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Abstract

We consider a mesh grading quadrature method for real constant-coefficient Cauchy singular
integral equations of index 0. The quadrature method is based on the trapezoidal rule.
A complete stability and convergence analysis is given by the use of the noncompact
perturbation analysis as in Jeon [ 10] and Elschner and S tephan [7]. The order of convergence
can be arbitrarily high if the order of mesh grading is high enough. We also provide an
efficient way of evaluating asymptotics of the solution at the end points. Experimentally,
we observe that the method also works well for Cauchy singular integral equations with
variable coefficients.

1. Cauchy singular integral equations

We consider real constant-coefficient Cauchy singular integral equations

b /*' u(y)
au(x)-\—p.v. I dy=f(x), (1.1)

n Jo y -x

where

a2 + b2 = 1, a > 0.

In the presence of a compact perturbation in (1.1), collectively compact operator
analysis and perturbation analysis [1,8], will allow our analysis to be extended to these
cases. Cauchy singular integral equations have physical applications in elasticity and
aerodynamics [14].

In this paper, we consider a natural airfoil solution of index 0. We therefore set
u(x) := p(x)<p(x), where

pyx) = x (i—xy (1.2)
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and
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74>(x) := (al +

~ Yi P

b^O

- y.

t)-a<t

Youngmok Jeon

where y •

>(*) + £ p.v.

1
2^i 1 O g

f1 p(y) 4
Jo P(x)y

a
a

•0
—

+ bi
-bi'

siv
ay

X

[2]

p(x)
(1.3)

Then # : L2[0, 1] - • L2[0, 1] is strongly elliptic and bijective [16]. Since a > 0, it
must be noted that - 1 / 2 < y < 1/2. If/ = / p <= Hk[0, 1] with integer A: > 2, then
<p € tf ^ ' [ 0 , 1 ] [16, Corollary 6.38]. Here Hk[0, 1] denotes the usual Sobolev space
of non-periodic functions on [0, 1], while Hk denotes a Sobolev space of 1-periodic
functions (see Section 4). From this point onwards, C*[0, 1] and C* represent fc-times
differentiable non-periodic and periodic function spaces, respectively.

Instead of solving (1.3), we consider a mesh graded integral equation. Let us
consider the well known mesh grading transformation [11], w : [0, 1] —• [0, 1] such
that

where

1 \ 3 1 1
q) q 2'

Then w(t) satisfies

io(0 = t" + O (tq+l) , 1 - io(O = (1 - t)q + O ((1 - 0*+1)

around 0 and 1, respectively. The parameter q is the order of mesh grading.
Multiplying (1.3) by V^ ' (0 and setting ^ ( 0 : = 4>{w{t))y/w'{t), r(t) := p(w(t))

= u>°(0(l - w(t))p and g(t) := / {w(t~))Jw'(t)/r(.t), we have a transformed equa-
tion,

e^q^r{t):= a^r(t)-\ p.v. / —— TJr(s)ds = g(t). (1.5)
x Jo r ( 0 w(s) — w(t)

Since <p -> x// is an isomorphism in L2[0, 1], we have that

V : L2[0, 1] -> L2[0,1] is bijective. (1.6)

We solve (1.5) for \fr in preference to solving (1.3) for 0. If/ in (1.1) is sufficiently
smooth on [0, 1], then

= ,<«-o/2(i _ ty-i)/2h(t) (i.7)
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with sufficiently smooth h on [0,1]. Therefore, \fr is considered to be a sufficiently
smooth periodic function such that V0)(0) = V0 )( l) = 0, 0 < j < (q - l)/2 for q
large. We now suggest a numerical method based on the Fourier series approximation
of the density function \fr and the trapezoidal quadrature approximation with the
subtraction of singularity for the singular integral operator. We therefore do not need
to evaluate computationally costly Jacobi polynomials and this is what distinguishes
our method from traditional polynomial methods [5,9,20]. In some cases polynomial
methods may give rise to algorithms which converge more quickly than ours, but our
method will be easier and more flexible to implement, especially in the presence of a
compact perturbation.

In this paper we propose a modified version of the quadrature method introduced
by Prossdorf and Rathsfeld in [15], in which they handle Cauchy singular integral
equations of variable coefficients of index 0. They use the Simpson rule for the
quadrature method, with which they achieve the convergence of O(hrnin^q~X)m) for
the approximation of the density function \j/ in (1.5). The evaluation of 0(0) and 0(1)
in (1.3) is physically important, and they obtain the convergence of O(hq(q~l)IOq~X))
for q < 8. Moreover, they use the Toeplitz operator analysis for stability analysis that
can be mathematically complicated.

In this paper, we use the trapezoidal rule for the quadrature instead of the Simpson
rule. In applying a quadrature rule to the singular integral operator in (1.5), we use the
subtraction of singularity by the periodic singular operator Ji? (see (2.1)). This looks
unconventional for the Cauchy singular operator on the interval [0, 1], but which has
already been considered in [12]. Subsequent application of the perturbation theory
in [10] and [7] yields a complete, concise stability analysis. Moreover, we obtain an
optimal order of convergence, that is, O(hq/2) for the density function V- For the
evaluation of 0(0) and 0(1) we invent a new method, and the convergence of order
O(hq/2~k), for an arbitrary k > 0, is achieved (in practice, 1/2 < k < 1 is desirable).
As stated above, we theoretically obtain a convergence of arbitrarily high order with
a high order mesh grading. From our observation, q < 5 looks fine for moderately
large mesh points (see Section 7). So far, our analysis does not extend to variable
coefficients, but numerical experiments suggest that our method is promising.

The paper is organized in the following way. In Section 2 we introduce a quadrature
method for (1.5). In Section 3 strong ellipticity for the operator induced from ^q is
obtained. Interpolatory projection and an induced solution projection on periodic
function spaces are introduced in Section 4. Stability and convergence analysis are
given in Sections 5 and 6. In Section 7 we present numerical results. Experimental
numerical results for a variable coefficient case are also given and a good convergence
is observed even though our analysis does not cover this case.
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2. A quadrature method

Here we introduce a quadrature method for ^q. We write (1.5) in a symbolic form
as

= g{t), (2.1)

where

:= p.v. /
Jo

and

:= I f ( ^ ^ V ^ _ \
?r Jo \ K 0 Ms) ~w(t) )

It must be noted that the kernel of J ^ is smooth except for the four corners on
[0, 1] x [0, 1], and it is extensible as an 1-periodic function on D& x D& except at integer
pairs when the mesh grading is sufficiently large. Using the subtraction of singularity
in the operator ^ , then using the trapezoidal quadrature rule for the operators jV
and J^ , we have an approximation operator ^ such that

= air(t) -b\}r{t) { h > cot(n(jh - t)) \ (2.2)
I U 1

nj^ '(0 w(jh)-w(t) rJh)'

where with N el and h =

:= / i^cot(7r( / / i -t))ir(jh) and

i'f
)

Collocation of (2.2) at nodes {kh}"'^ cannot be defined, so we consider the mid-point
collocation method.

We now introduce the TV -dimensional trigonometric function space Th such that

Th := span{e* | e t(0 = exp(27ri*O, N/2<k< N/2).
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(2.3)
j=o

for tk — kh + h/2 [4,12]. Our mid-point collocation method requires us to find
\jrh e Th such that

h ZArUh) JwV
f£ tk) w(jh)-w(tk)

where tk = kh + h/2, 0 < k < N — 1. The Dirichlet kernel is then used to evaluate

N-l

(2.5)
y = 0

where
sin

- y))
s

- v))

sm(n(x-y))
sin(N7t(x - y))

N : even

: odd.7 r
sm(n(x - v))

But the stability of the above collocation method is unknown, and we
modify the integral operator Jfh around the end points to have a complete
analysis. Our modified method requires us to find \jrh € Th such that

N-l

need to
stability

(2.6)

b—

0<k<N -I.

r{tk) w(jh)-w(tk)
-cot(jh-tk)\irh(jh) = g(tk),

Here the modification appears only for theoretical purposes, and we observe that
/* = 0 is sufficient for stability in numerical experiments. We can rewrite (2.6) in
symbolic form as

ih) = g(tk), 0<k<N-l,

(2.7)

where

forO<r < 1/2.

) , xe[r, 1 -

0, otherwise
(2.8)
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3. Strong ellipticity

[6]

The Hilbert operator 3V has well-known properties such as 3^\ = 0 and 3ft11 =
- I [14]. Then 3>? J = J Jf = 0 and simple calculation yields

al -

where J?(t>(t) = fi 4>(s)ds.
Multiplying both sides of (2.1) by (al + bJff)~l, we have

(al (3.1)

where

:= (al -

and £ := b*/aj? Jtf is a compact operator. Henceforth we shall assume that & is a
generic compact operator which can be different on each appearance.

In this section we will show that the operator (/ + £>JSf + <f) is strongly elliptic on
L2[0, 1]. First, we will show by a localization technique that / + bS£ is a matrix of
Mellin convolution operators with a compact perturbation.

Define a smooth cut off function x s u c n that x = 1 on [0, S] and support(x) C
[0, 1/2). Let XoOc) := X(x) and X,(x) := *(1 -x). Then

cot(7T(s - 0) =
7T(S - t)

1

(3.2)

+ X\(OXo(s)

s=l-s, 1=1—1

1

s=\-s

and

r(S)

r{t) w(s) — w{t) =XoWXo(O
sq —

(3.3)

T2(t, s).

Here note that (7\(f, s) — T2(t, s)) is a sufficiently smooth periodic function for large q.
Introducing the Mellin transform on L2[0, oo), we have that

Hz) = f
Jo

xz-lf(x)dx, z = ^ + iy, y e R. (3.4)
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For details of the Mellin transform, see [6] and [19]. We now introduce three Mellin
convolution operators on the half interval [0, oo):

= - [ R (-) — ds and (3.5)
x Jo \sj s

where
1 I t(q-l)/2-aq

G(t) = , R(t) = and GqAt) = .
1 - 1 \ + t \-ti

Then the corresponding symbols are

= cot(7rz),

= — ! — and (3.6)
sin(^z)&<(z) = -tan(n (^^ -aX\,

where z = 1/2 + iy, y £ R. Note that the Mellin symbol for &* is defined only for
—1/2 < a < 1/2 and so our analysis does not cover the cases of index —1 and 1.

In view of (3.2) and (3.3), the operators J ^ in (2.1) and Jf? can be written as

where n := (xo, Xi) and {x.}/=o,i are considered to be operators such that xof (•*) :=
Xo(x)f (x) and X\f (x) '•= Xi (x)f (1 — •*)• Here (&2 — ^i) is compact, where &[ and
55 are operators with kernels Tx(t, s) and T2(t, s) in (3.2) and (3.3), respectively. It is
not difficult to see that ^ Jf is compact and

n

is a vector of compact operators (see Appendix B [10]); then
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where S is a compact operator. To show that (/ + bl£) is strongly elliptic, we only
need to show that the real part of the 2 x 2 complex matrix

at 1/2 + iy, y e K, is positive definite uniformly in y. Using that

[a - b&(.z) bM(z)
[ 9~ [ b&{) a+b9(z)\ [ b&(z) a -

1 \a + b&(z)
) \ [ b&(z)

simple calculation yields

[a — bcot(nz) b/sin(nz) 1
a + bcot(jtz)j

0

0

where z := 1/2 + iy, y e K .
Note that

cot(7rz) = —/tanh(7ry), sin(7rz) = <

and
- sin(2ajr) + i sinh(2ny/q)

cosh2 (ny/q) — sin2(a7r)
iva(v).

/ z - 1 / 2 \ 1 - s i
\ q ) 2 cc

When a = —ft, we have ua = —Up and va = vp. Then simple calculation with
a = -p = (l/2ni) log((a + bi)/(a - bi)) gives us

Re((/ + bMxa){z)v, v) > (Lv, v),

where

_ |"a(a - bua) + b2 tanh(7ry)wo 0

Here (•, •> is the usual inner product in C2. Using an = tan~l (b/a) and a2 + b2 = 1
(see (1.1)),

a2b2

a(a — bua) + b2 tanh(7ry)va = a2 +
cos\^{ny/q) — b2

b2 sinh(2^y/^) sinh(7ry)
(cosh {ny/q) — b2) cosh(7ry)

>a2.
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Then we have the Garding inequality for the operator (/ + ££ + £"), that is,

( ( / + S£ + S)(j>, <P) > C(<t>, <f>) - (<f 0 , <t>), (3.9)

where C > 0, <p e L2[0,1] and S' is a compact operator.

4. Projection operators

Let H' be the Sobolev space of periodic functions on an interval [0, 1], and let || • \\i
be the norm for H' such that

||/1|? = 2Jmax{l, \k\r\f(k)\2 < oo, (4.1)

where

/(*) =

with ek(t) = e2uikt. It is worthy of note that H° = L2[0, 1].
Let Ph : / / ' ( / > 1/2) -> Th be an interpolatory projection such that (Pkf)(tk) =

f(tk), where tk = kh + tjh, 0 < £ < 1. Then PA has the standard convergence
property [18] that

IIP*/ - / l l , < CA'-'U/II,, / € H', (4.2)

for 0 < i < t, t > 1/2. In this paper, we restrict our attention to the mid-point
collocation, that is, Ph with £ = 1/2.

Since 3^h^rh - irhJifh(l) = J^rj/h for fh e Th [10], Ph3^h{V) = 0 (that is, (2.3))
and Th is invariant under Jff, thus

PhJt},1n, = Pkjrin, = jrylrh.

Therefore, our modified collocation method (that is, (2.7)) can be rewritten in a
symbolic form as

bPhXh Tt.hth = Phg. (4.3)

Consider a solution operator Rh : H'(L > 1/2) -> T* such that

(a/ + bJ(f)Rhi/ = A(a + WHV- (4.4)
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Then Rh = (al + bJif)~}Ph(aI + bjj?), and it is easily checked that Rh is a projection
operator with the approximation property

- #\\, < Ch'-'\\f\\n (4-5)

for 0 < 5 < t, t > 1/2. With Rh, (4.3) can be written as:

(4.6)

where J(h = (a + bJif)~xXh and g = (a + bJifylg. Equation (2.1) may also be
rewritten as

(/ + bJK)f = g (4.7)

with J( = (a + b<7eyxX.

5. Stability

In this section we prove the stability of the operator (/ + bRh^hTi.h) : Th -> Th

for a sufficiently large i* > 0 independent of h. As a first step, we introduce a stability
result for a finite section operator.

THEOREM 5.1. For any i* > 0, there exists h0 > 0 such that

||(/ + ^7;-.»W||o>C||tfr||o, iML2[0,l] , (5-1)

for all 0 < h < ho and C independent ofh.

PROOF. Theorem 5.1 follows from the fact that (/ + bJ() is strongly elliptic on
H° (Section 3), 7]-.A : Ho -> L2[i*h, 1 — i*h] is a bounded projection and from the
bijectiveness of the operator (/ + bJ() (from (1.6) and / + bJt = (al + b3^YXc€q).
For a detailed proof, see [6,10].

Before proceeding to our stability analysis, we shall introduce some properties that
are satisfied by the operator Jf (see (2.1)).

Consider an integer m such that m < q(l/2 — \y |) (see Section 1 for the definitions
of q and y). Then

PI. K, = K(t, •) € Hm for t € (0, 1) and K, = K(-, s) € Hm for s € (0, 1);
P2. For ij e Z+ U {0}, u, v e R+ U {0} such that - (1 /2 - \y\)q < i - u <

( l / 2 - | y | ) < ? a n d i + 7 =u + v,

Jru,v,i,j*(t) = f [/(I - r)]"[s(l - s)Y \D',DiK(t,s)\ t{s)ds (5.2)
Jo

is a bounded operator in H°.
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Here D\ := d'/dt' and Ds := 3735'. For a sketch of proofs for P, and P2, see
Appendix.

REMARK 1. Forthe proofs of Theorems 5.2,5.3,5.4 and 6.1, (l/2-\y\)q > m = 1
is sufficient.

For a stability analysis of the operator (/ + bRh^Kh 7]-.A), we need some preliminary
theorems 5.2, 5.3 and 5.4. It must be remarked that much of the proofs for these
theorems are simple generalizations of those in [10] and [7].

LEMMA 5.2. Forthe operators JC = (al+bJ4?)-1Xand Jth = (al+bJify1^,
we have the following estimates. For 0 < I < m,

(1)

C Ch
' —\\u\\u ueH1; (5.3)

i h)'
- i*(i*hy"-"v • (I*A)

(2)

\\D'^hTj.hu\\o < —;—r||«||o, " e Th. (5.4)
(i*h)'

PROOF. Since (aI + bJ^)~l and the differential operator D commute,

l| T\1 / y/ yy \ rr> I] •*» I j ~ \ t / ist/' '5^* \ T » II

Because

pl-i'h
\D\jf-Jtrh)Tl.hu{t)\ < Ch / \D'lDsK(t,s)u(s)\ds

Ji'h
pl-i'h

+ Ch \D'tK(t,s)Du(s)\ds
Ji'h

Ch fl

where Wi(t) = [/(I — t)]1, we have the estimate (5.3).
Since

/

•l-i'h

Dl,K(t,s)u(s)ds
•h

<
C

\u\\o,
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and using (5.3),

' ^ (5-5)

For u e Th, the inverse estimate, /I||M||I < ||M||0 yields (5.4) immediately.

For the rest of this paper, the operators JZ and Jth represent the operators defined
in Lemma 5.2.

THEOREM 5.3. Forarbitrary e > 0 there exists i* > 0 such that for each v e Th

(1)

\\(^ - ^T.^T^vWo < e\\v\\0 and (5.6)

(2)

HM' - JZHW^I - R^^T^vWo < cllvllo- (5-7)

PROOF. From Lemma 5.2 (1) with / = 0 and u = Mh Ti-hV,

Using the estimate Lemma 5.2 (2), we have

< ^|

Taking /* large enough, we have (5.6).
Using Lemma 5.2 (1) with / = 0 and u — (/ —

ll(-tf-

Now, using the error estimate of Rh and Lemma 5.2 (2),

Hullo <

and

ll«lli <

Then

\\(Jt - Jt^T^l

Now the estimate (5.7) is immediate.
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Now we prove the stability of our approximation operator. The proof is obtained
by simple application of the perturbation theory that in [1] and [3].

THEOREM 5.4. There exists i* > 0 such that

| |(/ + bRh^hTPh)ir\\0 > C\\f\\o, f € Th, (5.8)

for all h < h0.

PROOF. Since (7 + b^Ti.h) is invertible from Theorem 5.1, define

Bh:=I- b(I + bjeT^y'RiJt^.
J

Then simple calculation yields

Bh(I + bR,,^^,,,) = I -Sh,

where

Sh = b\l '

We will now show that \\Shf ||0 < gllV'ilo, ? < 1 for sufficiently large /*. We have
that

Now

\\{RhJKh - JJOT^R^T^U (5.9)

< | | ( ^ - ^)7;-.*^r,.*^||o + ||(/ - Rh)J?hTi.hJZhTi.ht\\<i

+ \\{J(h -

The estimates for Pi and P3 are obtained from Theorem 5.3. Using the error estimate
for Rh, the estimate (5.5) and Lemma 5.2 (2), we have

P2<Ch || ̂ hT\.h^h 1\.hir ||,

^II^j^llo + ^
i*h i*
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In a manner similar to that used above,

P4 <

Ch2 Ch
\\JZ Ti ||+\\JZh T^ir ||, +

i*h i*h

Taking i* sufficiently large, we have \\Sh^Ho < q\\i//1|0, q < 1. Therefore

and it is uniformly bounded independently of A.

6. Error analysis

The convergence analysis heavily depends on the Euler-Maclaurin formula [2] for
periodic functions, and we supply here a modified version of it. Assume / ( t ) (0) =
/(*'(1) for k = 1 , . . . , p - 1, and that / 0 0 is integrable, then

/

I N-l - 1

f (x) dx - hYf (j h) <Ch" \f("\x)\dx. (6.1)
A generalized Euler-Maclaurin formula [13] may extend Theorem 6.1 to the case
wherep > \,p e R.+.

Introduce a space of functions: forp e 2+,

S" :={r{r\iy^(x):=[x(l-x)rJrlfj(x), ty e H°,j =0,... ,p), (6.2)

with the norm defined as

;=0

Simple calculation yields an embedding, Sp C Hp.
We now come to the main convergence result of the paper.

THEOREM 6.1. Suppose the mesh grading is of order q > 2p for an integer p > 1.
The solution of (1.5), V> belongs to S" iff in (1.1) belongs to Hp+1[0, 1]. Then the
approximating solution yf/i, of (2.6) satisfies the convergence property:

. (6.3)
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PROOF. Suppose tha t / e Hp+i[0,1]. Then <f> in (1.3) is in Hp+l-M[0, 1] (see
Section 1), and by Sobolev embedding, <f> e C[0, 1]. Then \}r{t) = <j>(w(t))Jw'(t)
satisfies that \/f(t) = [f(l - t)]ph{t), where h e L2[0, 1] and h e C ( 0 , 1) if (g -
l)/2>p- 111. Then^ € 5".

Instead of (1.5) and (2.6), we analyze the equivalent equations (4.6) and (4.7).
Using (4.7) for the substitution of g in (4.6),

^f, = Rh(I

Simple calculation yields

(/ + bRh^T^Xfh - fN) = -{fN - Rhyjr)

where \(rN e Th and r/sN(kh) = ijf{kh), k = 0, . . . , iV — 1. By Theorem 5.4, we have

Uh - iMo < C\\fN - RHfh+C\\Rh^ir-^hTt.hirN)h. (6.4)

First, from Section 4

I I ^ - RnfWo < \WN - no + 11̂  - **iMlo < ChpU\\P- (6.5)

Since fN{kh) = if{kh), we have ̂ hTi.hfN = JthTi.hir. Now,

Then we have

\\Rh(^f - JthTi.htN)h < CA"||^II*, (6-6)

if we show that

WiJtir -^T^fWo < CA"->||̂ r||s. (6.7)

for j = 0, 1. Therefore, by (6.5) and (6.6), we have an estimate for (6.4):

WN-fhh<Ch<>\\nsr. (6.8)

The triangle inequality yields

II* - **llo < II* - iMIo + WN - **llo <

and our theorem is proved.
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Let us now prove the estimate (6.7). Since Jt = (al + bJf?) xJf? and the
differential operator D and (al + b#FYl commute,

o < C\\D*(X -

+ cwv (jtr - xh)(i -
= CPX + CP

For Pi, by the Euler-Maclaurin formula,

< Ch"-J

Jo ' S

f \Dl
sD

J
lK(t,s)Dp-i-lt(s)\ds

Jo

f ID-Df
I si

JO

1=0

P-J
K{t, s)[s{\ -

For io,(x) = [x(l - x)]', since D-' (JtTwj) (that is,
bounded in H°,

ds

J (0) := D>X(Wj • <p)) is

Now,

/
Jl-i'h

i'-\

k=0

k=N-i'

and

/

i'h

j'Kit, kh)f{kh)
*=0

L **'
i=o

1=0
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We will have the same bound for

/

I

-

N

DJ
lK(t,s)f(s)ds-h J2 D*K(t,kh)iKkh)

o/

-i'h k=N-i-

Then P3 < Chp~j \\ir\\p. Adding up Pu P2 and P3, we have the estimate (6.7).
Once Theorem 6.1 is proved, we can extend the convergence estimate to an arbitrary

Sobolev space Hs, 0 < s < p. Then we can even have a convergence result on the
norm, || • ||oo, using the Sobolev embedding, Hs c C°, 5 > 1/2, where C° is a
continuous periodic function space.

COROLLARY 6.2. Under the same assumptions as in Theorem 6.1, for 0 < s < p,

IIV̂  -V0.il, <Ch>"sn\\sr. (6.9)

PROOF. In the proof of Theorem 6.1 (see (6.7)), we have

where fN e Th and f{kh) = ^ ( ^ ) , (Jfc = 0 , . . . , AT - 1). Then

by the inverse estimate on Th. Since

we have the corollary.

7. Numerical results

Consider a Cauchy singular integral equation

1 /*' u(y) r-
u(x) H— p.v. / dy = V2. (7.1)

n Jo y ~ x
Then (7.1) has a solution u{x) = xl/4(l - xyl/A(j>(x) with 0 = 1. With our mesh
graded equation (1.5), we will have a solution in the form, \fr(t) := <f>{w{t))^w'(t).
The second column of each table shows the convergence of VA of (2.4) to ty in
L2-norm, and the results show good concordance with Theorem 6.1, that is,

(7.2)
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TABLE 1. Numerical results with q — 3 and n

[18]

h
1/16
1/32
1/64

1/128
1/256
1/512

M-thh
.109e-2
.396e-3
.143e-3
.509e-4
.181e-4
.642e-5

rh

1.53
1.46
1.47
1.49
1.49
1.50

|0(1)-0*(1)|
.209e-l
.100e-l
.448e-2
.225e-2
.103e-2
.481e-3

rh

0.87
1.06
1.16
.99

1.13
1.10

TABLE 2. Numerical results with q = 5 and n = *J~N

h
1/16
1/32
1/64

1/128
1/256
1/512

.300e-3

.456e-5

.753e-6

.128e-6

.220e-7

.397e-8

rh

5.81
6.04
2.60
2.56
2.54
2.47

|0(l)-0n
A(l)|

.351e-3

.208e-4

.623e-5

.181e-5

.420e-6

.743e-7

rh

6.07
4.08
1.74
1.78
2.11
2.50

where p equals the smallest integer less than q/2, and q is the order of mesh grading.
In Tables 1, 2 and 3 we expect convergence of orders 1, 2 and 2 respectively. But as
mentioned in Section 6 we may have convergence of orders 1.5, 2.5 and 2.5 by the
generalized Euler formula as in the tables.

We are also interested in evaluating the physically important constants </> (0) and
0(1). Here we describe a way of using x//h to approximate 0(0) and 0(1).

Consider the Chebyshev polynomial on the interval [0, 1]: that is, Tn(x) = cos(n6)
with 9 = cos"1 (2x - 1). For any 0 e C[0, 1],

(7.3)
J 1

where

Let

(7.4)
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TABLE 3. Numerical results with q = 5 and n = N

h
1/16
1/32
1/64
1/128
1/256
1/512

IIV^-V^llo
.493e-l
.295e-2
.251e-3
.423e-4
.730e-5
.128e-5

rh
2.57
4.06
3.55
2.57
2.53
2.52

**(1)
.8429641
.8342377
.8339479
.8338500
.8338204
.8338114

#(0)
.0991423
.09314502
.0934511
.0935366
.0935660
.0935759

Then by [2,17],

\\<t> -Moo < Cn~rlogin), 4> € Cr[0, 1].

Using 7}(1) = land 7),(0) = ( - i y ,

oo

0(0)= "
>=o

where ^ " is the summation obtained by halving the first term. Moreover,

dx

X JO
ds,

where

Fn{x) :=
1 /e-ine _ei(n+l)e

(
;=o

ine _ei(n+l)e\

5 » ' ^ =
l — e }

- 1).

Define

^ Jo
ds.

305

(7.5)

(7.6)

(7.7)

(7.8)

Then </>*(!) approximates 0(1), and the fourth column represents the numerical results.
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Now we estimate the convergence of </>*(l) to

[20]

= fl (VO[ ~
Jo [*

= f" W""
io [i

d5 (7.9)

+ d5

= p, + p2 + p3

Then, since |Fn(jc)| < n,

<Ceh
ll2-(n\\th-

for arbitrary e > 0, and

(7.10)

since

- w(s)) -

and ft = l/N. We have the same estimate for P3 as that for Pi. From the estimates
(7.10) and (7.11) and using Corollary 6.2,

(7.12)

with e' > €. Then (7.5) and (7.12) yield

(7.13)

for n = Nk, (p e C[0, 1] with X(r + 1) > p and arbitrary e > 0.
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We will have the same kind of bound for |0(O) - 0*(O)| by replacing Fn in (7.7)
and (7.8) with

n := g (-1)'7}(*) = - ( 1 + gl, j (7.14)

with even n. In practice, optimizing X in (7.13) is an important issue, and X should
be chosen appropriately according to the regularity of </>. In our numerical test we
have used X = 1/2 for Tables 1 and 2 and X = 1 for Table 3. Therefore, we expect
convergence of orders 1, 2 and 2, respectively, and the fourth column of each table
shows the convergence of $*(1) to 0(1). For the quadrature approximation for the
integral in (7.8), we use the trapezoidal rule with 1024-points, while at points other
than node points we evaluate \jrh, using the interpolation formula (2.5).

Let us consider a variable coefficient singular integral equation,

- 0 ) /
Jo y -•

-u(y)dy = sin(x), (7.15)

the analysis of which is not contained in this paper. Then u(x) = x~l/*(l — x)l/4<p(x)
[16], and Table 3 represents the approximate values of 4> (0), 0 (1) and the convergence
of \p-h. We can see that the numbers are accurate up to 4 decimal digits with N = 128,
which shows a good convergence.
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A. Appendix

Consider a class of functions Xlm-k+a for /, m, k e 1+ and 0 < a < 1. The
function K e 3Cl-m-kJra if K satisfies

(A.!,
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where

P(x) = c0 + dx + h cnx", c0 ̂  0, cn jt 0,

Q(x) = do + dix + --- + dn-tx"-1, dn-t # 0,

R(x) = e0 + eiX + • • • + en-mx"-m, e0 # 0, en_m ̂  0.

LEMMA A.I. ifK e Sr'-m-k+a, then

(1) K' € ^r'+i.».*+«->;
(2) x K ' ( x ) + l K ( x ) 6 ^"^•'"•*+a, n > l + l.

PROOF. (1) Simple calculation yields

Q'(x)P(x) - Q(x)P'(x)
K'ix) =

[Pi.x)f
(k + a)R(x)P(x) + i / f ' T O - xR(x)P'(x)

For (e'(Jc)^(Jc) ~ Q(x)P'(x))/[P(x)]2, looking at the coefficient of x2"'1'1 in the
numerator, we have (n — l)dn-tcn — dn-incn — —ldn-tcn ^ 0.

For ((* + a)^(*)P(jr) + xR'(x)P(x) - xR(x)P'(x))/[P(x)]2, looking at the
constant term in the numerator, (k + a)eoco ^ 0. Looking at the coefficient of xln~m

in the numerator, (k+a)en-mcn + (n-m)en-mcn-en-mncn = (k+a-m)en-mcn ^ 0 .
Then K' € ^'+^-k+"~\

(2) Simple calculation yields

- x Q(x)P'(x) + lQ{x)P(x)

k+a (k + a + l)R(x)P(x) + xR'(x)P(x) -xR(x)P'(x)
[P(x)]2

Looking at the numerator of (x Q'(x)P(x) -x Q(x)P'(x) + lQ(x)P(x))/[P(x)]2, the
coefficient of x2n~' is (n — l)dn-icn — ndn-tcn + ldn-icn = 0. Then the numerator is a
polynomial of degree < (2« — / — 1).

For((k+a + l)R(x)P(x)+xR'(x)P(x)-xR(x)P'(x))/aP(x)]2),asintheproof
of (1), the constant term and the coefficient of x

2n~m are nonzero. Now the lemma is
proved.

COROLLARY A.2. ForK € ^T'm*+O andi+j =u + v.

where K e arv*.k+«-i+ui ^ > / + ,- + j _ u
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PROOF. Note that

and

Using Lemma A. 1, it is clear that

w h e r e L e ^ ^ • k + " - i , K ( i ) e 3 C l M - m * + a - \ f x > l
Then

""*«[<(;) 7]-*(;);•
where tf(x) = x"L(x) 6 r̂M,m.t+«-.-+«i ^ > ; + ,- +j _ u

Now let us look at the operator tf in (2.1). We will show that Jf satisfies the
properties (PI) and (P2) in Section 5. We have that

Decompose the kernel K{t, s) of Jtf as follows.

-5(«j-l)/2+cr9r(9-l)/2-a9[ 7t(s-t)\

- Xo(t)Xi(s)——

+ E(t,s),

[(1 _ 5)(<7-D/2+0«7(1 _ ty

where E(t, s) is a continuous periodic function for q > 1.
Looking at K(t, s), it is clear that K, := K{t, •) e Hm and Ks := K{-, s) e Hm,

and thus we have (P I ) . Recall that m is an integer less than <?(l/2 — \y\), where
lyl >« •
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According to the above decomposition of the kernel, we may decompose the
operator tf by

For simplicity, let us look only at Jt0,0. We have that

J%>,o*= I Ko,o(-)-i'(s)ds
Jo W *

with

^(1/2-0)9-1/2 _

1 -XI

where x = 1 is a removable singularity. Then ATo,o £ j-£-U.u/2-a)9-i/2 gy Corol-
lary A.2, since AT0,0 e <gr1.«.(1/2-<»)9-i/2)

where AT € ̂ ri+'+;-«.9.(i/2-o)9-i/2-.-+a> T o havex~l/2K(x) € L,[0, oo), we need that
(1/2 - a)q - 1/2 - i + « > - 1 / 2 and (1/2 - a)$ - 1/2 - i + « < 9 - 1/2 since
1 + 1 +j - u > 1. Therefore, if - (1 /2 + a)q < i - u < (1/2 - a)q,

f -c
Jo s

is a bounded operator on L2[0, 00).

f
Jo
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