

A Combinatorial Reciprocity Theorem for Hyperplane Arrangements

Christos A. Athanasiadis

Abstract. Given a nonnegative integer m and a finite collection \mathcal{A} of linear forms on \mathbb{Q}^d , the arrangement of affine hyperplanes in \mathbb{Q}^d defined by the equations $\alpha(x) = k$ for $\alpha \in \mathcal{A}$ and integers $k \in [-m, m]$ is denoted by \mathcal{A}^m . It is proved that the coefficients of the characteristic polynomial of \mathcal{A}^m are quasi-polynomials in m and that they satisfy a simple combinatorial reciprocity law.

1 Introduction

Let V be a d-dimensional vector space over the field $\mathbb Q$ of rational numbers and $\mathcal A$ be a finite collection of linear forms on V which spans the dual vector space V^* . We denote by $\mathcal A^m$ the essential arrangement of affine hyperplanes in V defined by the equations $\alpha(x)=k$ for $\alpha\in\mathcal A$ and integers $k\in[-m,m]$ (we refer to [9,13] for background on hyperplane arrangements). Thus $\mathcal A^0$ consists of the linear hyperplanes which are the kernels of the forms in $\mathcal A$ and $\mathcal A^m$ is a deformation of $\mathcal A^0$, in the sense of [1,10].

The characteristic polynomial [9, Section 2.3] [13, Section 1.3] of A^m , denoted $\chi_A(q, m)$, is a fundamental combinatorial and topological invariant which can be expressed as

(1.1)
$$\chi_{\mathcal{A}}(q,m) = \sum_{i=0}^{d} c_i(m)q^i.$$

The coefficient $c_i(m)$ is equal to the sum of the values $\mu(y)$ of the Möbius function on the intersection poset of \mathcal{A}^m (see Subsection 1.1 for definitions), taken over all elements y in this poset of dimension i. Alternatively, $(-1)^{d-i}c_i(m)$ can be defined as the rank of the (d-i)-th singular cohomology group of the complement of the union of the complexified hyperplanes of \mathcal{A}^m in the d-dimensional complex vector space $V \otimes_{\mathbb{Q}} \mathbb{C}$ (see [8]).

We will be concerned with the behavior of $\chi_A(q, m)$ as a function of m. Let $\mathbb{N} := \{0, 1, \dots\}$ and recall that a function $f : \mathbb{N} \to \mathbb{R}$ is called a *quasi-polynomial* with period N if there exist polynomials $f_1, f_2, \dots, f_N : \mathbb{N} \to \mathbb{R}$ such that $f(m) = f_i(m)$ for all $m \in \mathbb{N}$ with $m \equiv i \pmod{N}$. The degree of f is the maximum of the degrees of the f_i . Our main result is the following theorem.

Received by the editors November 17, 2006; revised February 26, 2007. Published electronically December 4, 2009. AMS subject classification: **52C35**, 05E99.

Theorem 1.1 Under the previous assumptions on A, the coefficient $c_i(m)$ of q^i in $\chi_A(q,m)$ is a quasi-polynomial in m of degree at most d-i. Moreover, the degree of $c_0(m)$ is equal to d and

(1.2)
$$\chi_{\mathcal{A}}(q, -m) = (-1)^d \chi_{\mathcal{A}}(-q, m-1).$$

In particular we have $\chi_{\mathcal{A}}(q,-1)=(-1)^d\chi_{\mathcal{A}}(-q)$, where $\chi_{\mathcal{A}}(q)$ is the characteristic polynomial of \mathcal{A}^0 . Let $\mathcal{A}^m_{\mathbb{R}}$ denote the arrangement of affine hyperplanes in the real d-dimensional vector space $V_{\mathbb{R}}=V\otimes_{\mathbb{Q}}\mathbb{R}$ defined by the same equations defining the hyperplanes of \mathcal{A}^m . Let $r_{\mathcal{A}}(m)=(-1)^d\chi_{\mathcal{A}}(-1,m)$ and $b_{\mathcal{A}}(m)=(-1)^d\chi_{\mathcal{A}}(1,m)$ so that, for $m\in\mathbb{N}$, $r_{\mathcal{A}}(m)$ and $b_{\mathcal{A}}(m)$ count the number of regions and bounded regions, respectively, into which $V_{\mathbb{R}}$ is dissected by the hyperplanes of $\mathcal{A}^m_{\mathbb{R}}$ [13, Section 2.2] [14].

Corollary 1.2 Under the previous assumptions on A, the function $r_A(m)$ is a quasi-polynomial in m of degree d, and for all positive integers m, $(-1)^d r_A(-m)$ is equal to the number $b_A(m-1)$ of bounded regions of A_R^{m-1} .

Theorem 1.1 and its corollary belong to a family of results demonstrating some kind of combinatorial reciprocity law; see [11] for a systematic treatment of such phenomena. Not surprisingly, the proof given in Section 2 is a simple application of the main results of Ehrhart theory [12, Section 4.6]. More specifically, equation (1.2) will follow from the reciprocity theorem [12, Theorem 4.6.26] for the Ehrhart quasi-polynomial of a rational polytope. An expression for the coefficient of the leading term m^d of either $c_0(m)$ or $r_A(m)$ is also derived in that section. Some examples, including the motivating example in which $\mathcal{A}^0_{\mathbb{R}}$ is the arrangement of reflecting hyperplanes of a Weyl group, and remarks are discussed in Section 3. In the remainder of this section we give some background on characteristic and Ehrhart (quasi-)polynomials needed in Section 2. We will denote by #S or |S| the cardinality of a finite set S.

1.1 Arrangements of Hyperplanes

Let V be a d-dimensional vector space over a field \mathbb{K} . An arrangement of hyperplanes in V is a finite collection \mathcal{H} of affine subspaces of V of codimension one (we will allow this collection to be a multiset). The intersection poset of \mathcal{H} is the set $L_{\mathcal{H}} = \{ \bigcap \mathcal{F} \colon \mathcal{F} \subseteq \mathcal{H} \}$ of all intersections of subcollections of \mathcal{H} , partially ordered by reverse inclusion. It has a unique minimal element $\widehat{0} = V$, corresponding to the subcollection $\mathcal{F} = \emptyset$. The characteristic polynomial of \mathcal{H} is defined by

$$\chi_{\mathcal{H}}(q) = \sum_{x \in L_{\mathcal{H}}} \mu(x) q^{\dim x},$$

where μ stands for the Möbius function on $L_{\mathcal{H}}$ defined by

$$\mu(x) = \begin{cases} 1 & \text{if } x = \widehat{0}, \\ -\sum_{y < x} \mu(y) & \text{otherwise.} \end{cases}$$

Equivalently [9, Lemma 2.55] we have

(1.3)
$$\chi_{\mathcal{H}}(q) = \sum_{\mathcal{G} \subset \mathcal{H}} (-1)^{\#\mathcal{G}} q^{\dim(\cap \mathcal{G})},$$

where the sum is over all $\mathcal{G} \subseteq \mathcal{H}$ with $\bigcap \mathcal{G} \neq \emptyset$.

In the case $\mathbb{K}=\mathbb{R}$, the connected components of the space obtained from V by removing the hyperplanes of \mathcal{H} are called *regions* of \mathcal{H} . A region is *bounded* if it is a bounded subset of V with respect to a usual Euclidean metric.

1.2 Ehrhart Quasi-Polynomials

A convex polytope $P \subseteq \mathbb{R}^n$ is said to be a *rational* or *integral* polytope if all its vertices have rational or integral coordinates, respectively. If P is rational and P° is its relative interior, then the functions defined for nonnegative integers m by the formulas

$$i(P, m) = \#(mP \cap \mathbb{Z}^n), \quad \bar{i}(P, m) = \#(mP^{\circ} \cap \mathbb{Z}^n)$$

are quasi-polynomials in m of degree $d = \dim(P)$, related by the Ehrhart reciprocity theorem [12, Theorem 4.6.26]

(1.4)
$$i(P, -m) = (-1)^d \bar{i}(P, m).$$

The function i(P, m) is called the *Ehrhart quasi-polynomial* of P. The coefficient of the leading term m^d in either i(P, m) or $\overline{i}(P, m)$ is a constant equal to the normalized d-dimensional volume of P (meaning the d-dimensional volume of P normalized with respect to the lattice $V_P \cap \mathbb{Z}^n$, where V_P is the parallel translate of the affine span of P in \mathbb{R}^n through the origin). If P is an integral polytope then i(P, m) is a polynomial in m of degree d, called the *Ehrhart polynomial* of P.

2 Proof of Theorem 1.1

In this section we prove Theorem 1.1 and Corollary 1.2 and derive a formula for the coefficient of the leading term m^d of $r_{\mathcal{A}}(m)$. In what follows \mathcal{A} is as in the beginning of Section 1. We use the notation $[a,b]=\{x\in\mathbb{R}:a\leq x\leq b\}$ and $[a,b]_{\mathbb{Z}}=[a,b]\cap\mathbb{Z}$ for $a,b\in\mathbb{Z}$ with $a\leq b$.

Proof of Theorem 1.1 and Corollary 1.2 Using formula (1.3), we get

$$\chi_{\mathcal{A}^m}(q) = \sum_{\mathbb{S} \subseteq \mathcal{A}^m} (-1)^{\#\mathbb{S}} q^{\dim(\bigcap \mathbb{S})},$$

where the sum is over all $\mathcal{G} \subseteq \mathcal{A}^m$ with $\bigcap \mathcal{G} \neq \emptyset$. Clearly for this to happen \mathcal{G} must contain at most one hyperplane of the form $\alpha(x) = k$ for each $\alpha \in \mathcal{A}$. In other words we must have $\mathcal{G} = \mathcal{F}_b$ for some $\mathcal{F} \subseteq \mathcal{A}$ and map $b \colon \mathcal{F} \to [-m, m]_{\mathbb{Z}}$ sending α to b_{α} , where \mathcal{F}_b consists of the hyperplanes $\alpha(x) = b_{\alpha}$ for $\alpha \in \mathcal{F}$. Let us denote by dim \mathcal{F}

the dimension of the linear span of \mathcal{F} in V^* and observe that $\dim(\bigcap \mathcal{F}_b) = d - \dim \mathcal{F}$ whenever $\bigcap \mathcal{F}_b$ is nonempty. From the previous observations and (2.1) we get

$$\begin{split} \chi_{\mathcal{A}}(q,m) &= \sum_{\mathfrak{F} \subseteq \mathcal{A}} \sum_{b: \ \mathfrak{F} \to [-m,m]_{\mathbb{Z}}} (-1)^{\#\mathcal{F}_{b}} q^{\dim(\bigcap \mathcal{F}_{b})} \\ &= \sum_{\mathfrak{F} \subset \mathcal{A}} (-1)^{\#\mathcal{F}} q^{d-\dim \mathcal{F}} \# \{b: \mathcal{F} \to [-m,m]_{\mathbb{Z}}, \bigcap \mathcal{F}_{b} \neq \varnothing \}. \end{split}$$

Let us write $\mathcal{F} = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $b_i = b_{\alpha_i}$, so that b can be identified with a column vector in \mathbb{Q}^n . Then $\bigcap \mathcal{F}_b$ is nonempty if and only if the linear system $\alpha_i(x) = b_i$, $1 \le i \le n$, has a solution in \mathbb{Q}^d or, equivalently, if and only if b lies in the image $\operatorname{Im} T_{\mathcal{F}}$ of the linear transformation $T_{\mathcal{F}} \colon \mathbb{Q}^d \to \mathbb{Q}^n$ mapping $x \in \mathbb{Q}^d$ to the column vector in \mathbb{Q}^n with coordinates $\alpha_1(x), \alpha_2(x), \dots, \alpha_n(x)$. It follows that

$$\begin{split} \#\{b\colon \mathfrak{F} \to [-m,m]_{\mathbb{Z}}, \cap \mathfrak{F}_b \neq \varnothing\} &= \#\mathrm{Im} T_{\mathfrak{F}} \cap ([-m,m]_{\mathbb{Z}})^n \\ &= \#\mathrm{Im} T_{\mathfrak{F}} \cap [-m,m]^n \cap \mathbb{Z}^n \\ &= \#(m\left(\mathrm{Im} T_{\mathfrak{F}} \cap [-1,1]^n\right) \cap \mathbb{Z}^n) \\ &= \#(mP_{\mathfrak{F}} \cap \mathbb{Z}^n), \end{split}$$

where $P_{\mathcal{F}} = (\operatorname{Im} T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R}) \cap [-1,1]^n$. Clearly $P_{\mathcal{F}}$ is a rational convex polytope of dimension $\dim(\operatorname{Im} T_{\mathcal{F}}) = \dim \mathcal{F}$ and $\# (mP_{\mathcal{F}} \cap \mathbb{Z}^n) = i(P_{\mathcal{F}}, m)$ is the Ehrhart quasi-polynomial of $P_{\mathcal{F}}$. From the above we conclude that

(2.2)
$$\chi_{\mathcal{A}}(q,m) = \sum_{\mathfrak{F}\subset\mathcal{A}} (-1)^{\#\mathfrak{F}} q^{d-\dim\mathfrak{F}} i(P_{\mathfrak{F}},m).$$

Equivalently we have

(2.3)
$$c_i(m) = \sum_{\substack{\mathcal{F} \subseteq \mathcal{A} \\ \dim \mathcal{F} = d - i}} (-1)^{\#\mathcal{F}} i(P_{\mathcal{F}}, m)$$

for $0 \le i \le d$, where the $c_i(m)$ are as in (1.1). Since $i(P_{\mathcal{F}}, m)$ is a quasi-polynomial in m of degree dim \mathcal{F} , it follows from (2.3) that $c_i(m)$ is a quasi-polynomial in m of degree at most d-i and that $r_{\mathcal{A}}(m) = \sum_{i=0}^d (-1)^{d-i} c_i(m)$ is a quasi-polynomial in m of degree at most d. Moreover we have $r_{\mathcal{A}}(m) \ge (2m+2)^d$ for $m \ge 0$ since \mathcal{A} contains d linearly independent forms and the corresponding hyperplanes of $\mathcal{A}^m_{\mathbb{R}}$ dissect $V_{\mathbb{R}}$ into $(2m+2)^d$ regions. It follows that the degree of $r_{\mathcal{A}}(m)$ is no less than d, which implies that the degrees of $r_{\mathcal{A}}(m)$ and $c_0(m)$ are, in fact, equal to d.

It remains to prove the reciprocity relation (1.2). For $\mathcal{F} \subseteq \mathcal{A}$ with $\#\mathcal{F} = n$ let $W_{\mathcal{F}}$ be the real linear subspace $\operatorname{Im} T_{\mathcal{F}} \otimes_{\mathbb{Q}} \mathbb{R}$ of \mathbb{R}^n , so that $P_{\mathcal{F}} = W_{\mathcal{F}} \cap [-1, 1]^n$. We have

$$mP_{\mathfrak{F}}^{\circ} \cap \mathbb{Z}^{n} = (W_{\mathfrak{F}} \cap [-m, m]^{n})^{\circ} \cap \mathbb{Z}^{n}$$
$$= W_{\mathfrak{F}} \cap [-(m-1), m-1]^{n} \cap \mathbb{Z}^{n}$$
$$= (m-1)P_{\mathfrak{F}} \cap \mathbb{Z}^{n}$$

and hence $\bar{i}(P_{\mathcal{F}}, m) = i(P_{\mathcal{F}}, m - 1)$. The Ehrhart reciprocity theorem (1.4) implies that

(2.4)
$$i(P_{\mathcal{F}}, -m) = (-1)^{\dim \mathcal{F}} i(P_{\mathcal{F}}, m-1).$$

Equation (1.2) follows from (2.2) and (2.4).

The following corollary is an immediate consequence of the case i = 0 of (2.3), the equation $r_A(m) = \sum_{i=0}^d (-1)^{d-i} c_i(m)$, and the fact that the degree of $c_i(m)$ is less than d for $1 \le i \le d$.

Corollary 2.1 The coefficient of the leading term m^d in $r_A(m)$ is equal to the expression

$$\sum_{\substack{\mathcal{F} \subseteq \mathcal{A} \\ \dim \mathcal{F} = d}} (-1)^{\#\mathcal{F} - d} \operatorname{vol}_d(P_{\mathcal{F}}),$$

where $P_{\mathfrak{F}}$ is as in the proof of Theorem 1.1 and $\operatorname{vol}_d(P_{\mathfrak{F}})$ is the normalized d-dimensional volume of $P_{\mathfrak{F}}$.

The coefficient of the leading term m^d in $r_A(m)$ can also be described as the limit $\lim_{m\to\infty} r_A(m)/m^d$.

3 Examples and Remarks

In this section we list a few examples, questions, and remarks.

Example 3.1 If $V = \mathbb{Q}$ and \mathcal{A} consists of two forms $\alpha_1, \alpha_2 \colon V \to \mathbb{Q}$ with $\alpha_1(x) = x$ and $\alpha_2(x) = 2x$ for $x \in V$, then \mathcal{A}^m consists of the affine hyperplanes (points) in V defined by the equations x = k and x = k/2 for $k \in [-m, m]_{\mathbb{Z}}$. One can check that

$$\chi_{\mathcal{A}}(q,m) = \begin{cases} q - 3m - 1, & \text{if } m \text{ is even} \\ q - 3m - 2, & \text{if } m \text{ is odd} \end{cases}$$

and that (1.2) holds. Moreover we have

$$r_{\mathcal{A}}(m) = \begin{cases} 3m+2, & \text{if } m \text{ is even} \\ 3m+3, & \text{if } m \text{ is odd.} \end{cases}$$

Note that $\operatorname{vol}_d(P_{\mathcal{F}})$ takes the values 2, 2, and 1 when $\mathcal{F} = \{\alpha_1\}, \{\alpha_2\}$ and $\{\alpha_1, \alpha_2\}$, respectively.

Example 3.2 If $V = \mathbb{Q}^d$ and \mathcal{A} consists of the coordinate functions $\alpha_i(x) = x_i$ for $1 \le i \le d$, then \mathcal{A}^m consists of the affine hyperplanes in V given by the equations $x_i = k$ with $1 \le i \le d$, $k \in [-m, m]_{\mathbb{Z}}$ and $\chi_{\mathcal{A}}(q, m) = (q - 2m - 1)^d$, which is a polynomial in q and m satisfying (1.2).

Example 3.3 Let Φ be a finite, irreducible, crystallographic root system spanning the Euclidean space \mathbb{R}^d , endowed with the standard inner product (\cdot, \cdot) (we refer to [4,5,7] for background on root systems). Fix a positive system Φ^+ and let Q_{Φ} and W be the coroot lattice and Weyl group, respectively, corresponding to Φ. Let also \mathcal{A}_{Φ}^m denote the m-th generalized Catalan arrangement associated to Φ [1,2,10], consisting of the affine hyperplanes in \mathbb{R}^d defined by the equations $(\alpha, x) = k$ for $\alpha \in \Phi^+$ and $k \in [-m, m]_{\mathbb{Z}}$ (so that \mathcal{A}_{Φ}^0 is the real reflection arrangement associated to Φ). If V is the \mathbb{Q} -span of Q_{Φ} then there exists a finite collection \mathcal{A} of linear forms on V (one for each root in Φ^+) such that, in the notation of Section 1, $\mathcal{A}_{\mathbb{R}}^m$ coincides with \mathcal{A}_{Φ}^m . In [2, Theorem 1.2] a uniform proof was given of the formula

(3.1)
$$\chi_{\mathcal{A}}(q,m) = \prod_{i=1}^{d} (q - mh - e_i)$$

for the characteristic polynomial of \mathcal{A}_{Φ}^m , where e_1, e_2, \ldots, e_d are the exponents and h is the Coxeter number of Φ . Thus the reciprocity law (1.2) in this case is equivalent to the well-known fact [5, Section V.6.2] [7, Lemma 3.16] that the numbers $h - e_i$ are a permutation of the e_i . As was already deduced in [2, Corollary 1.3], it follows from (3.1) that

$$r_{\mathcal{A}}(m) = \prod_{i=1}^{d} (mh + e_i + 1)$$
 and $b_{\mathcal{A}}(m) = \prod_{i=1}^{d} (mh + e_i - 1)$

are polynomials in m of degree d (a fact which was the main motivation behind this paper). Setting $N(\Phi, m) = \frac{1}{|W|} r_{\mathcal{A}}(m)$ and $N^+(\Phi, m) = \frac{1}{|W|} b_{\mathcal{A}}(m)$, as in [3, 6], our Corollary 1.2 implies that

$$(-1)^d N(\Phi, -m) = N^+(\Phi, m-1).$$

It was suggested in [6, Remark 12.5] that this equality, first observed in [6, (2.12)], may be an instance of Ehrhart reciprocity. This was confirmed in [3, Section 7] using an approach which is different from the one followed in this paper. Finally we note that Corollary 2.1 specializes to the curious identity

(3.2)
$$h^{d} = \sum_{F} (-1)^{\#F-d} \operatorname{vol}_{d}(P_{F}),$$

where in the sum on the right hand-side F runs through all subsets $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ of Φ^+ spanning \mathbb{R}^d , P_F is the intersection of the cube $[-1,1]^n$ with the image of the linear transformation $T_F \colon \mathbb{R}^d \to \mathbb{R}^n$ mapping $x \in \mathbb{R}^d$ to the column vector in \mathbb{R}^n with coordinates $(\alpha_1, x), (\alpha_2, x), \ldots, (\alpha_n, x)$ and $\operatorname{vol}_d(P_F)$ is the normalized d-dimensional volume of P_F . If Φ has type A_d in the Cartan–Killing classification, then (3.2) translates to the equation

$$(d+1)^d = \sum_G (-1)^{e(G)-d} \operatorname{vol}_d(Q_G),$$

where in the sum on the right hand-side G runs through all connected simple graphs on the vertex set $\{1, 2, \dots, d + 1\}$, e(G) is the number of edges of G, and Q_G is the

d-dimensional polytope in \mathbb{R}^d defined in the following way. Let τ be a spanning tree of G with edges labelled in a one to one fashion with the variables x_1, x_2, \ldots, x_d . For any edge e of G which is not an edge of T let R_e be the region of \mathbb{R}^d defined by the inequalities $-1 \leq x_{i_1} + x_{i_2} + \cdots + x_{i_k} \leq 1$, where $x_{i_1}, x_{i_2}, \ldots, x_{i_k}$ are the labels of the edges (other than e) of the fundamental cycle of the graph obtained from T by adding the edge e. The polytope Q_G is the intersection of the cube $[-1,1]^d$ and the regions R_e .

Remark 3.4. It is well known [13, Corollary 3.5] that the coefficients of the characteristic polynomial of a hyperplane arrangement strictly alternate in sign. As a consequence, in the notation of (1.1), we have $(-1)^{d-i}c_i(m) > 0$ for all $m \in \mathbb{N}$ and $0 \le i \le d$. We do not know of an example of a collection \mathcal{A} of forms for a which a negative number appears among the coefficients of the quasi-polynomials $(-1)^{d-i}c_i(m)$.

Remark 3.5. If the matrix defined by the forms in \mathcal{A} with respect to some basis of V is integral and totally unimodular, meaning that all its minors are -1,0 or 1, then the polytopes $P_{\mathcal{F}}$ in the proof of Theorem 1.1 are integral and, as a consequence, the functions $c_i(m)$ and $r_{\mathcal{A}}(m)$ are polynomials in m. This assumption on \mathcal{A} is satisfied in the case of graphical arrangements, that is, when \mathcal{A} consists of the forms $x_i - x_j$ on \mathbb{Q}^r , where $1 \le i < j \le r$, corresponding to the edges $\{i, j\}$ of a simple graph G on the vertex set $\{1, 2, \ldots, r\}$. The degree of the polynomial $r_G(m) := r_{\mathcal{A}}(m)$ is equal to the dimension of the linear span of \mathcal{A} , in other words to the rank of the cycle matroid of G.

Remark 3.6. Let \mathcal{A} and \mathcal{H} be finite collections of linear forms on a d-dimensional \mathbb{Q} -vector space V spanning V^* . Using the notation of Section 1, let \mathcal{H}_m denote the union of $\mathcal{A}_{\mathbb{R}}^m$ with the linear arrangement $\mathcal{H}_{\mathbb{R}}^0$. It follows from Theorem 1.1, the Deletion-Restriction theorem [9, Theorem 2.56], and induction on the cardinality of \mathcal{H} that the function $r(\mathcal{H}_m)$ is a quasi-polynomial in m of degree d. Given a region R of $\mathcal{H}_{\mathbb{R}}^0$, let $r_R(m)$ denote the number of regions of \mathcal{H}_m which are contained in R, so that

$$r(\mathcal{H}_m) = \sum_R r_R(m)$$

where *R* runs through the set of all regions of $\mathcal{H}^0_\mathbb{R}$. Is the function $r_R(m)$ always a quasi-polynomial in m?

References

- C. A. Athanasiadis, Deformations of Coxeter hyperplane arrangements and their characteristic polynomials. In: Arrangements—Tokyo 1998, Adv. Stud. Pure Math. 27, Kinokuniya, Tokyo, 2000, pp. 1–26.
- [2] _____, Generalized Catalan numbers, Weyl groups and arrangements of hyperplanes. Bull. London Math. Soc. 36(2004), no. 3, 294–302. doi:10.1112/S0024609303002856
- [3] C. A. Athanasiadis and E. Tzanaki, On the enumeration of positive cells in generalized cluster complexes and Catalan hyperplane arrangements. J. Algebraic Combin. 23(2006), no. 4, 355–375. doi:10.1007/s10801-006-8348-8
- [4] A. Björner and F. Brenti, Combinatorics of Coxeter groups. Graduate Texts in Mathematics 231, Springer, New York, 2005.
- [5] N. Bourbaki, Lie groups and Lie algebras. Chapters 4-6, Springer-Verlag, Berlin, 2002.

[6] S. Fomin and N. Reading, Generalized cluster complexes and Coxeter combinatorics. Int. Math. Res. Not. 2005, no. 44, 2709–2757.

- [7] J. E. Humphreys, *Reflection groups and Coxeter groups*. Cambridge Studies in Advanced Mathematics 29, Cambridge University Press, Cambridge, 1990.
- [8] P. Orlik and L. Solomon, *Combinatorics and topology of complements of hyperplanes*. Invent. Math. **56**(1980), no. 2, 167–189. doi:10.1007/BF01392549
- [9] P. Orlik and H. Terao, Arrangements of hyperplanes. Grundlehren der Mathematischen Wissenschaften 300, Springer-Verlag, Berlin, 1992.
- [10] A. Postnikov and R. P. Stanley, Deformations of Coxeter hyperplane arrangements. J. Combin. Theory Series A 91(2000), no. 1-2, 544–597. doi:10.1006/jcta.2000.3106
- [11] R. P. Stanley, Combinatorial reciprocity theorems. Advances in Math. 14(1974), 194–253. doi:10.1016/0001-8708(74)90030-9
- [12] ______, Enumerative Combinatorics Vol. 1. Cambridge Studies in Advanced Mathematics 49, Cambridge University Press, Cambridge, 1997.
- [13] _____, An Introduction to hyperplane arrangements. In: Geometric combinatorics, IAS/Park City Math. Ser. 13, American Mathematical Society, Providence, RI, 2007.
- [14] T. Zaslavsky, Facing up to arrangements: face-count formulas for partitions of space by hyperplanes. Mem. Amer. Math. Soc. 1(1975), no. 154.

Department of Mathematics (Division of Algebra-Geometry), University of Athens, Panepistimioupolis, 15784 Athens, Greece

e-mail: caath@math.uoa.gr