A FURTHER GENERALIZATION OF AN IRREDUCIBILITY THEOREM OF A. COHN

MICHAEL FILASETA

Let $d_{n} d_{n-i} \ldots d_{0}$ be the b-ary representation of a positive integer N. Call $f(x)=\sum_{0}^{n} d_{k} x^{k}$ the polynomial obtained from N base b. In the case the base is $10, f(x)$ will be called the polynomial obtained from N. Pólya and Szegö attribute the following theorem to A. Cohn [2, b. 2, VIII, 128]:

Theorem 1. A polynomial obtained from a prime is irreducible.
This theorem was generalized in two different ways by John Brillhart, Andrew Odlyzko, and myself [1]. One way was by proving the theorem remains true regardless of the base being used. The second way was by permitting the coefficients of $f(x)$ to be different from digits. Thus, for example, if $f(x)=\sum_{0}^{n} d_{k} x^{k}$, where $0 \leqq d_{k} \leqq 167$ for all k, and if $f(10)$ is prime, then $f(x)$ is irreducible. In this paper, Theorem 1 will be generalized in another way by considering composite N. In particular, the following two results will be proven:

Theorem 2. Let $f(x)$ be a polynomial obtained from wp base b, where w and b are positive integers, $w<b$, and p is a prime. Then $f(x)$ is irreducible over the rational numbers.

Theorem 3. Let $f(x)$ be a polynomial obtained from wp, where w is a positive integer $\leqq 90$ and p is a prime. Suppose $f(x)=g(x) h(x)$, where $g(x)$ and $h(x) \in \mathbf{Z}[x]$ having positive leading coefficients. If $w \neq 73,82$, 83,84 , or 85 , then $g(x)$ or $h(x)$ is a polynomial obtained from a divisor of w and therefore of degree $\leqq 1$. If $w=73,82,83,84$, or 85 , then either $g(x)$ or $h(x)$ is a quadratic depending only on w or $g(x)$ or $h(x)$ is a polynomial obtained from a divisor of w.

We first begin with the case of a general base b, then turn to the case $b=10$, and finally discuss an irreducibility test for small degree polynomials.

1. To prove Theorem 2, we shall make use of a lemma (for a proof, see the proof of Theorem 3 in [1]).
[^0]Lemma. Let $f(x)=\sum_{0}^{n} d_{k} x^{k} \in \mathbf{Z}[x]$, where $d_{n}>0, \quad d_{n-1} \geqq 0$, and $d_{n-2} \geqq 0$. Let

$$
\begin{aligned}
& m=\max _{k \leqq n-2}\left\{\left|d_{k}\right| / d_{n}\right\}, r_{1}=(1+\sqrt{4 m+1}) /(2 \sqrt{2}), \text { and } \\
& r_{2}=\left\{\left(s+\sqrt{s^{2}-4}\right) / 54\right\}^{1 / 3}+\left\{\left(s-\sqrt{s^{2}-4}\right) / 54\right\}^{1 / 3}+1 / 3
\end{aligned}
$$

where $s=27 m+2$. Then each zero α of $f(x)$ satisfies

$$
\operatorname{Re}(\alpha)<\max \left\{r_{1}, r_{2}\right\}
$$

The lemma can be made more explicit by noting
(*) $\quad \max \left\{r_{1}, r_{2}\right\}=\left\{\begin{array}{l}r_{1} \text { if } m \geqq 4+3 \sqrt{2} \\ r_{2} \text { if } m<4+3 \sqrt{2} .\end{array}\right.$
$\left(^{*}\right)$ is shown by using the fact that r_{2} is the positive zero of $g(x)=$ $x^{3}-x^{2}-m$. Since $g\left(r_{1}\right) \geqq 0$ precisely when $m \geqq 4+3 \sqrt{2}$, $\left.{ }^{*}\right)$ follows.

For the proof of Theorem 2, write $f(x)=g(x) h(x)$ where $g(x)$ and $h(x)$ are polynomials in $\mathbf{Z}[x]$ having positive leading coefficients, $h(x)$ is irreducible, $p \mid h(b)$, and consequently $g(b) \mid w$. Suppose

$$
g(x)=a_{r} x^{\tau}+a_{r-1} x^{r-1}+\ldots+a_{0}
$$

with $a_{r}>0$. Now we consider two cases.

Case $1 . b \geqq 4$.

One checks directly by use of the lemma and $\left(^{*}\right)$ with $m=b-1$ that if $b \geqq 4$, then each zero α of $f(x)$ satisfies $\operatorname{Re}(\alpha)<b-\sqrt{b}$. Then for each zero α of $g(x), \operatorname{Re}(\alpha)<b-\sqrt{b}$ so that $g(x+b-\sqrt{b})$ has positive real coefficients. Thus,

$$
g(x+b-\sqrt{b}) \geqq a_{r} x^{r} \quad \text { for all } x \geqq 0
$$

Take $x=\sqrt{b}$ to get $g(b) \geqq a_{r} b^{\tau / 2}$. Now, $g(b) \leqq w<b$ so that $r=0$ or 1 . We want to show $r=0$, so assume $r=1$. Then $g(x)=a_{1} x+a_{0}$ where $a_{1}>0$. But $f(x)$ has nonnegative coefficients so that $f(x)$ and therefore $g(x)$ have no positive real zeroes. Thus, $a_{0} \geqq 0$ and $g(b) \geqq a_{1} b \geqq b$, giving a contradiction.

Case $2 . b=2$ or 3 .
The case $b=2$ follows from the generalization of Cohn's Theorem to an arbitrary base [1].

For $b=3$, the lemma shows that each zero α of $g(x)$, being a zero of $f(x)$, satisfies $\operatorname{Re}(\alpha)<1.7$ so that $g(x+1.7) \geqq a_{r} x^{r}$ for all $x \geqq 0$. This gives $g(3) \geqq a_{r}(1.3)^{r}$ so that $r \leqq 2$. If $r=0$, then we're through. If $r=1$, then as in Case $1, a_{0} \geqq 0$ and $g(3) \geqq 3$, giving a contradiction. So assume $r=2$. Then $g(3) \geqq a_{2}(1.3)^{2}$ so $a_{2}=1$. Also, $a_{0} \neq 0$ since $g(3) \not \equiv 0(\bmod 3)$. But a_{0} divides the constant term of $f(x)$, and since $f(x)$ has no positive real zeroes, $a_{0} \geqq 0$. Thus, $a_{0}=1$ or 2 . Now,

$$
g(x+1.7)=x^{2}+\left(3.4+a_{1}\right) x+\left(2.89+1.7 a_{1}+a_{0}\right) \in \mathbf{R}^{+}[x]
$$

so $a_{1}>-3.4$. Also,

$$
g(3)=9+3 a_{1}+a_{0} \leqq w \leqq 2
$$

so

$$
a_{1} \leqq\left(-7-a_{0}\right) / 3 \leqq-2.6 .
$$

Therefore, $a_{1}=-3$, and $g(x)=x^{2}-3 x+1$ or $g(x)=x^{2}-3 x+2$. Both of these choices for $g(x)$ have a positive real zero, giving a contradiction.
2. For $b=10$ the lemma in the previous section gives an upper bound of ≈ 2.504 for the real part of a zero of $f(x)$. The actual bound can be sharpened to <2.5 by using methods similar to those used in [1]. The bound 2.5 isn't necessary to obtain the results of this section but will be used for convenience.

In Theorem 3 let $h(x)$ be such that $p \mid h(10)$ and write

$$
g(x)=a_{r} x^{r}+a_{r-1} x^{r-1}+\ldots+u_{0}
$$

with $a_{r}>0$. If $r<2$, then $g(x)=a_{1} x+a_{0}$ where both a_{1} and a_{0} are digits (base 10). Thus, $g(x)$ is a polynomial obtained from $g(10)$, a divisor of w.

Now, suppose $r \geqq 2$. Since $g(10) \geqq a_{r}(7.5)^{r}>421$ for $r \geqq 3, r=2$. Thus, $g(x)=a_{2} x^{2}+a_{1} x+a_{0}$ and

$$
g(x+2.5)=a_{2} x^{2}+\left(5+a_{1}\right) x+\left(6.25+2.5 a_{1}+a_{0}\right) \in \mathbf{R}+[x] .
$$

This gives $g(10) \geqq a_{2}(7.5)^{2}$. Since $g(10) \leqq 90, a_{2}=1$. Also, $5+a_{1}>0$ so $a_{1} \geqq-4$. Therefore, $g(10) \geqq(7.5)^{2}+(7.5)=63.75$, proving Theorem 3 for $w \leqq 63$.

For any $w \leqq 90$, we have $g(10) \mid w$ and $g(10)>63$ so $g(10)=w$. If $w=c_{1} 10+c_{0}$ where c_{1} and c_{0} are digits, then

$$
g(10) \equiv a_{0}(\bmod 10) \text { and } w \equiv c_{0}(\bmod 10)
$$

so $a_{0}=c_{0}$ and consequently $a_{1}=c_{1}-10$. Thus, $g(x)$ is a quadratic depending only on w, proving Theorem 3 for $w=73,82,83,84$, and 85 .

It remains to show that for the remaining $w \leqq 90$ in Theorem 3 the corresponding quadratic $g(x)$ is not a possible factor of $f(x)$. We give an example of three possible procedures which may be used to handle the remaining w :
(i) For $w=64, g(x)=x^{2}-4 x+4=(x-2)^{2}$ so $g(x)$ has a positive real zero and cannot be a factor of $f(x)$.
(ii) For $w=78, g(x)=x^{2}-3 x+8$. Let $z=(3+\sqrt{23} i) / 2$ so that $g(z)=0$. Then $|z|=\sqrt{8}$ and $\theta=\arg (z) \approx 1.012$. If $f(x)=\sum_{0}^{n} d_{k} x^{k}$,
then

$$
\begin{aligned}
\left|\frac{f(z)}{z^{n}}\right| \geqq & \operatorname{Re}\left(d_{n}+\frac{d_{n-1}}{z}+\ldots+\frac{d_{n-7}}{z^{7}}\right)-\sum_{8}^{n} \frac{d_{n-k}}{|z|^{i}} \\
& >1+9 \cos 2 \theta / 8+9 \cos 3 \theta / 8^{3 / 2}+9 \cos 4 \theta / 8^{2}-\sum_{8}^{\infty} \frac{9}{8^{k / 2}} \\
& \approx 0.022>0
\end{aligned}
$$

This means $f(z) \neq 0$ so $g(x) \nmid f(x)$.
(iii) For $w=86$, suppose $f(x)=g(x) h(x)$ where

$$
g(x)=x^{2}-2 x+6 \quad \text { and } \quad h(x)=\sum_{0}^{n-2} b_{k} x^{k}
$$

Then $b_{n-3} \geqq 2$. Let t be such that $\left|b_{t}\right| \geqq 2$ and $\left|b_{j}\right| \leqq 1$ for $j<t$. If $b_{t} \geqq 2$, then

$$
9 \geqq 6 b_{t}-2 b_{t-1}+b_{t-2} \geqq 12-2-1=9
$$

so $b_{t-1}=1$ and $b_{t-2}=-1$. Also,

$$
0 \leqq 6 b_{t-2}-2 b_{t-3}+b_{t-4} \leqq-6+2+1=-3
$$

giving a contradiction. If $b_{t} \leqq-2$, then

$$
0 \leqq 6 b_{t}-2 b_{t-1}+b_{t-2} \leqq-12+2+1=-9
$$

giving a contradiction.
Comments. (1) For $w=82$ and $p=122321$, the polynomial obtained from $w p$ has a quadratic factor. Similarly, for $w=83$ and $p=121333$, and for $w=84$ or 85 and $p=12211$. The author knows of no example for $w=73$.
(2) The results of this section may be extended to $w>90$. For example, if $91 \leqq w \leqq 99$ and $f(x)$ is the polynomial obtained from $w p$ for some prime p, then $g(x)$ or $h(x)$ is a quadratic depending only on w or $g(x)$ or $h(x)$ is a polynomial obtained from a divisor of w. Furthermore, the quadratic occurs as a factor when $p=11$. Also, for $w=100+$ $c_{1} 10+c_{0} \leqq 150$, where c_{1} and c_{0} are digits, and for any prime p, if the polynomial $f(x)$ has no rational zeroes and if $x^{2}+c_{1} x+c_{0}$ is not a divisor of $f(x)$ in $\mathbf{Z}[x]$, then $f(x)$ is irreducible over the rationals.
(3) A result of a slightly different flavor is the following: If p and q are primes such that $p \not \equiv 1(\bmod 10)$ and $q \not \equiv 1,2$, or $3(\bmod 10)$, then the polynomial $f(x)$ obtained from $p q$ is irreducible. To show this, assume $f(x)=g(x) h(x)$ where $g(x)$ and $h(x) \in \mathbf{Z}[x]$ with positive leading coefficients and $g(x) \neq 1$ and $h(x) \not \equiv 1$. If $g(10)=1$, then $g(x+7)$ having positive integral coefficients guarantees that $g(x) \equiv 1$, a contradiction. Thus, $g(10)>1$ and similarly $h(10)>1$. We may take
$g(10)=p$ and $h(10)=q$. Write

$$
g(x)=\sum_{0}^{r} a_{k} x^{k} \quad \text { and } \quad h(x)=\sum_{0}^{n-r} b_{k} x^{k} .
$$

Then $a_{0} \equiv g(10)=p(\bmod 10)$ and $b_{0} \equiv h(10)=q(\bmod 10)$. Since $f(x)$ has no positive real zeroes, $a_{0} \geqq 0$ and $b_{0} \geqq 0$. The conditions $p \not \equiv 1$ $(\bmod 10)$ and $q \neq 1,2$, or $3(\bmod 10)$ imply $a_{0} \geqq 2$ and $b_{0} \geqq 5$. This contradicts $a_{0} b_{0}$ being the constant term of $f(x)$, i.e., a digit.
(4) Some simple but similar results on irreducibility can be made if we restrict the degree of $f(x)$ to being small. For example, if $f(x)$ is any quadratic with positive integral coefficients which takes on a prime value at any positive integer, then $f(x)$ is irreducible. This same result holds true if $f(x)$ is a cubic rather than a quadratic but for no higher degree.
(5) Some interesting results for decimal representation of $w p$ can be obtained by looking at bases other than 10. For example, Theorem 2 with $b=100$ shows that since $73 \cdot 85711=6256903$, where 85711 is prime, $f(x)=6 x^{3}+25 x^{2}+69 x+3$ is irreducible.
3. At the beginning of this paper two generalizations of Theorem 1 were mentioned where only prime values at integral arguments are taken into consideration. These generalizations can be used as an irreducibility test for a polynomial $f(x)$, but they fail to give any information when $f(x)$ is an irreducible polynomial which never takes on a prime value at an integral argument as is the case, for example, when $f(x)=x^{2}+x+4$. The results in this paper, however, are somewhat stronger. Theorem 2 shows that for $f(x)=x^{2}+x+4, f(x)$ is irreducible since $f(5)=2 \cdot 17$. But one should note that if the degree of a polynomial $f(x)$ is large, one must be prepared in what follows to deal with large values of $f(x)$ at integral arguments. We are now ready to give an irreducibility test via a theorem.

Theorem 4. Let $f(x)=\sum_{0}^{n} d_{k} x^{k} \in \mathbf{Z}[x]$ such that $d_{n}>0$ and $d_{n-1} \geqq 0$. Suppose $f(x)$ has no rational roots. Set

$$
\begin{aligned}
m & \left.=\left(\max _{k \leq n-2}\left\{\mid d_{k}\right\}\right\}\right) / d_{n} \text { and } \\
B & =(1+\sqrt{4 m+1}) / 2 .
\end{aligned}
$$

If for any integer $b \geqq B, f(b)=w$, where w is an integer $\leqq(b-B)^{2}$, and p is a prime, then $f(x)$ is irreducible over the rationals.

To prove Theorem 4 , note that for $|z| \geqq B$,

$$
\left|\frac{f(z)}{z^{n}}\right| \geqq \operatorname{Re}\left(d_{n}+\frac{d_{n-1}}{z}\right)-\sum_{2}^{n} \frac{\left|d_{n-k}\right|}{|z|^{k}}>d_{n}-\frac{m d_{n}}{|z|^{2}-|z|} \geqq 0 .
$$

Thus, each root α of $f(x)$ satisfies $\operatorname{Re}(\alpha)<B$. If $f(x)=g(x) h(x)$, where
$g(x)$ and $h(x) \in \mathbf{Z}[x]$ such that $p \mid h(b)$, then $g(b) \leqq w$. The condition $w \leqq(b-B)^{2}$ guarantees $g(x)$ is of degree $\leqq 1$.

As an example, consider $f(x)=x^{5}+10 x^{4}-3 x^{3}+7 x^{2}-1$. One checks that $f(x)$ has no rational roots. Here $m=7$ and $B \approx 3.2$. Thus, we consider $f(5)=2 \cdot 3 \cdot 11 \cdot 139, f(6)=11 \cdot 43^{2}$, and finally $f(7)=$ $2 \cdot 5 \cdot 4013$. Since $(7-B)^{2} \approx 14.5>10, f(x)$ is irreducible.

In using Theorem 4 as an irreducibility test, we do not need to factor $f(b)$ completely. Instead we can make use of a primality test. Let $R=\prod_{1}^{r} p_{j}{ }^{e_{j}}$, where p_{j} is the j th prime, $p_{r} \leqq(b-B)^{2}<p_{r+1}$, and $e_{j} \in Z$ such that $p_{j}{ }^{e_{j}} \| f(b)$. Let

$$
s=\max _{j \leqq r}\left\{j: e_{j} \geqq 1\right\} .
$$

If $f(b)=R$, set $\mathscr{P}=R / p_{s}$. If $f(b) \neq R$, set $P=R$. If $P>(b-B)^{2}$, then proceed to $f(b+1)$. If $P \leqq(b-B)^{2}$, then consider $Q=f(b) / P$. If Q is prime, $f(x)$ is irreducible. If Q is composite, proceed to $f(b+1)$. On the other hand, if $f(x)$ is reducible, some information can be gained about its factorization from divisors of $f(b)$ which are $>(b-B)^{2}$, as was done for $b=10$ in Section 2. Finally, it should be noted that Theorem 4 can be applied to any polynomial $f(x)=\sum_{0}^{n} d_{k} x^{k} \in \mathbf{Z}[x]$ since $\pm f(x)$ or $\pm f(-x)$ will always have two nonnegative leading coefficients. In the case that $d_{n-2} \geqq 0$ as well as $d_{n}>0$ and $d_{n-1} \geqq 0$, the role of B in Theorem 4 may be replaced by $\max \left\{r_{1}, r_{2}\right\}$ where r_{1} and r_{2} are as in the lemma of Section 1.

References

1. J. Brillhart, M. Filaseta and A. Odlyzko, On an irreducibility theorem of A. Cohn, Can. J. Math. 33 (1981).
2. G. Pólya and G. Szegö, Aufgaben und Lehrsätze aus der Analysis (Springer-Verlag, Berlin, 1964).

University of Illinois, Urbana, Illinois

[^0]: Received January 4, 1982.

