J. Austral. Math. Soc. (Series A) 61 (1996), 238-248

EXPONENTIALLY BOUNDED POSITIVE-DEFINITE FUNCTIONS ON A COMMUTATIVE HYPERGROUP

WALTER R. BLOOM and PAUL RESSEL

(Received 9 May 1994; revised 20 December 1994)

Communicated by A. H. Dooley

Abstract

In this paper we make use of semigroup methods on the space of compactly supported measures to obtain a Bochner representation for α -bounded positive-definite functions on a commutative hypergroup.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43A62; secondary 60B05, 43A10, 43A35.

The analysis throughout will be carried out on a (locally compact) hypergroup X admitting a left Haar measure m. (For a definition and properties refer to Jewett [5] whose notation we follow.) This includes those hypergroups that are compact ([5, Theorem 7.2A]), discrete ([5, Theorem 7.1A]) or commutative (Spector [9, Theorem III.4]). We reserve the symbols $M^1(X)$, $M_c^1(X)$ and $M_c(X)$ for the spaces of probability measures, those that have compact support, and the space of measures that have compact support respectively. $L_{loc}^{\infty}(X)$ is just the space of measurable functions that are bounded on every compact subset of X. There is an analogous definition for the space $L_{loc}^1(X)$. We denote the point measure at $x \in X$ by ϵ_x , and the indicator function of a set A by 1_A . The involution on X extends to $M^b(X)$ via $\mu^{\sim}(B) = \overline{\mu(B^-)}$ for all Borel sets $B \subseteq X$.

For each $x, y \in X$ write

$$f(x * y) := \int_X f d(\epsilon_x * \epsilon_y), \qquad \mu * f(x) := \int_X f(z^- * x) d\mu(z)$$

Research carried out in part while the first author was visiting Universität Eichstätt supported by the Alexander von Humboldt Foundation.

⁽c) 1996 Australian Mathematical Society 0263-6115/96 \$A2.00 + 0.00

and

$$f * g(x) := \int_X f(x * y)g(y^-) \, dm(y) = \int_X f(y)g(y^- * x) \, dm(y).$$

Here f, g are measurable functions on X and $\mu \in M^b(X)$, and the latter equality holds whenever one of f, g is σ -finite (see [5, Theorem 5.1D]). The left x-translate of f is written $f_x(y) = f(x * y)$.

The main objects of interest in this paper are positive-definite functions, that is functions $f \in L^{\infty}_{loc}(X)$ satisfying

$$\sum_{i=1}^n \sum_{j=1}^n a_i \overline{a}_j \ f(x_i * x_j^-) \ge 0$$

for each *n*, and for each choice of complex numbers a_i and points $x_i \in X$. For basic properties of positive-definite functions on hypergroups the reader is referred to [5, Section 11].

DEFINITION 1. We call $\alpha \in L^{\infty}_{loc}(X)$ with $\alpha \ge 0$ an *absolute value* on X if it satisfies

- (i) $\alpha(e) = 1;$
- (ii) $\alpha(x * y) \leq \alpha(x)\alpha(y);$
- (iii) $\alpha(x^-) = \alpha(x)$

for all $x, y \in X$.

It should be observed that every continuous absolute value α is positive on X. Indeed if $\alpha(x) = 0$ for some $x \in X$ then $\alpha(x * x^{-}) \leq \alpha(x)^{2} = 0$ shows that $\int_{X} \alpha d(\epsilon_{x} * \epsilon_{x^{-}}) = 0$, and hence $\alpha = 0$ on $\{x\} * \{x^{-}\}$. But this contradicts (i) as $e \in \{x\} * \{x^{-}\}$.

DEFINITION 2. We say that f on X is *bounded* with respect to an absolute value α , or simply α -bounded, if there is a constant K such that $|f(x)| \leq K\alpha(x)$ for all $x \in X$. If there exists an absolute value with respect to which f is bounded then f is called *exponentially bounded*.

PROPOSITION 3. Every α -bounded positive-definite function f satisfies $|f(x)| \le f(e)\alpha(x)$ for all $x \in X$.

PROOF. Write $K = \sup\{\alpha(x)^{-1} | f(x) | : x \in X, \alpha(x) \neq 0\}$. Using the positive-definiteness of f we have

$$|f(x)|^{2} \le f(x * x^{-})f(e) \le K\alpha(x * x^{-})f(e) \le K\alpha(x)^{2}f(e)$$

so that $|f(x)| \leq (Kf(e))^{1/2} \alpha(x)$ for all $x \in X$. By the choice of K it follows that $K \leq (Kf(e))^{1/2}$ and $K \leq f(e)$.

PROPOSITION 4. Let α be an absolute value on X. Then A defined by

$$A(s) := \int_X \alpha \, d \, |s|$$

is submultiplicative on $M_c(X)$.

PROOF. We have, using [5, Lemma 6.1C],

$$A(s * t) = \int_X \alpha \, d \, |s * t| \le \int_X \int_X \alpha(x * y) \, d \, |s|(x) \, d \, |t|(y)$$
$$\le \int_X \int_X \alpha(x) \alpha(y) \, d \, |s|(x) \, d \, |t|(y)$$
$$= A(s)A(t)$$

and this completes the proof.

Write
$$L^1_{\alpha}(X) = \{f \in L^1_{loc}(X) : \int_X |f| \alpha \, dm < \infty\}.$$

THEOREM 5. Suppose that $\alpha(x) \ge 1$ for all $x \in X$. With the norm

$$\|f\|_{1,\alpha} := \int_X |f| \, \alpha \, dm$$

 $L^{1}_{\alpha}(X)$ is a Banach subalgebra of $L^{1}(X)$.

PROOF. If $f, g \in L^{1}_{\alpha}(X)$ then appealing to [5, Lemma 5.1D]

$$\begin{split} \int_{X} |f * g| \alpha \, dm &\leq \int_{X} \int_{X} |f| \, (y) \, |g| \, (y^{-} * x) \, dm(y) \, \alpha(x) \, dm(x) \\ &= \int_{X} \int_{X} |g| \, (y^{-} * x) \alpha(x) \, dm(x) \, |f| \, (y) \, dm(y) \\ &= \int_{X} \int_{X} |g| \, (x) \alpha(y * x) \, dm(x) \, |f| \, (y) \, dm(y) \\ &\leq \int_{X} |f| \, (y) \alpha(y) \, dm(y) \int_{X} |g| \, (x) \alpha(x) \, dm(x) \\ &= \|f\|_{1,\alpha} \, \|g\|_{1,\alpha} \end{split}$$

so that $f * g \in L^1_{\alpha}(X)$ and $||f * g||_{1,\alpha} \leq ||f||_{1,\alpha} ||g||_{1,\alpha}$. Because $\alpha \geq 1$ we must have $L^1_{\alpha}(X) \subset L^1(X)$, and the rest of the proof is clear.

[4]

The assumption $\alpha \ge 1$ is essential to Theorem 5. Indeed (see Ross[8, Section 6]) if X is 2-fold absolutely continuous with trivial centre then $\alpha = 1_{\{e\}}$ is easily seen to define an absolute value on X. However

$$L^{1}_{\alpha}(X) = \{ f \in L^{1}_{loc}(X) : \int_{X} |f| \, 1_{\{e\}} \, dm < \infty \}$$
$$= \{ f \in L^{1}_{loc}(X) : |f| \, (e) \, m(\{e\}) < \infty \}$$
$$= L^{1}_{loc}(X)$$

which in general is not contained in $L^1(X)$, and for which $\|\cdot\|_{1,\alpha}$ does not define a norm when $m(\{e\}) = 0$. An example of such a hypergroup is given in [5, Example 9.5].

In view of the above we assume from now on that $\alpha \ge 1$. We follow the development in Reiter [6, 1.6.1] noting that $L^1_{\alpha}(X)$ has many of the properties of a Beurling algebra.

LEMMA 6. $C_c(X)$ is dense in $L^1_{\alpha}(X)$.

PROOF. The inclusion $C_c(X) \subset L^1_{\alpha}(X)$ is clear since $\alpha \in L^{\infty}_{loc}(X)$. To prove denseness consider $f \in L^1_{\alpha}(X), \epsilon > 0$ and $k_1 \in C_c(X)$ such that

$$\int_X |f\alpha-k_1| \ dm < \epsilon/2.$$

Let C be a compact set with $\operatorname{supp}(k_1) \subset \operatorname{int}(C)$. Choose a constant K such that $\alpha(x) \leq K$ for all $x \in C$, and then $k \in C_c(X)$ with $\operatorname{supp}(k) \subset C$ and

$$\int_X \left| k_1 \alpha^{-1} - k \right| \, dm < \epsilon/(2K).$$

Then

$$\int_X |f-k|\,\alpha\,dm < \epsilon$$

as required.

LEMMA 7. For all
$$x \in X$$
, $||f_x||_{1,\alpha} \le \alpha(x) ||f||_{1,\alpha}$.

PROOF.

$$\int_{X} |f_{x}|(y)\alpha(y) dm(y) \leq \int_{X} |f|(x * y)\alpha(y^{-}) dm(y)$$

$$= \int_{X} |f|(y)\alpha(y^{-} * x) dm(y)$$

$$\leq \alpha(x) \int_{X} |f|(y)\alpha(y) dm(y)$$

$$= \alpha(x) ||f||_{1,\alpha}.$$

LEMMA 8. Given $f \in L^1_{\alpha}(X)$ and $\epsilon > 0$ there exists a neighbourhood U of e such that $||f_x - f||_{1,\alpha} < \epsilon$ for all $x \in U$.

PROOF. Let V be a compact symmetric neighbourhood of e, and choose a constant K such that $\alpha(x) \leq K$ for all $x \in V$. Given $f \in L^1_{\alpha}(X)$ and $\epsilon > 0$, Lemma 6 gives the existence of $k \in C_c(X)$ such that $||f - k||_{1,\alpha} < \epsilon/(3K + 1)$.

Now by Bloom and Heyer [1, Corollary 2.7], k is uniformly continuous. Hence, writing $K_1 = \sup\{|\alpha(x)| : x \in V * \sup p(k)\}$ there is a neighbourhood $U \subset V$ of e such that $||k_x - k||_{\infty} < \epsilon/(3K_1m(V * \sup p(k)))$ for all $x \in U$. Then making use of [5, Lemma 3.2G], and splitting k into its non-negative parts $k_1 - k_2 + i(k_3 - k_4)$ we see that for $x \in U$

$$\operatorname{supp}(k_x) = \operatorname{supp}(\epsilon_{x^-} * k) \subset \operatorname{supp}(\epsilon_{x^-}) * \operatorname{supp}(k) \subset V * \operatorname{supp}(k)$$

and

$$\|k_x - k\|_{1,\alpha} = \int_X |k(x * y) - k(y)| \alpha(y) dm(y)$$

$$\leq (\epsilon/(3K_1m(V * \operatorname{supp}(k)))) \int_X 1_{V * \operatorname{supp}(k)} \alpha dm$$

$$\leq \epsilon/3.$$

We now have for $x \in U$

$$\|f_x - f\|_{1,\alpha} \le \|f_x - k_x\|_{1,\alpha} + \|k_x - k\|_{1,\alpha} + \|k - f\|_{1,\alpha}$$

$$\le \alpha(x)\epsilon/(3K+1) + \epsilon/3 + \epsilon/(3K+1)$$

$$< \epsilon$$

and this completes the proof.

We now show that the algebra $L^1_{\alpha}(X)$ admits a bounded approximate unit. For the remainder of the paper we assume X to be commutative.

PROPOSITION 9. Let (V_i) be a base of relatively compact open neighbourhoods of e, and write $k_i = m(V_i)^{-1} \mathbb{1}_{V_i}$. Then $k_i m \to \epsilon_e$, and for each $f \in L^1_{\alpha}(X)$, $k_i * f \to f$ in $L^1_{\alpha}(X)$.

PROOF. Consider

$$\int_{X} |k_{\iota} * f - f| \alpha \, dm$$

$$= \int_{X} \left| \int_{X} m(V_{\iota})^{-1} \mathbf{1}_{V_{\iota}}(y) f(x * y^{-}) \, dm(y) - \int_{X} m(V_{\iota})^{-1} \mathbf{1}_{V_{\iota}}(y) f(x) \, dm(y) \right| \alpha(x) \, dm(x)$$

$$\leq \int_{X} \int_{X} \left| f(x * y^{-}) - f(x) \right| \alpha(x) \, dm(x) m(V_{\iota})^{-1} \mathbf{1}_{V_{\iota}}(y) \, dm(y)$$

By Lemma 8, given $\epsilon > 0$ there exists ι_0 such that $\|(f^-)_y - f^-\|_{1,\alpha} < \epsilon$ for all $y \in V_{\iota_0}$. Thus for $\iota \ge \iota_0$

$$\int_{X} |k_{i} * f - f| \alpha \, dm$$

$$\leq \int_{X} \int_{X} \left| f(x^{-} * y^{-}) - f(x^{-}) \right| \alpha(x) \, dm(x) m(V_{i})^{-1} \mathbb{1}_{V_{i}}(y) \, dm(y)$$

$$\leq \epsilon$$

and this gives the result.

DEFINITION 10. A linear functional η on $L^1_{\alpha}(X)$ is referred to as *multiplicative* and *hermitian* if it is non-trivial, $\eta(f * g) = \eta(f)\eta(g)$ and $\eta(f^-) = \overline{\eta(f)}$ for all $f, g \in L^1_{\alpha}(X)$.

A semicharacter χ is a locally bounded measurable function satisfying $\chi(e) = 1$, $\chi(x * y) = \chi(x)\chi(y)$ and $\chi(x^-) = \chi(x)$ for all $x, y \in X$. Observe that every positive semicharacter is automatically an absolute value. It is clear from Proposition 3 that every α -bounded semicharacter χ satisfies $|\chi| \leq \alpha$. We denote by \widehat{X}^{α} the set of α -bounded continuous semicharacters on X. It is easy to see that the Fourier transform $\widehat{f}(\chi)$ is defined for every $\chi \in \widehat{X}^{\alpha}$, and that $f \to \widehat{f}(\chi)$ is multiplicative and hermitian on $L^1_{\alpha}(X)$.

THEOREM 11. Every multiplicative hermitian linear functional on $L^1_{\alpha}(X)$ is of the form $f \to \widehat{f}(\chi)$ for some $\chi \in \widehat{X}^{\alpha}$.

PROOF. Let η be a multiplicative hermitian linear functional on $L^1_{\alpha}(X)$. Since $L^1_{\alpha}(X)$ is a commutative Banach algebra, Hewitt and Ross [3, Theorem C.21] gives that η is bounded with norm not exceeding 1.

Consider $k_i = m(V_i)^{-1} \mathbb{1}_{V_i}$. Since α is assumed to be locally bounded we have that $k_i \in L^1_{\alpha}(X)$. Choose $g \in L^1_{\alpha}(X)$ satisfying $\eta(g) \neq 0$ and consider

(1)
$$(k_i)_x * g = \epsilon_{x^-} * k_i * g = k_i * (\epsilon_{x^-} * g) \rightarrow \epsilon_{x^-} * g,$$

the limit holding because of Proposition 9. Also we know from Lemma 7 that $\epsilon_{x^-} * g = g_x \in L^1_{\alpha}(X)$.

Define $\chi(x) := \eta(\epsilon_{x^-} * g)\eta(g)^{-1}$. From (1) and the continuity of η we have

(2)
$$\eta(\epsilon_{x^-} * g) = \lim \eta((k_\iota)_x * g) = \lim \eta((k_\iota)_x) \eta(g)$$

so that $\chi(x) = \lim_{k \to 0} \eta((k_{k})_{x})$. Therefore χ is independent of the choice of $g \in L^{1}_{\alpha}(X)$ (with $\eta(g) \neq 0$). Again using the continuity of η we have for any $h \in L^{1}_{\alpha}(X)$,

$$\eta(\epsilon_{x^-} * h) = \lim_{\iota} \eta((k_{\iota})_x * h) = \lim_{\iota} \eta((k_{\iota})_x)\eta(h) = \chi(x)\eta(h),$$

and putting $h = \epsilon_{y^-} * g$ gives the third equality in the following:

$$\chi(x * y)\eta(g) = \int_X \eta(\epsilon_{z^-} * g) d(\epsilon_x * \epsilon_y)(z)$$

= $\eta(\epsilon_{x^-} * \epsilon_{y^-} * g) = \chi(x)\eta(\epsilon_{y^-} * g)$
= $\chi(x)\chi(y)\eta(g).$

Thus $\chi(x * y) = \chi(x)\chi(y)$. We also have

$$\chi(x^{-}) = \eta(\epsilon_x * g)\eta(g)^{-1} = \eta((\epsilon_{x^{-}} * g^{-})^{-})\eta((g^{-})^{-})^{-1}$$

= $\overline{\eta(\epsilon_{x^{-}} * g^{-})\eta(g^{-})^{-1}}$
= $\overline{\chi(x)}.$

Furthermore, using Lemma 7,

$$|\chi(x)| = |\eta(\epsilon_x * g)| |\eta(g)|^{-1} \le ||\epsilon_x * g||_{1,\alpha} |\eta(g)|^{-1} \le \alpha(x) ||g||_{1,\alpha} |\eta(g)|^{-1},$$

which shows that χ is α -bounded. That χ is continuous at *e* follows immediately from Lemma 8, and hence χ is continuous everywhere appealing to Bloom and Ressel [2, Corollary 1.11]. This all shows that χ is a continuous α -bounded character.

Finally, choosing $g \in L^1_{\alpha}(X)$ with $\eta(g) \neq 0$, we observe that for $f \in L^1_{\alpha}(X)$,

$$\eta(f) = \eta(f * g)\eta(g)^{-1} = \int_X \eta(\epsilon_x * g)\eta(g)^{-1}f(x)\,dm(x)$$
$$= \int_X \chi(x^-)f(x)\,dm(x)$$
$$= \widehat{f}(\chi),$$

as required.

We use Theorem 11 to show that every α -bounded continuous positive-definite function ϕ on X has a Bochner representation

$$\phi(x) = \int_{\widehat{X}^{\alpha}} \chi(x) \, d\mu(\chi)$$

where $\mu \in M^+(\widehat{X}^{\alpha})$. This should be compared with the special case given in Voit [10, Corollary 2.10] where α is taken to be a positive semicharacter on X.

A hermitian, multiplicative, linear functional ρ on any subalgebra S of $L^1_{\alpha}(X)$ is called *A*-bounded if there is a positive constant K such that $|\rho(f)| \leq KA(f)$ for all $f \in S$, where $A(f) := ||f||_{1,d}$ coincides with the definition given in Proposition 4 provided f has compact support.

In the following, let H denote the set of all non-trivial hermitian, A-bounded, multiplicative, linear functionals on $L^1_{\alpha}(X)$. We provide H with the topology of pointwise convergence, and \widehat{X}^{α} with the topology of uniform convergence on compact subsets of X.

THEOREM 12. Suppose that the hypergroup X is second countable. Then the canonical mapping $F : \widehat{X}^{\alpha} \to H$ associating with each $\chi \in \widehat{X}^{\alpha}$ the functional $f \to \widehat{f}(\chi)$ is a continuous Borel isomorphism.

PROOF. The remark immediately following Definition 10 shows that F is well-defined, and from Theorem 11 we know that F is onto. If $F(\chi) = F(\gamma)$ then $\widehat{f}(\chi) = \widehat{f}(\gamma)$ for all $f \in C_c(X)$, from which it follows using the continuity of χ, γ that $\chi = \gamma$. So we are left with proving that F is continuous, and that its inverse is Borel measurable.

Let $(\chi_{\iota}) \subset \widehat{X}^{\alpha}$ be a net converging to χ . For $f \in L^{1}_{\alpha}(X)$ and $\epsilon > 0$ there is a compact set $K \subset X$ such that $\int_{K^{c}} |f| \alpha \, dm < \epsilon/4$, and then for ι sufficiently large $\max\{|\chi_{\iota}(x) - \chi(x)| : x \in K\} < \epsilon/(2 ||f||_{1,\alpha} + 1)$. This implies that

$$|F(\chi_{\iota})(f) - F(\chi)(f)| = \left| \int_{X} \overline{(\chi_{\iota} - \chi)} f \, dm \right|$$

$$\leq 2 \int_{K^{\iota}} |f| \, \alpha \, dm + \int_{K} |\chi_{\iota} - \chi| \, |f| \, dm$$

$$< \epsilon$$

which gives the continuity and hence measurability of F.

The space C(X) of all continuous complex-valued functions is, with regard to uniform convergence on compact subsets, a Polish space, hence so is \widehat{X}^{α} as a closed subspace of C(X). As a continuous one-to-one image of \widehat{X}^{α} the space H turns out to be a so-called standard or Lusin space, and a deep result from topology (Hoffmann-Jørgensen [4, Ch. III, §7, Theorem 2]) tells us that F^{-1} is measurable, that is, F is a Borel isomorphism. LEMMA 13. Let ρ : $L^1_{\alpha,c}(X) \to C$ be a hermitian, A-bounded, multiplicative linear functional. Then ρ extends uniquely to a functional $\tilde{\rho}$ with the same properties on $L^1_{\alpha}(X)$. The mapping $\rho \to \tilde{\rho}$ is a homeomorphism with respect to pointwise convergence.

PROOF. For $f \in L^1_{\alpha}(X)$ and $D \subset X$ we put $f_D := f \mathbb{1}_D$. Given $\epsilon > 0$ there is a compact set $C \subset X$ such that $\int_{C^c} |f| \alpha \, dm < \epsilon$. If $D, E \subset X$ are compact sets containing C then $D \bigtriangleup E \subset C^c$, and it follows that

$$|\rho(f_D) - \rho(f_E)| = |\rho(f(1_D - 1_E))| \le K \int_X |f| \, 1_{D \triangle E} \alpha \, dm < K \epsilon.$$

Therefore $\tilde{\rho}(f) := \lim_{D} \rho(f_D)$ exists in *C*, and $\tilde{\rho}$ is easily seen to be linear, multiplicative, hermitian and *A*-bounded.

The last statement will be clear once we prove that pointwise convergence $\rho_i \to \rho$ on $L^1_{\alpha,c}(X)$ implies pointwise convergence $\tilde{\rho}_i \to \tilde{\rho}$ on $L^1_{\alpha}(X)$. Let $f \in L^1_{\alpha}(X)$ and $\epsilon > 0$ be given. There is a compact set $D \subset X$ such that $\int_{D^c} |f| \alpha \, dm < \epsilon/4$ and, for ι large enough, $|\rho_\iota(f_D) - \rho(f_D)| < \epsilon/2$. Appealing to Theorem 11 we have the existence of $\chi_\iota, \chi \in \hat{X}^{\alpha}$ such that

$$\widetilde{\rho}_{\iota}(f) - \widetilde{\rho}(f) = \int_{X} f(\overline{\chi}_{\iota} - \overline{\chi}) dm$$
$$= \int_{D} f(\overline{\chi}_{\iota} - \overline{\chi}) dm + \int_{D^{c}} f(\overline{\chi}_{\iota} - \overline{\chi}) dm$$
$$= \rho_{\iota}(f_{D}) - \rho(f_{D}) + \int_{D^{c}} f(\overline{\chi}_{\iota} - \overline{\chi}) dm$$

and for such ι chosen as above $|\widetilde{\rho}_{\iota}(f) - \widetilde{\rho}(f)| < \epsilon$.

THEOREM 14. Let X be second countable and let $\phi : X \to C$ be a continuous α -bounded, positive-definite function. Then there is a unique measure $\mu \in M^b_+(\widehat{X}^\alpha)$ such that

$$\phi(x) = \int_{\widehat{X}^{\alpha}} \chi(x) d\mu(\chi), \qquad x \in X$$

PROOF. Let $S := M_c(X)$ and extend ϕ to $\Phi : S \to C$ by the natural definition $\Phi(s) := \int_X \phi \, ds$. If $s \in S$ has finite support, say $s = \sum_{i=1}^n a_i \epsilon_{x_i}$, then

$$\Phi(s * s^{\sim}) = \int_X \int_X \phi(x * y^{\sim}) ds(x) ds^{\sim}(y)$$

= $\sum_{j,k=1}^n a_j \overline{a}_k \phi(x_j * x_k^{\sim}) \ge 0.$

Positive-definite functions

Any $s \in S$ may be approximated (setwise on the Borel field) by a net (s_t) of measures with finite support contained in supp(s). The restriction $\phi \mid_{\text{supp}(s)}$ being bounded and continuous, the above inequality valid for each s_t extends to s. But then Φ is a positive-definite function on S since

$$\sum_{j,k} c_j \overline{c}_k \Phi(s_j * s_k^{\sim}) = \Phi(s * s^{\sim})$$

with $s := \sum_{j} c_{j}s_{j}$. Because $|\Phi(s)| \le \phi(e) \int_{X} \alpha d |s| = \phi(e)A(s)$, the function Φ is A-bounded, and hence so is its restriction $\Phi' := \Phi |_{L^{1}_{\alpha,c}(X)}$; Theorem 5 in Ressel [7] (in connection with Remark 5 to Theorem 4 in the same reference) gives the representation

$$\Phi'(f * g * h) = \int \rho(f * g * h) \, d\nu(\rho), \qquad f, g, h \in L^1_{\alpha,c}(X)$$

 ν being a bounded non-negative Radon measure on the set of all hermitian, A-bounded, multiplicative, linear functionals on $L^1_{\alpha,c}(X)$. By Lemma 13 these may be uniquely extended to such functionals on $L^1_{\alpha}(X)$, that is, to elements of H, and hence ν may be considered as a Radon measure on H. Let μ' denote the image of ν under F^{-1} , and μ its conjugate (the image of μ' under $\chi \to \overline{\chi}$). Then (recall Theorem 12)

$$\Phi'(f * g * h) = \int_{H} \rho(f * g * h) d\nu(\rho)$$

= $\int_{\widehat{X}^{\alpha}} \int_{X} (f * g * h)(x)\chi(x) dm(x) d\mu(\chi)$
= $\int_{X} \left[\int_{\widehat{X}^{\alpha}} \chi(x) d\mu(\chi) \right] (f * g * h)(x) dm(x)$

for all $f, g, h \in L^1_{\alpha,c}(X)$. Fubini's theorem could be used here, since the function $(\chi, x) \to \chi(x)$ on $\widehat{X}^{\alpha} \times X$ is (easily seen to be) continuous. Writing $\phi_0(x) := \int_{\widehat{X}^{\alpha}} \chi(x) d\mu(\chi)$ we thus have

$$\int_X \phi_0(f * g * h) \, dm = \int_X \phi(f * g * h) \, dm$$

for all $f, g, h \in L^1_{\alpha,c}(X)$. Standard arguments using a bounded approximate unit in $L^1_{\alpha,c}(X)$ show that $\phi_0(x) = \phi(x)$ for all $x \in X$, and this proves the theorem.

References

 W. R. Bloom and H. Heyer, 'Characterisation of potential kernels of transient convolution semigroups on a commutative hypergroup', *Probability measures on groups, IX (Proc. Conf., Oberwolfach, 1988)*, Lecture Notes in Math. 1379 (Springer, Berlin, 1989), pp. 21–35.

- [2] W. R. Bloom and P. Ressel, 'Positive definite and related functions on hypergroups', Canad. J. Math. 43 (1991), 242–254.
- [3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol 1. Structure of topological groups. Integration theory, group representations, Die Gundlehren der mathematischen Wissenschaften 115 (Springer, Berlin, 1963).
- [4] J. Hoffmann-Jørgensen, *The theory of analytic spaces*, Var. Publ. Series 10 (Matematisk Institut, Århus Universitet, 1970).
- [5] R. I. Jewett, 'Spaces with an abstract convolution of measures', Adv. Math. 18 (1975), 1-101.
- [6] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1968).
- [7] P. Ressel, 'Integral representations on convex semigroups', Math. Scand. 61 (1987), 93-111.
- [8] K. A. Ross, 'Centers of hypergroups', Trans. Amer. Math. Soc. 243 (1978), 251-269.
- [9] R. Spector, 'Mesures invariantes sur les hypergroupes', Trans. Amer. Math. Soc. 239 (1978), 147–165.
- [10] M. Voit, 'Positive characters on commutative hypergroups and some applications', Math. Z. 198 (1988), 405–421.

School of Physical Sciences, Engineering and Technology Murdoch University Perth WA 6150 Australia Mathematisch-Geographische Fakultät Katholische Universität Eichstätt D-85071 Eichstätt Federal Republic of Germany