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Abstract

We derive upper Gaussian bounds for the heat kernel on complete, noncompact locally symmetric spaces
M = 0\X with nonpositive curvature. Our bounds contain the Poincaré series of the discrete group 0

and therefore we also provide upper bounds for this series.
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1. Introduction

Let X = G/K denote a Riemannian symmetric space of nonpositive curvature. In a
series of papers sharp upper and lower bounds for the heat kernel K (t, x, y) on X
were obtained: Davies and Mandouvalos [6] derived sharp upper and lower bounds
in the hyperbolic setting, that is, X = Hn . Anker and Ji [1] generalized this result to
Riemannian symmetric spaces of nonpositive curvature for those t > 0 and x, y ∈ X
such that 1 + t ≥ cd(x, y) for a constant c > 0. Finally, Anker and Ostellari [2, 15]
were able to give a proof without this additional assumption.

In this paper, we are concerned with upper Gaussian bounds for the heat kernel on
complete locally symmetric spaces M = 0\X where X = G/K denotes a Riemannian
symmetric space of nonpositive curvature and 0 ⊂ G a discrete subgroup of G that
acts freely by isometries on X . Our methods are inspired by similar results due to
Davies and Mandouvalos for hyperbolic manifolds M = 0\Hn in [6] but, because
of nonconstant sectional curvature, the proofs in the more general case of locally
symmetric spaces are a little more involved. We also want to emphasize that we make
no restrictions concerning the rank of X , that is, the dimension of a maximal flat in X .

This paper is organized as follows. We use the precise heat kernel bounds due to
Anker and Ostellari for the heat kernel on X (see Section 2 for their result) and a
formula relating the heat kernels on X and M = 0\X in order to derive in Section 4
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upper bounds for the heat kernel on M . These upper bounds contain the so-called
Poincaré series

P(s; x, y) =

∑
γ∈0

exp(−sd(x, γ y)), x, y ∈ X, s > 0.

Unfortunately, it seems to be rather difficult to determine upper bounds for the function
(x, y) 7→ P(s; x, y). On the other hand, we are able to give upper bounds for
x 7→ P(s; x, x) if s is larger than 2‖ρ‖ (for a definition of ρ we refer to Section 2);
see Section 3. Hence, we use a theorem due to Davies and Mandouvalos and lower
bounds for the bottom of the L2 spectrum of M derived in Section 4 to get upper
bounds for the heat kernel on M where the functions P(s; x, x) appear instead of
P(s; x, y) and s can be chosen larger than 2‖ρ‖ (see Section 5).

2. Preliminaries

We recall some basic material about symmetric spaces and state Anker’s
and Ostellari’s result concerning the heat kernel K (t, x, y) on symmetric spaces
mentioned in the introduction.

In the following, X = G/K denotes a symmetric space with nonpositive sectional
curvature, where G is a noncompact reductive Lie group in Harish-Chandra’s class that
acts by isometries on X and K is a maximal compact subgroup of G. The respective
Lie algebras are denoted by g and k.

Given a corresponding Cartan involution θ we obtain the Cartan decomposition
g = k ⊕ p of g into the eigenspaces of θ . The subspace p of g can be identified with
the tangent space TeK X .

For any maximal Abelian subspace a ⊂ p we refer to 6 = 6(g, a) as the set of all
restricted roots for the pair (g, a), that is, 6 contains all α ∈ a∗

\ {0} such that

gα := {Y ∈ g | ad(H)(Y ) = α(H)Y for all H ∈ a} 6= {0}.

These subspaces gα are called root spaces.
Once a positive Weyl chamber a+ in a is chosen, we denote by 6+ the subset of

positive roots, and by 6+

0 the subset of indivisible positive roots, where a positive root
α is called indivisible if (1/2)α is not a root. Furthermore,

ρ =
1
2

∑
α∈6+

(dim gα)α

is half the sum of the positive roots (counted according to their multiplicity).
Recall the Cartan decomposition of G:

G = K exp a+K . (1)

More precisely, this means that each g ∈ G can be written as g = k1 exp(H)k2 with
k1, k2 ∈ K , and a unique H ∈ a+.
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To state Anker’s and Ostellari’s result, we need a little more preparation. Notice
first that G acts by isometries on X and that therefore the Laplace–Beltrami
operator is G-invariant and hence, the heat kernel K (t, x, y) is G-invariant, that
is, K (t, gx, gy) = K (t, x, y) for all g ∈ G and x, y ∈ X . If we denote by x0 = eK
the base point of X and if we choose points x, y in the homogeneous space X ,
there are isometries g, h ∈ G such that x = gx0 and y = hx0. Because of the
Cartan decomposition G = K exp a+K of the Lie group G there are k, k′

∈ K and
H = H(g−1h) ∈ a+ with g−1h = k exp H(g−1h)k′. We can therefore write the heat
kernel as follows:

K (t, x, y) = K (t, gx0, hx0) = K (t, x0, g−1hx0)

= K (t, x0, k exp H(g−1h)k′x0) = K (t, x0, exp H x0).

Of course, the isometries g and h are not necessarily uniquely determined. But H ∈ a+

is uniquely determined by x and y ∈ X : assuming that the isometries g′ and h′
∈ G

satisfy also x = g′x0 and y = h′x0, then clearly g′
= gk1 and h′

= hk2 with k1, k2 ∈ K .
On the other hand, this implies g′−1h′

= k−1
1 g−1hk2 = k−1

1 k exp H(g−1h)k′k2 and the
claim is proven because the H ∈ a+ in the Cartan decomposition is unique. For the
distance between x and y ∈ X we obtain by an analogous calculation the formula

d(x, y) = d(x0, exp H x0) = ‖H‖.

THEOREM 2.1 (see [2, 15]). For all H ∈ a+ and all t > 0,

K (t, x0, exp H x0) � t−n/2
( ∏

α∈6+

0

(1 + 〈α, H〉)(1 + t + 〈α, H〉)(mα+m2α)/2−1
)

× exp(−‖ρ‖
2t − 〈ρ, H〉 − ‖H‖

2/4t).

Note that we write f � h for functions f and h if there is a positive constant c such
that (1/c)h ≤ f ≤ ch.

REMARK 2.2. If we denote by G1 the Lie subgroup of G with Lie algebra
g1 := [g, g] and by K1 := K ∩ G1, then K1 is a maximal compact subgroup of the
semisimple Lie group G1 and the center of G1 is finite. Furthermore, X = G/K splits
as the Riemannian product of the symmetric space X1 = G1/K1 of noncompact type
and the Euclidean space p ∩ Z(g), where Z(g) denotes the center of g.

3. Poincaré series and the critical exponent

Let us denote by X = G/K a symmetric space of nonpositive sectional curvature
and by 0 a discrete subgroup of G that acts freely on X . The resulting locally
symmetric space is denoted by M = 0\X .

A major role in our estimates is played by the Poincaré series

P(s; x, y) :=

∑
γ∈0

exp(−sd(x, γ y))
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with s ∈ (0, ∞), x, y ∈ X , and its critical exponent

δ(0) := inf{s ∈ (0, ∞) | P(s; x, y) < ∞}.

Since all γ ∈ 0 are isometries, an application of the triangle inequality implies that
the definition of the critical exponent δ(0) does not depend on the choice of the points
x and y ∈ X . We further remark that, because of P(s; γ1x, γ2 y) = P(s; x, y) for all
γ1, γ2 ∈ 0, the Poincaré series P(s; ·, ·) can be considered as a function on M × M .
Therefore, the same notation will occasionally be used for the respective function on
M × M .

If N (R; x, y) := #{γ ∈ 0 | d(x, γ y) ≤ R} denotes the orbit counting function, one
can prove the equality

δ(0) = lim sup
R→∞

log N (R; x, y)

R
; (2)

see [14] or [18]. The critical exponent δ(0) is therefore a measure of the exponential
growth rate of 0 orbits in X .

Before we begin with estimating of the Poincaré series, we give an upper bound for
the critical exponent δ(0).

LEMMA 3.1. If ρ denotes (as above) half the sum of the positive roots, then

δ(0) ≤ 2‖ρ‖.

PROOF. We consider the symmetric space X = X1 × Rm with nonpositive sectional
curvature where X1 denotes a symmetric space of noncompact type (see Remark 2.2).
We further choose x, y ∈ X and a ball B(y, ε) with center y and radius ε = ε(0) > 0
such that B(y, ε) ∩ B(γ y, ε) = ∅ for all γ 6= id. It follows that

N (R; x, y)vol B(y, ε) ≤ vol B(x, R + ε).

Since
vol B(x, R) � Rm R((rank X1)−1)/2 exp(2‖ρ‖R) (3)

(see [11]), we obtain the estimate

N (R; x, y) ≤
vol B(x, R + ε)

vol B(y, ε)
≤ C

(
R + ε

ε

)m(
R + ε

ε

)((rank X1)−1)/2

exp(2‖ρ‖R).

The claim now follows from formula (2). 2

3.1. Estimates of the Poincaré series Since the Poincaré series appears in our heat
kernel estimates, we prove in this subsection certain upper bounds for this series.

In the following lemma we denote by inj(̃x) the injectivity radius of x̃ ∈ M = 0\X .
Recall the formula

inj(̃x) =
1
2 min{d(x, γ x) | γ ∈ 0 \ {id}},
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which is true for all x ∈ X projecting to x̃ , that is, π(x) = x̃ where π : X → 0\X
denotes the covering map. For such points x , we put inj(x) := inj(̃x).

It turns out that, under the assumption s > 2‖ρ‖, it is easier to obtain upper bounds
for the Poincaré series P(s; x, x).

LEMMA 3.2. Let s > 2‖ρ‖ and choose 0 < 2ε < s − 2‖ρ‖. Then there is a constant
C = C(s, ε) > 0, such that

1 ≤ P(s; x, x) ≤ 1 + C

(
1

inj(x)

)m+((rank X1)−1)/2

· exp((2‖ρ‖ − s + 2ε)inj(x)).

PROOF. The lower bound is trivial since id ∈ 0. The upper bound follows essentially
from (3). In fact,

P(s; x, x) ≤ 1 +

∞∑
n=0

#{γ ∈ 0 | inj(x) + n ≤ d(x, γ x) ≤ inj(x) + n + 1}

× exp((−s(inj(x) + n))).

Since the open balls B(γ x, inj(x)) are pairwise disjoint, we obtain the following
estimate for Sn(x) := #{γ ∈ 0 | inj(x) + n ≤ d(x, γ x) ≤ inj(x) + n + 1}:

Sn(x)vol B(x, inj(x)) ≤ vol B(x, 2inj(x) + n + 1).

For all ε > 0, vol B(x, R) ≤ cε exp((2‖ρ‖ + ε)R) with a constant cε > 0 that depends
on the choice of ε. Using (3), we can conclude that

Sn(x) ≤
vol B(x, 2inj(x) + n + 1)

vol B(x, inj(x))

≤ Cε

(
1

inj(x)

)m+((rank X1)−1)/2

· exp((2‖ρ‖ + ε)(2inj(x) + n + 1))

× exp(−2‖ρ‖inj(x)).

This implies the following upper bound for the Poincaré series:

P(s; x, x) ≤ 1 + Cε

(
1

inj(x)

)m+((rank X1)−1)/2

· exp((2‖ρ‖ − s + 2ε)inj(x))

× exp(2‖ρ‖ + ε) ·

∞∑
n=0

exp((2‖ρ‖ − s + ε)n).

Because of our choice of s and ε it follows in particular that 2‖ρ‖ − s + ε < 0 and that
the geometric series

∑
∞

n=0 exp((2‖ρ‖ − s + ε)n) equals (1 − exp(2‖ρ‖ − s + ε))−1.
The proof is complete. 2
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Of course, it would suffice for the proof of the lemma above that ε satisfies the
inequality 2‖ρ‖ − s + ε < 0. But this (weaker) assumption does not guarantee that the
term exp((2‖ρ‖ − s + 2ε)inj(x)) converges (exponentially) to zero as inj(x) → ∞.

Recall that a Riemannian manifold M is said to have bounded geometry if its
injectivity radius inj(M) := infx∈M inj(x) is bounded from below by a strictly positive
constant and if its Ricci curvature is bounded from below. The second condition is
always fulfilled if M is a locally symmetric space.

COROLLARY 3.3. Let M = 0\X be a locally symmetric space and choose s > 2‖ρ‖.

(a) Assume that M has bounded geometry. Then the Poincaré series P(s; x, x) is
(for fixed s) bounded from above.

(b) If xn ∈ X is a sequence with inj(xn) → ∞, it follows that P(s; xn, xn) → 1.

For the following estimates of the Poincaré series we choose an arbitrary (but fixed)
point x ′

∈ X .

LEMMA 3.4. Choose s > 2‖ρ‖ and x ′
∈ X. Then the following results hold.

(a) There is a positive constant C = C(x ′, s) (depending only on x ′ and s) such that

P(s; x, x ′) ≤ C

for all x ∈ X.
(b) There is a positive constant C = C(x ′, s) (depending only on x ′ and s) such that

P(s; x, x) ≤ C exp(sdM (π(x), π(x ′)))

for all x ∈ X.

PROOF. (a) The proof is similar to the preceding one:

P(s; x, x ′) ≤

∞∑
n=1

#{γ ∈ 0 | n − 1 ≤ d(x, γ x ′) ≤ n} · exp(−s(n − 1))

≤

∞∑
n=1

vol B(x, n + inj(x ′))

vol B(x ′, inj(x ′))
· exp(−s(n − 1))

≤ Cε

(
1

inj(x ′)

)m+((rank X1)−1)/2

· exp(−2‖ρ‖inj(x ′))

·

∞∑
n=1

exp((2‖ρ‖ + ε)(n + inj(x ′))) · exp(−s(n − 1))

= Cε,x ′,s

∞∑
n=1

exp((2‖ρ‖ + ε − s)n).

If we choose ε sufficiently small, the last series converges and the claim follows.
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(b) Using the triangle inequality d(x, γ x) + d(x, γ ′x ′) ≥ d(γ x, γ ′x ′), we can
conclude for all γ ′

∈ 0 that

P(s; x, x) ≤

∑
γ∈0

exp(−sd(γ x, γ ′x ′)) · exp(sd(x, γ ′x ′))

= P(s; x, γ ′x ′) exp(sd(x, γ ′x ′))

= P(s; x, x ′) exp(sd(x, γ ′x ′)).

We choose an isometry γ ′
∈ 0 with the property

d(x, γ ′x ′) = min
γ∈0

d(x, γ x ′) = dM (π(x), π(x ′)).

Now part (b) follows immediately from part (a). 2

4. Heat kernel bounds and L2 spectrum

In our estimates of the heat kernel k on the locally symmetric space M = 0\X we
use the identity

k(t, π(x), π(y)) =

∑
γ∈0

K (t, x, γ y),

where K denotes the heat kernel on X and π : X → M the covering map. This follows
from a heat kernel upper bound like

K (t, x, y) ≤ Ct−n/2 exp
(

−
d2(x, y)

(4 + δ)t

)
which is true for all Cartan–Hadamard manifolds (see [10, Section 7.4]) and well
known bounds for the volume growth of balls. If X is a symmetric space of
noncompact type, a proof can be found in [4].

We define

ρmin := min{〈ρ, H〉 : H ∈ a+, ‖H‖ = 1} ≥ 0.

In the following we study the cases δ(0) < ρmin and δ(0) ≥ ρmin separately.

THEOREM 4.1. Assume δ(0) < ρmin. Then there is for any s ∈ (δ(0), ρmin) a
constant C = C(s) > 0 such that for all t > 0 and x̃, ỹ ∈ M = 0\X the estimate

k(t, x̃, ỹ) ≤ Ct−n/2(1 + t)m exp
(

−‖ρ‖
2t −

d2
M (̃x, ỹ)

4t

)
P(s; x̃, ỹ)

holds. Here, m is defined by m :=
∑

α∈6+

0
((mα + m2α)/2 − 1).
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PROOF. We use Theorem 2.1 to estimate k(t, x̃, ỹ) =
∑

γ∈0 K (t, x, γ y), where
x, y ∈ X are chosen such that π(x) = x̃ and π(y) = ỹ. For this we denote by H(γ )

the unique element in a+ with

K (t, x, γ y) = K (t, x0, exp H(γ )x0)

and

d(x, γ y) = ‖H(γ )‖

(see Section 2). First, we obtain

k(t, x̃, ỹ) ≤ C1t−n/2(1 + t)m

×

∑
γ∈0

( ∏
α∈6+

0

(1 + 〈α, H(γ )〉)(mα+m2α)/2
)

× exp(−‖ρ‖
2t − 〈ρ, H(γ )〉 − (‖H(γ )‖2/4t)).

Because of dM (̃x, ỹ) = minγ∈0 d(x, γ y) it further follows that

k(t, x̃, ỹ) ≤ C1t−n/2(1 + t)m exp
(

−‖ρ‖
2t −

d2
M (̃x, ỹ)

4t

)
×

∑
γ∈0

( ∏
α∈6+

0

(1 + 〈α, H(γ )〉)(mα+m2α)/2
)

exp(−〈ρ, H(γ )〉)

≤ C1t−n/2(1 + t)m exp
(

−‖ρ‖
2t −

d2
M (̃x, ỹ)

4t

)
×

∑
γ∈0

( ∏
α∈6+

0

(1 + ‖α‖ · ‖H(γ )‖)(mα+m2α)/2
)

exp(−ρmin‖H(γ )‖).

Now we take a closer look at the last sum. Since the term∏
α∈6+

0

(1 + ‖α‖ · ‖H(γ )‖)(mα+m2α)/2

is the square root of a polynomial in ‖H(γ )‖, we can find for every s ∈ (δ(0), ρmin) a
constant C2 = C2(s) > 0, such that∏

α∈6+

0

(1 + ‖α‖ · ‖H(γ )‖)(mα+m2α)/2 exp(−ρmin‖H(γ )‖) ≤ C2 exp(−s‖H(γ )‖)

= C2 exp(−sd(x, γ y)).

This concludes the proof. 2
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The condition s < ρmin prevents an application of the results from Section 3.1:
Using the triangle inequality, we can conclude that P(s; x, y) ≤ P(s; x, x)

exp(sd(x, y)). But for the proof of the estimates of the Poincaré series P(s; x, x)

in the subsection mentioned we made the assumption that s > 2‖ρ‖. In Section 5, we
therefore give further heat kernel estimates where this problem does not occur.

In the following we give an estimate of the heat kernel on quotients M = 0\X for
larger subgroups 0, that is, δ(0) ≥ ρmin. The statement of the next theorem is also
true for subgroups with δ(0) < ρmin but the estimate is weaker than the one obtained
in Theorem 4.1.

THEOREM 4.2. Assume that δ(0) ≥ ρmin. Then there is for all ε > 0 a constant
C = C(ε) > 0 such that the following estimate for the heat kernel k on M holds:

k(t, x̃, ỹ) ≤ Ct−n/2(1 + t)m exp(−(‖ρ‖
2
− (δ(0) − ρmin + ε)2)t)

× P(δ(0) + ε/2; x̃, ỹ),

where m is defined as in Theorem 4.1.

PROOF. In order to estimate

k(t, x̃, ỹ) =

∑
γ∈0

K (t, x, γ y),

we again use Theorem 2.1. First of all, we concentrate on the term

exp
(

−‖ρ‖
2t − 〈ρ, H〉 −

‖H‖
2

4t

)
≤ exp

(
−‖ρ‖

2t − ρmin‖H‖ −
‖H‖

2

4t

)
.

A straightforward calculation shows that for any β ∈ R the right-hand side of this
inequality coincides with the left-hand side of the next inequality:

exp(−(ρmin + β)‖H‖ − ‖ρ‖
2t) exp(−(‖H‖/2

√
t − β

√
t)2)eβ2t

≤ exp(−(ρmin + β)‖H‖ − ‖ρ‖
2t)eβ2t .

Choose ε > 0 and define β := β(ε) := δ(0) − ρmin + ε.
We obtain the estimate (see the proof of Theorem 4.1)

k(t, x̃, ỹ) ≤ C1t−n/2(1 + t)m exp(−(‖ρ‖
2
− (δ(0) − ρmin + ε)2)t) ·

×

∑
γ∈0

( ∏
α∈6+

0

(1 + 〈α, H(γ )〉)(mα+m2α)/2
)

exp(−(δ(0) + ε)‖H(γ )‖)

≤ Ct−n/2(1 + t)m exp(−(‖ρ‖
2
− (δ(0) − ρmin + ε)2)t)

× P(δ(0) + ε/2; x, y).

In the last step we have again used 〈α, H(γ )〉 ≤ ‖α‖ · ‖H(γ )‖ and ‖H(γ )‖

= d(x, γ y). 2

https://doi.org/10.1017/S0004972708000488 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972708000488


82 A. Weber [10]

REMARK 4.3. Because of k → 0 (if t → ∞) this estimate of the heat kernel k is only
of interest if there is an ε > 0 such that ‖ρ‖

2
− (δ(0) − ρmin + ε)2 is positive. But

this is equivalent to ‖ρ‖ + ρmin > δ(0) ≥ ρmin.
For symmetric spaces X = G/K of noncompact type with rank 1 the Lie subalgebra

a has dimension 1 and therefore ρmin = ‖ρ‖. The condition from above in this case
becomes ‖ρ‖ ≤ δ(0) < 2‖ρ‖.

The preceding results of this section can be applied in order to give a lower bound
for the bottom of the L2 spectrum,

λ0(M) := inf{λ | λ ∈ σ(1M )} ≥ 0,

for locally symmetric spaces M := 0\X . The basis for our estimates is the following
lemma.

LEMMA 4.4 [3, 13, 17]. Let M be a Riemannian manifold with Laplace–Beltrami
operator 1M and heat kernel K . Then, for any pair (x, y) ∈ M × M,

lim
t→∞

1
t

log K (t, x, y) = −λ0(M).

THEOREM 4.5. Let 0\X be a noncompact locally symmetric space. Then, the
following holds for the bottom λ0(0\X) of the L2 spectrum:

(a) λ0(0\X) = ‖ρ‖
2 if δ(0) < ρmin;

(b) ‖ρ‖
2
≥ λ0(0\X) ≥ ‖ρ‖

2
− (δ(0) − ρmin)

2 if ρmin ≤ δ(0) ≤ ‖ρ‖ + ρmin.

PROOF. The upper bound ‖ρ‖
2 for λ0(0\X) follows from Lemma 4.4, Theorem 2.1,

and the fact that

k(t, π(x), π(y)) ≥ K (t, x, y).

For the lower bounds we apply Lemma 4.4 and Theorems 4.1 or 4.2: The
function h : [1, ∞) → R, t → t−n/2(1 + t)m is monotone decreasing since m < n/2.
Therefore, we obtain in the first case the estimate

k(t, x̃, x̃) ≤ b(̃x) exp(−‖ρ‖
2t)

for all t ≥ 1 with a positive function b on 0\X . In the second case, analogous
considerations lead for any ε > 0 to

k(t, x̃, x̃) ≤ bε (̃x) exp(−(‖ρ‖
2
− (δ(0) − ρmin + ε)2)t)

for all t ≥ 1. 2

In the case of δ(0) > ‖ρ‖ + ρmin the term ‖ρ‖
2
− (δ(0) − ρmin)

2 is negative.
Thus, the lower bound for λ0(0\X) is still zero in this case.

The bounds for the bottom of the L2 spectrum from above generalize numerous
former achievements: If 0 is a Fuchsian group, the results can be found in [7–9, 16].
For hyperbolic spaces X = Hn with n ≥ 3 these results are contained in [19]. Corlette
proved these results for rank-1 symmetric spaces X of noncompact type (see [4]).
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A generalization to symmetric spaces of noncompact type with arbitrary rank is due to
Leuzinger (see [12]).

5. Gaussian bounds

In this section we wish to apply a theorem due to Davies and Mandouvalos in
order to obtain Gaussian bounds for the heat kernel on locally symmetric spaces.
These bounds will be suitable for applying the estimates of the Poincaré series from
Section 3.1.

THEOREM 5.1 (Davies and Mandouvalos; see [5]). Let M denote a noncompact
Riemannian manifold with dimension n ≥ 3. We further denote by σ : M → (0, ∞)

a C∞ function and by F ∈ R a constant such that

−
1Mσ

σ
≥ F.

Assume that for all t ∈ (0, 1] and x ∈ M the following (on-diagonal) estimate for the
heat kernel K on M holds:

K (t, x, x) ≤ Ct−n/2σ 2(x).

Then for all µ ∈ (0, 1), t > 0, and x, y ∈ M the Gaussian estimate

K (t, x, y) ≤ Cµt−n/2σ(x)σ (y) exp
(

(2µ − λ0(M))t −
d2(x, y)

4(1 + µ)t

)
holds.

We begin with the definition of a function σ on our symmetric space X = G/K which
descends to a suitable function on the quotient space M = 0\X for a discrete subgroup
0 ⊂ G that acts freely on X .

DEFINITION 5.2. Choose a nonnegative function f ∈ C∞
c ([0, ∞)) with f (0) 6= 0 and

put h : X × X → [0, ∞), (x, y) 7→ f (d2(x, y)). For s > δ(0) we define

σ : X → (0, ∞), x 7→

∫
X

h(x, y)
√

P(s; y, y) dvol(y).

To show that this function has the properties we need (in view of Theorem 5.1) we
prove the next lemma.

LEMMA 5.3. The function σ is differentiable, 0-invariant, and therefore defines a
function on the quotient space 0\X. Furthermore:

(a) there is a constant c > 1 such that

1
c

√
P(s; x, x) ≤ σ(x) ≤ c

√
P(s; x, x);

(b) there is a constant F with

|1Xσ(x)| ≤ Fσ(x).

In particular, −1Xσ/σ ≥ −F.
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PROOF. The differentiability of σ and the 0-invariance are evident. For the proof of
the remaining assertions we first remark that the triangle inequality implies that

P(s; y, y) ≤ exp(2sd(x, y))P(s; x, x).

(a) The definition of the function σ implies the existence of a constant β > 0, such
that h(x, y) = 0 for all points x, y ∈ X with d(x, y) > β. We therefore obtain

σ(x) =

∫
d(x,y)≤β

h(x, y)
√

P(s; y, y) dvol(y)

≤

∫
d(x,y)≤β

h(x, y) exp(sd(x, y))
√

P(s; x, x) dvol(y)

≤ (max h)esβ
√

P(s; x, x)vol B(x, β) ≤ c1(s, h)
√

P(s; x, x),

with a constant c1 > 0 that depends only on s and the function h. Notice that in the last
step we have used the fact that the volume of a ball B(x, β) in X is smaller than the
volume of a corresponding ball in some hyperbolic space Hn of constant curvature.

We choose 0 < a < ∞ with f (τ ) > 0 for all τ ∈ [0, a2
]. It follows that

σ(x) ≥

∫
d(x,y)≤a

h(x, y) exp(−sd(x, y))
√

P(s; x, x) dvol(y)

≥ e−sa
√

P(s; x, x)

∫
d(x,y)≤a

h(x, y) dvol(y)

≥ e−sa
√

P(s; x, x) min
τ∈[0,a2]

f (τ )

∫
d(x,y)≤a

dvol(y)

≥ c2
√

P(s; x, x),

with a positive constant c2. In the last step we have again applied a volume comparison
theorem in order to find a positive lower bound of the integral. More precisely,
we compare the volume of the ball B(x, a) ⊂ X with the volume of a Euclidean
comparison ball.

(b) Using (a), we obtain

|1Xσ(x)| =

∣∣∣∣∫
d(x,y)≤β

(1X h)(x, y)
√

P(s; y, y) dvol(y)

∣∣∣∣
≤ esβ

√
P(s; x, x) max(|1X h|) = c3

√
P(s; x, x)

≤ Fσ(x),

and in particular F ≥ |1Xσ(x)|/σ(x) ≥ 1Xσ(x)/σ (x). 2

This yields the following result.

COROLLARY 5.4. Let dim X ≥ 3 and µ ∈ (0, 1). Then we obtain the following upper
bounds for the heat kernel k on M = 0\X.
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(a) If δ(0) < ρmin and s > δ(0),

k(t, x̃, ỹ) ≤ Cµt−n/2 exp
(

(2µ − ‖ρ‖
2)t −

d2
M (̃x, ỹ)

4(1 + µ)t

)
×

√
P(s; x̃, x̃)

√
P(s; ỹ, ỹ).

(b) If δ(0) ≥ ρmin and ε > 0,

k(t, x̃, ỹ) ≤ Cε,µt−n/2 exp
(

(2µ − λ0(M))t −
d2

M (̃x, ỹ)

4(1 + µ)t

)
×

√
P(δ(0) + ε; x̃, x̃)

√
P(δ(0) + ε; ỹ, ỹ).

PROOF. The assertions follow from Theorem 5.1 and Lemma 5.3 since the results in
Section 4 imply in both cases a heat kernel estimate of the form

k(t, x̃, x̃) ≤ Ct−n/2σ 2(x), t ∈ (0, 1],

with some x ∈ X such that π(x) = x̃ .
We provide some details for case (b). Using Theorem 4.2 and Lemma 5.3, we

conclude for t ∈ (0, 1] that

k(t, x̃, x̃) ≤ Cεt−n/2 P(δ(0) + ε/2; x̃, x̃) ≤ C ′
εt−n/2σ 2(x),

where we put s := δ(0) + ε/2 in the definition of σ . The claim follows since
σ 2(x) ≤ cP(δ(0) + ε/2; x, x). 2

REMARK 5.5. These bounds contain the functions P(s; x, x) instead of P(s; x, y)

and s can be chosen as large as one wishes. Since we have estimated the functions
P(s; x, x) in Section 3.1 for s > 2‖ρ‖, we now have ‘complete’ upper bounds for the
heat kernels.

Using the estimate λ0(M) ≥ ‖ρ‖
2
− (δ(0) − ρmin)

2 (see Theorem 4.5), we obtain
the following result.

COROLLARY 5.6. Let ρmin ≤ δ(0) < ρmin + ‖ρ‖. Then for all ε > 0 and µ ∈ (0, 1)

there is a constant Cε,µ such that

k(t, x̃, ỹ) ≤ Cε,µt−n/2 exp
(

(2µ − (‖ρ‖
2
− (δ(0) − ρmin)

2))t −
d2

M (̃x, ỹ)

4(1 + µ)t

)
×

√
P(δ(0) + ε; x̃, x̃)

√
P(δ(0) + ε; ỹ, ỹ).
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