EXPONENTIALLY BOUNDED POSITIVE-DEFINITE FUNCTIONS ON A COMMUTATIVE HYPERGROUP

WALTER R. BLOOM and PAUL RESSEL

(Received 9 May 1994; revised 20 December 1994)

Communicated by A. H. Dooley

Abstract

In this paper we make use of semigroup methods on the space of compactly supported measures to obtain a Bochner representation for α-bounded positive-definite functions on a commutative hypergroup.

1991 Mathematics subject classification (Amer. Math. Soc.): primary 43A62; secondary 60B05, 43A10, 43A35.

The analysis throughout will be carried out on a (locally compact) hypergroup X admitting a left Haar measure m. (For a definition and properties refer to Jewett [5] whose notation we follow.) This includes those hypergroups that are compact ([5, Theorem 7.2A]), discrete ([5, Theorem 7.1A]) or commutative (Spector [9, Theorem III.4]). We reserve the symbols $M^{1}(X), M_{c}^{1}(X)$ and $M_{c}(X)$ for the spaces of probability measures, those that have compact support, and the space of measures that have compact support respectively. $L_{l o c}^{\infty}(X)$ is just the space of measurable functions that are bounded on every compact subset of X. There is an analogous definition for the space $L_{\text {loc }}^{1}(X)$. We denote the point measure at $x \in X$ by ϵ_{x}, and the indicator function of a set A by 1_{A}. The involution on X extends to $M^{b}(X)$ via $\mu^{\sim}(B)=\overline{\mu\left(B^{-}\right)}$ for all Borel sets $B \subseteq X$.

For each $x, y \in X$ write

$$
f(x * y):=\int_{X} f d\left(\epsilon_{x} * \epsilon_{y}\right), \quad \mu * f(x):=\int_{X} f\left(z^{-} * x\right) d \mu(z)
$$

[^0]and
$$
f * g(x):=\int_{X} f(x * y) g\left(y^{-}\right) d m(y)=\int_{X} f(y) g\left(y^{-} * x\right) d m(y) .
$$

Here f, g are measurable functions on X and $\mu \in M^{b}(X)$, and the latter equality holds whenever one of f, g is σ-finite (see [5, Theorem 5.1D]). The left x-translate of f is written $f_{x}(y)=f(x * y)$.

The main objects of interest in this paper are positive-definite functions, that is functions $f \in L_{l o c}^{\infty}(X)$ satisfying

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i} \bar{a}_{j} f\left(x_{i} * x_{j}^{-}\right) \geq 0
$$

for each n, and for each choice of complex numbers a_{i} and points $x_{i} \in X$. For basic properties of positive-definite functions on hypergroups the reader is referred to [5, Section 11].

DEFINITION 1. We call $\alpha \in L_{l o c}^{\infty}(X)$ with $\alpha \geq 0$ an absolute value on X if it satisfies
(i) $\alpha(e)=1$;
(ii) $\alpha(x * y) \leq \alpha(x) \alpha(y)$;
(iii) $\alpha\left(x^{-}\right)=\alpha(x)$
for all $x, y \in X$.
It should be observed that every continuous absolute value α is positive on X. Indeed if $\alpha(x)=0$ for some $x \in X$ then $\alpha\left(x * x^{-}\right) \leq \alpha(x)^{2}=0$ shows that $\int_{X} \alpha d\left(\epsilon_{x} * \epsilon_{x^{-}}\right)=0$, and hence $\alpha=0$ on $\{x\} *\left\{x^{-}\right\}$. But this contradicts (i) as $e \in\{x\} *\left\{x^{-}\right\}$.

DEFINITION 2. We say that f on X is bounded with respect to an absolute value α, or simply α-bounded, if there is a constant K such that $|f(x)| \leq K \alpha(x)$ for all $x \in X$. If there exists an absolute value with respect to which f is bounded then f is called exponentially bounded.

Proposition 3. Every α-bounded positive-definite function f satisfies $|f(x)| \leq$ $f(e) \alpha(x)$ for all $x \in X$.

Proof. Write $K=\sup \left\{\alpha(x)^{-1}|f(x)|: x \in X, \alpha(x) \neq 0\right\}$. Using the positivedefiniteness of f we have

$$
|f(x)|^{2} \leq f\left(x * x^{-}\right) f(e) \leq K \alpha\left(x * x^{-}\right) f(e) \leq K \alpha(x)^{2} f(e)
$$

so that $|f(x)| \leq(K f(e))^{1 / 2} \alpha(x)$ for all $x \in X$. By the choice of K it follows that $K \leq(K f(e))^{1 / 2}$ and $K \leq f(e)$.

Proposition 4. Let α be an absolute value on X. Then A defined by

$$
A(s):=\int_{X} \alpha d|s|
$$

is submultiplicative on $M_{c}(X)$.
Proof. We have, using [5, Lemma 6.1C],

$$
\begin{aligned}
A(s * t)=\int_{X} \alpha d|s * t| & \leq \int_{X} \int_{X} \alpha(x * y) d|s|(x) d|t|(y) \\
& \leq \int_{X} \int_{X} \alpha(x) \alpha(y) d|s|(x) d|t|(y) \\
& =A(s) A(t)
\end{aligned}
$$

and this completes the proof.

Write $L_{\alpha}^{1}(X)=\left\{f \in L_{l o c}^{1}(X): \int_{X}|f| \alpha d m<\infty\right\}$.

THEOREM 5. Suppose that $\alpha(x) \geq 1$ for all $x \in X$. With the norm

$$
\|f\|_{1, \alpha}:=\int_{X}|f| \alpha d m
$$

$L_{\alpha}^{1}(X)$ is a Banach subalgebra of $L^{1}(X)$.
PROOF. If $f, g \in L_{\alpha}^{1}(X)$ then appealing to [5, Lemma 5.1D]

$$
\begin{aligned}
\int_{X}|f * g| \alpha d m & \leq \int_{X} \int_{X}|f|(y)|g|\left(y^{-} * x\right) d m(y) \alpha(x) d m(x) \\
& =\int_{X} \int_{X}|g|\left(y^{-} * x\right) \alpha(x) d m(x)|f|(y) d m(y) \\
& =\int_{X} \int_{X}|g|(x) \alpha(y * x) d m(x)|f|(y) d m(y) \\
& \leq \int_{X}|f|(y) \alpha(y) d m(y) \int_{X}|g|(x) \alpha(x) d m(x) \\
& =\|f\|_{1, \alpha}\|g\|_{1, \alpha}
\end{aligned}
$$

so that $f * g \in L_{\alpha}^{1}(X)$ and $\|f * g\|_{1, \alpha} \leq\|f\|_{1, \alpha}\|g\|_{1, \alpha}$. Because $\alpha \geq 1$ we must have $L_{\alpha}^{1}(X) \subset L^{1}(X)$, and the rest of the proof is clear.

The assumption $\alpha \geq 1$ is essential to Theorem 5. Indeed (see Ross[8, Section 6]) if X is 2-fold absolutely continuous with trivial centre then $\alpha=1_{\{e\}}$ is easily seen to define an absolute value on X. However

$$
\begin{aligned}
L_{\alpha}^{1}(X) & =\left\{f \in L_{l o c}^{1}(X): \int_{X}|f| 1_{\{e\}} d m<\infty\right\} \\
& =\left\{f \in L_{l o c}^{1}(X):|f|(e) m(\{e\})<\infty\right\} \\
& =L_{l o c}^{1}(X)
\end{aligned}
$$

which in general is not contained in $L^{1}(X)$, and for which $\|\cdot\|_{1, \alpha}$ does not define a norm when $m(\{e\})=0$. An example of such a hypergroup is given in [5, Example 9.5].

In view of the above we assume from now on that $\alpha \geq 1$. We follow the development in Reiter [6, 1.6.1] noting that $L_{\alpha}^{1}(X)$ has many of the properties of a Beurling algebra.

Lemma 6. $C_{c}(X)$ is dense in $L_{\alpha}^{1}(X)$.
Proof. The inclusion $C_{c}(X) \subset L_{\alpha}^{1}(X)$ is clear since $\alpha \in L_{l o c}^{\infty}(X)$. To prove denseness consider $f \in L_{\alpha}^{1}(X), \epsilon>0$ and $k_{1} \in C_{c}(X)$ such that

$$
\int_{X}\left|f \alpha-k_{1}\right| d m<\epsilon / 2
$$

Let C be a compact set with $\operatorname{supp}\left(k_{1}\right) \subset \operatorname{int}(C)$. Choose a constant K such that $\alpha(x) \leq K$ for all $x \in C$, and then $k \in C_{c}(X)$ with $\operatorname{supp}(k) \subset C$ and

$$
\int_{X}\left|k_{1} \alpha^{-1}-k\right| d m<\epsilon /(2 K)
$$

Then

$$
\int_{X}|f-k| \alpha d m<\epsilon
$$

as required.

Lemma 7. For all $x \in X,\left\|f_{x}\right\|_{1, \alpha} \leq \alpha(x)\|f\|_{1, \alpha}$.
PROOF.

$$
\int_{X}\left|f_{x}\right|(y) \alpha(y) d m(y) \leq \int_{X}|f|(x * y) \alpha\left(y^{-}\right) d m(y)
$$

$$
\begin{aligned}
& =\int_{X}|f|(y) \alpha\left(y^{-} * x\right) d m(y) \\
& \leq \alpha(x) \int_{X}|f|(y) \alpha(y) d m(y) \\
& =\alpha(x)\|f\|_{1, \alpha}
\end{aligned}
$$

LEMMA 8. Given $f \in L_{\alpha}^{1}(X)$ and $\epsilon>0$ there exists a neighbourhood U of e such that $\left\|f_{x}-f\right\|_{i, \alpha}<\epsilon$ for all $x \in U$.

Proof. Let V be a compact symmetric neighbourhood of e, and choose a constant K such that $\alpha(x) \leq K$ for all $x \in V$. Given $f \in L_{\alpha}^{1}(X)$ and $\epsilon>0$, Lemma 6 gives the existence of $k \in C_{c}(X)$ such that $\|f-k\|_{1, \alpha}<\epsilon /(3 K+1)$.

Now by Bloom and Heyer [1, Corollary 2.7], k is uniformly continuous. Hence, writing $K_{1}=\sup \{|\alpha(x)|: x \in V * \operatorname{supp}(k)\}$ there is a neighbourhood $U \subset V$ of e such that $\left\|k_{x}-k\right\|_{\infty}<\epsilon /\left(3 K_{1} m(V * \operatorname{supp}(k))\right)$ for all $x \in U$. Then making use of [5, Lemma 3.2G], and splitting k into its non-negative parts $k_{1}-k_{2}+i\left(k_{3}-k_{4}\right)$ we see that for $x \in U$

$$
\operatorname{supp}\left(k_{x}\right)=\operatorname{supp}\left(\epsilon_{x^{-}} * k\right) \subset \operatorname{supp}\left(\epsilon_{x^{-}}\right) * \operatorname{supp}(k) \subset V * \operatorname{supp}(k)
$$

and

$$
\begin{aligned}
\left\|k_{x}-k\right\|_{1, \alpha} & =\int_{X}|k(x * y)-k(y)| \alpha(y) d m(y) \\
& \leq\left(\epsilon /\left(3 K_{1} m(V * \operatorname{supp}(k))\right) \int_{X} 1_{V * \operatorname{supp}(k)} \alpha d m\right. \\
& \leq \epsilon / 3
\end{aligned}
$$

We now have for $x \in U$

$$
\begin{aligned}
\left\|f_{x}-f\right\|_{1, \alpha} & \leq\left\|f_{x}-k_{x}\right\|_{1, \alpha}+\left\|k_{x}-k\right\|_{1, \alpha}+\|k-f\|_{1, \alpha} \\
& \leq \alpha(x) \epsilon /(3 K+1)+\epsilon / 3+\epsilon /(3 K+1) \\
& <\epsilon
\end{aligned}
$$

and this completes the proof.
We now show that the algebra $L_{\alpha}^{1}(X)$ admits a bounded approximate unit. For the remainder of the paper we assume X to be commutative.

PROPOSITION 9. Let $\left(V_{t}\right)$ be a base of relatively compact open neighbourhoods of e, and write $k_{t}=m\left(V_{l}\right)^{-1} 1_{V_{t}}$. Then $k_{t} m \rightarrow \epsilon_{e}$, and for each $f \in L_{\alpha}^{1}(X), k_{t} * f \rightarrow f$ in $L_{\alpha}^{1}(X)$.

Proof. Consider

$$
\begin{aligned}
& \int_{X}\left|k_{l} * f-f\right| \alpha d m \\
& = \\
& \quad \int_{X} \mid \int_{X} m\left(V_{l}\right)^{-1} 1_{V_{t}}(y) f\left(x * y^{-}\right) d m(y) \\
& \quad \quad-\int_{X} m\left(V_{l}\right)^{-1} 1_{V_{l}}(y) f(x) d m(y) \mid \alpha(x) d m(x) \\
& \leq
\end{aligned} \quad \int_{X} \int_{X}\left|f\left(x * y^{-}\right)-f(x)\right| \alpha(x) d m(x) m\left(V_{l}\right)^{-1} 1_{V_{l}}(y) d m(y) .
$$

By Lemma 8, given $\epsilon>0$ there exists ι_{0} such that $\left\|\left(f^{-}\right)_{y}-f^{-}\right\|_{1, \alpha}<\epsilon$ for all $y \in V_{t_{0}}$. Thus for $\iota \geq \iota_{0}$

$$
\begin{aligned}
\int_{X} \mid k_{\iota} & * f-f \mid \alpha d m \\
& \leq \int_{X} \int_{X}\left|f\left(x^{-} * y^{-}\right)-f\left(x^{-}\right)\right| \alpha(x) d m(x) m\left(V_{\iota}\right)^{-1} 1_{V_{\iota}}(y) d m(y) \\
& \leq \epsilon
\end{aligned}
$$

and this gives the result.

DEFINITION 10. A linear functional η on $L_{\alpha}^{1}(X)$ is referred to as multiplicative and hermitian if it is non-trivial, $\eta(f * g)=\eta(f) \eta(g)$ and $\eta\left(f^{-}\right)=\overline{\eta(f)}$ for all $f, g \in L_{\alpha}^{1}(X)$.

A semicharacter χ is a locally bounded measurable function satisfying $\chi(e)=1$, $\chi(x * y)=\chi(x) \chi(y)$ and $\chi\left(x^{-}\right)=\overline{\chi(x)}$ for all $x, y \in X$. Observe that every positive semicharacter is automatically an absolute value. It is clear from Proposition 3 that every α-bounded semicharacter χ satisfies $|\chi| \leq \alpha$. We denote by \widehat{X}^{α} the set of α-bounded continuous semicharacters on X. It is easy to see that the Fourier transform $\widehat{f}(\chi)$ is defined for every $\chi \in \widehat{X}^{\alpha}$, and that $f \rightarrow \widehat{f}(\chi)$ is multiplicative and hermitian on $L_{\alpha}^{1}(X)$.

THEOREM 11. Every multiplicative hermitian linear functional on $L_{\alpha}^{1}(X)$ is of the form $f \rightarrow \widehat{f}(\chi)$ for some $\chi \in \widehat{X}^{\alpha}$.

Proof. Let η be a multiplicative hermitian linear functional on $L_{\alpha}^{1}(X)$. Since $L_{\alpha}^{1}(X)$ is a commutative Banach algebra, Hewitt and Ross [3, Theorem C.21] gives that η is bounded with norm not exceeding 1 .

Consider $k_{t}=m\left(V_{t}\right)^{-1} 1_{V_{1}}$. Since α is assumed to be locally bounded we have that $k_{t} \in L_{\alpha}^{1}(X)$. Choose $g \in L_{\alpha}^{1}(X)$ satisfying $\eta(g) \neq 0$ and consider

$$
\begin{equation*}
\left(k_{t}\right)_{x} * g=\epsilon_{x^{-}} * k_{t} * g=k_{t} *\left(\epsilon_{x^{-}} * g\right) \rightarrow \epsilon_{x^{-}} * g \tag{1}
\end{equation*}
$$

the limit holding because of Proposition 9. Also we know from Lemma 7 that $\epsilon_{x^{-}} * g=g_{x} \in L_{\alpha}^{1}(X)$.

Define $\chi(x):=\eta\left(\epsilon_{x^{-}} * g\right) \eta(g)^{-1}$. From (1) and the continuity of η we have

$$
\begin{equation*}
\eta\left(\epsilon_{x^{-}} * g\right)=\lim _{t} \eta\left(\left(k_{t}\right)_{x} * g\right)=\lim _{t} \eta\left(\left(k_{t}\right)_{x}\right) \eta(g) \tag{2}
\end{equation*}
$$

so that $\chi(x)=\lim _{t} \eta\left(\left(k_{t}\right)_{x}\right)$. Therefore χ is independent of the choice of $g \in L_{\alpha}^{1}(X)$ (with $\eta(g) \neq 0$). Again using the continuity of η we have for any $h \in L_{\alpha}^{1}(X)$,

$$
\eta\left(\epsilon_{x^{-}} * h\right)=\lim _{t} \eta\left(\left(k_{t}\right)_{x} * h\right)=\lim _{t} \eta\left(\left(k_{t}\right)_{x}\right) \eta(h)=\chi(x) \eta(h)
$$

and putting $h=\epsilon_{y^{-}} * g$ gives the third equality in the following:

$$
\begin{aligned}
\chi(x * y) \eta(g) & =\int_{X} \eta\left(\epsilon_{z^{-}} * g\right) d\left(\epsilon_{x} * \epsilon_{y}\right)(z) \\
& =\eta\left(\epsilon_{x^{-}} * \epsilon_{y^{-}} * g\right)=\chi(x) \eta\left(\epsilon_{y^{-}} * g\right) \\
& =\chi(x) \chi(y) \eta(g)
\end{aligned}
$$

Thus $\chi(x * y)=\chi(x) \chi(y)$. We also have

$$
\begin{aligned}
\chi\left(x^{-}\right)=\eta\left(\epsilon_{x} * g\right) \eta(g)^{-1} & =\eta\left(\left(\epsilon_{x^{-}} * g^{-}\right)^{-}\right) \eta\left(\left(g^{-}\right)^{-}\right)^{-1} \\
& =\overline{\eta\left(\epsilon_{x^{-}} * g^{-}\right) \eta\left(g^{-}\right)^{-1}} \\
& =\overline{\chi(x)}
\end{aligned}
$$

Furthermore, using Lemma 7,

$$
|\chi(x)|=\left|\eta\left(\epsilon_{x} * g\right)\right||\eta(g)|^{-1} \leq\left\|\epsilon_{x} * g\right\|_{1, \alpha}|\eta(g)|^{-1} \leq \alpha(x)\|g\|_{1, \alpha}|\eta(g)|^{-1}
$$

which shows that χ is α-bounded. That χ is continuous at e follows immediately from Lemma 8, and hence χ is continuous everywhere appealing to Bloom and Ressel [2, Corollary 1.11]. This all shows that χ is a continuous α-bounded character.

Finally, choosing $g \in L_{\alpha}^{1}(X)$ with $\eta(g) \neq 0$, we observe that for $f \in L_{\alpha}^{1}(X)$,

$$
\begin{aligned}
\eta(f)=\eta(f * g) \eta(g)^{-1} & =\int_{X} \eta\left(\epsilon_{x} * g\right) \eta(g)^{-1} f(x) d m(x) \\
& =\int_{X} \chi\left(x^{-}\right) f(x) d m(x) \\
& =\widehat{f}(\chi)
\end{aligned}
$$

as required.

We use Theorem 11 to show that every α-bounded continuous positive-definite function ϕ on X has a Bochner representation

$$
\phi(x)=\int_{\hat{X}^{a}} \chi(x) d \mu(\chi)
$$

where $\mu \in M^{+}\left(\widehat{X}^{\alpha}\right)$. This should be compared with the special case given in Voit [10, Corollary 2.10] where α is taken to be a positive semicharacter on X.

A hermitian, multiplicative, linear functional ρ on any subalgebra S of $L_{\alpha}^{1}(X)$ is called A-bounded if there is a positive constant K such that $|\rho(f)| \leq K A(f)$ for all $f \in S$, where $A(f):=\|f\|_{1, d}$ coincides with the definition given in Proposition 4 provided f has compact support.

In the following, let H denote the set of all non-trivial hermitian, A-bounded, multiplicative, linear functionals on $L_{\alpha}^{1}(X)$. We provide H with the topology of pointwise convergence, and \widehat{X}^{α} with the topology of uniform convergence on compact subsets of X.

Theorem 12. Suppose that the hypergroup X is second countable. Then the canonical mapping $F: \widehat{X}^{\alpha} \rightarrow H$ associating with each $\chi \in \widehat{X}^{\alpha}$ the functional $f \rightarrow \widehat{f}(\chi)$ is a continuous Borel isomorphism.

Proof. The remark immediately following Definition 10 shows that F is welldefined, and from Theorem 11 we know that F is onto. If $F(\chi)=F(\gamma)$ then $\widehat{f}(\chi)=\widehat{f}(\gamma)$ for all $f \in C_{c}(X)$, from which it follows using the continuity of χ, γ that $\chi=\gamma$. So we are left with proving that F is continuous, and that its inverse is Borel measurable.

Let $\left(\chi_{t}\right) \subset \widehat{X}^{\alpha}$ be a net converging to χ. For $f \in L_{\alpha}^{1}(X)$ and $\epsilon>0$ there is a compact set $K \subset X$ such that $\int_{K^{c}}|f| \alpha d m<\epsilon / 4$, and then for ι sufficiently large $\max \left\{\left|\chi_{i}(x)-\chi(x)\right|: x \in K\right\}<\epsilon /\left(2\|f\|_{1, \alpha}+1\right)$. This implies that

$$
\begin{aligned}
\left|F\left(\chi_{t}\right)(f)-F(\chi)(f)\right| & =\left|\int_{X} \overline{\left(\chi_{t}-\chi\right)} f d m\right| \\
& \leq 2 \int_{K^{c}}|f| \alpha d m+\int_{K}\left|\chi_{i}-\chi\right||f| d m \\
& <\epsilon
\end{aligned}
$$

which gives the continuity and hence measurability of F.
The space $C(X)$ of all continuous complex-valued functions is, with regard to uniform convergence on compact subsets, a Polish space, hence so is \widehat{X}^{α} as a closed subspace of $C(X)$. As a continuous one-to-one image of \widehat{X}^{α} the space H turns out to be a so-called standard or Lusin space, and a deep result from topology (HoffmannJørgensen [4, Ch. III, §7, Theorem 2]) tells us that F^{-1} is measurable, that is, F is a Borel isomorphism.

LEMMA 13. Let $\rho: L_{\alpha, c}^{1}(X) \rightarrow C$ be a hermitian, A-bounded, multiplicative linear functional. Then ρ extends uniquely to a functional $\tilde{\rho}$ with the same properties on $L_{\alpha}^{1}(X)$. The mapping $\rho \rightarrow \widetilde{\rho}$ is a homeomorphism with respect to pointwise convergence.

Proof. For $f \in L_{\alpha}^{1}(X)$ and $D \subset X$ we put $f_{D}:=f 1_{D}$. Given $\epsilon>0$ there is a compact set $C \subset X$ such that $\int_{C^{c}}|f| \alpha d m<\epsilon$. If $D, E \subset X$ are compact sets containing C then $D \triangle E \subset C^{c}$, and it follows that

$$
\left|\rho\left(f_{D}\right)-\rho\left(f_{E}\right)\right|=\left|\rho\left(f\left(1_{D}-1_{E}\right)\right)\right| \leq K \int_{X}|f| 1_{D \Delta E} \alpha d m<K \epsilon
$$

Therefore $\widetilde{\rho}(f):=\lim _{D} \rho\left(f_{D}\right)$ exists in C, and $\widetilde{\rho}$ is easily seen to be linear, multiplicative, hermitian and A-bounded.

The last statement will be clear once we prove that pointwise convergence $\rho_{t} \rightarrow \rho$ on $L_{\alpha, c}^{1}(X)$ implies pointwise convergence $\widetilde{\rho}_{t} \rightarrow \widetilde{\rho}$ on $L_{\alpha}^{1}(X)$. Let $f \in L_{\alpha}^{1}(X)$ and $\epsilon>0$ be given. There is a compact set $D \subset X$ such that $\int_{D^{c}}|f| \alpha d m<\epsilon / 4$ and, for ι large enough, $\left|\rho_{t}\left(f_{D}\right)-\rho\left(f_{D}\right)\right|<\epsilon / 2$. Appealing to Theorem 11 we have the existence of $\chi_{i}, \chi \in \widehat{X}^{\alpha}$ such that

$$
\begin{aligned}
\tilde{\rho}_{\imath}(f)-\tilde{\rho}(f) & =\int_{X} f\left(\bar{\chi}_{\iota}-\bar{\chi}\right) d m \\
& =\int_{D} f\left(\bar{\chi}_{\iota}-\bar{\chi}\right) d m+\int_{D^{c}} f\left(\bar{\chi}_{\iota}-\bar{\chi}\right) d m \\
& =\rho_{\imath}\left(f_{D}\right)-\rho\left(f_{D}\right)+\int_{D^{c}} f\left(\bar{\chi}_{\iota}-\bar{\chi}\right) d m
\end{aligned}
$$

and for such ι chosen as above $\left|\widetilde{\rho}_{l}(f)-\widetilde{\rho}(f)\right|<\epsilon$.

THEOREM 14. Let X be second countable and let $\phi: X \rightarrow C$ be a continuous α-bounded, positive-definite function. Then there is a unique measure $\mu \in M_{+}^{b}\left(\widehat{X}^{\alpha}\right)$ such that

$$
\phi(x)=\int_{\widehat{X}^{a}} \chi(x) d \mu(\chi), \quad x \in X
$$

Proof. Let $S:=M_{c}(X)$ and extend ϕ to $\Phi: S \rightarrow C$ by the natural definition $\Phi(s):=\int_{X} \phi d s$. If $s \in S$ has finite support, say $s=\sum_{i=1}^{n} a_{i} \epsilon_{x_{i}}$, then

$$
\begin{aligned}
\Phi\left(s * s^{\sim}\right) & =\int_{X} \int_{X} \phi\left(x * y^{-}\right) d s(x) d s^{\sim}(y) \\
& =\sum_{j, k=1}^{n} a_{j} \bar{a}_{k} \phi\left(x_{j} * x_{k}^{-}\right) \geq 0
\end{aligned}
$$

Any $s \in S$ may be approximated (setwise on the Borel field) by a net (s_{t}) of measures with finite support contained in $\operatorname{supp}(s)$. The restriction $\left.\phi\right|_{\text {supp(s) }}$ being bounded and continuous, the above inequality valid for each s_{\imath} extends to s. But then Φ is a positive-definite function on S since

$$
\sum_{j, k} c_{j} \bar{c}_{k} \Phi\left(s_{j} * s_{k}^{\sim}\right)=\Phi\left(s * s^{\sim}\right)
$$

with $s:=\sum_{j} c_{j} s_{j}$. Because $|\Phi(s)| \leq \phi(e) \int_{X} \alpha d|s|=\phi(e) A(s)$, the function Φ is A-bounded, and hence so is its restriction $\Phi^{\prime}:=\left.\Phi\right|_{L_{\alpha, c}^{\prime}(X)}$; Theorem 5 in Ressel [7] (in connection with Remark 5 to Theorem 4 in the same reference) gives the representation

$$
\Phi^{\prime}(f * g * h)=\int \rho(f * g * h) d v(\rho), \quad f, g, h \in L_{\alpha, c}^{1}(X)
$$

v being a bounded non-negative Radon measure on the set of all hermitian, A-bounded, multiplicative, linear functionals on $L_{\alpha, c}^{1}(X)$. By Lemma 13 these may be uniquely extended to such functionals on $L_{\alpha}^{1}(X)$, that is, to elements of H, and hence ν may be considered as a Radon measure on H. Let μ^{\prime} denote the image of v under F^{-1}, and μ its conjugate (the image of μ^{\prime} under $\chi \rightarrow \bar{\chi}$). Then (recall Theorem 12)

$$
\begin{aligned}
\Phi^{\prime}(f * g * h) & =\int_{H} \rho(f * g * h) d v(\rho) \\
& =\int_{\widehat{X}^{\alpha}} \int_{X}(f * g * h)(x) \chi(x) d m(x) d \mu(\chi) \\
& =\int_{X}\left[\int_{\widehat{X}^{\alpha}} \chi(x) d \mu(\chi)\right](f * g * h)(x) d m(x)
\end{aligned}
$$

for all $f, g, h \in L_{\alpha, c}^{1}(X)$. Fubini's theorem could be used here, since the function $(\chi, x) \rightarrow \chi(x)$ on $\widehat{X}^{\alpha} \times X$ is (easily seen to be) continuous. Writing $\phi_{0}(x):=$ $\int_{\hat{X}^{\alpha}} \chi(x) d \mu(\chi)$ we thus have

$$
\int_{X} \phi_{0}(f * g * h) d m=\int_{X} \phi(f * g * h) d m
$$

for all $f, g, h \in L_{\alpha, c}^{1}(X)$. Standard arguments using a bounded approximate unit in $L_{\alpha, c}^{1}(X)$ show that $\phi_{0}(x)=\phi(x)$ for all $x \in X$, and this proves the theorem.

References

[1] W. R. Bloom and H. Heyer, 'Characterisation of potential kernels of transient convolution semigroups on a commutative hypergroup', Probability measures on groups, IX (Proc. Conf., Oberwolfach, 1988), Lecture Notes in Math. 1379 (Springer, Berlin, 1989), pp. 21-35.
[2] W. R. Bloom and P. Ressel, 'Positive definite and related functions on hypergroups', Canad. J. Math. 43 (1991), 242-254.
[3] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vol 1. Structure of topological groups. Integration theory, group representations, Die Gundlehren der mathematischen Wissenschaften 115 (Springer, Berlin, 1963).
[4] J. Hoffmann-Jørgensen, The theory of analytic spaces, Var. Publ. Series 10 (Matematisk Institut, Århus Universitet, 1970).
[5] R. I. Jewett, 'Spaces with an abstract convolution of measures', Adv. Math. 18 (1975), 1-101.
[6] H. Reiter, Classical harmonic analysis and locally compact groups, Oxford Mathematical Monographs (Clarendon Press, Oxford, 1968).
[7] P. Ressel, 'Integral representations on convex semigroups', Math. Scand. 61 (1987), 93-111.
[8] K. A. Ross, 'Centers of hypergroups', Trans. Amer. Math. Soc. 243 (1978), 251-269.
[9] R. Spector, 'Mesures invariantes sur les hypergroupes', Trans. Amer. Math. Soc. 239 (1978), 147-165.
[10] M. Voit, 'Positive characters on commutative hypergroups and some applications', Math. Z. 198 (1988), 405-421.

School of Physical Sciences, Engineering and Technology
Murdoch University
Perth WA 6150
Australia

Mathematisch-Geographische Fakultät
Katholische Universität Eichstätt
D-85071 Eichstätt
Federal Republic of Germany

[^0]: Research carried out in part while the first author was visiting Universität Eichstätt supported by the Alexander von Humboldt Foundation.
 (C) 1996 Australian Mathematical Society 0263-6115/96 \$A2.00 +0.00

