14(1974), 194-253. doi:10.1016/0001-8708(74)90030-9
[12] , Enumerative Combinatorics Vol. 1. Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge, 1997.
[13] An Introduction to hyperplane arrangements. In: Geometric combinatorics, IAS/Park City Math. Ser. 13, American Mathematical Society, Providence, RI, 2007.
[14] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 1(1975), no. 154.

Department of Mathematics (Division of Algebra-Geometry), University of Athens, Panepistimioupolis, 15784 Athens, Greece
e-mail: caath@math.uoa.gr

[^0]: Received by the editors November 17, 2006; revised February 26, 2007
 Published electronically December 4, 2009.
 AMS subject classification: 52C35, 05 E 99 .

