NILPOTENT AND SEMI- n-ABELIAN GROUPS

G. KOWOL

(Received 14 August 1980; revised 9 October 1980)

Communicated by H. Lausch

Abstract

A group G is called semi-n-abelian, if for every $g \in G$ there exists at least one $a(g) \in G$-which depends only on g-such that $(g h)^{n}=a^{-1}(g) g^{n} h^{n} a(g)$ for all $h \in G$; a group G is called n-abelian, if $a(g)=e$ for all $g \in G$. According to Durbin the following holds for n-abelian groups: If G is n-abelian for at least 3 consecutive integers, then G is n-abelian for all integers and these groups are exactly the abelian groups. In this paper this problem is generalized to the semi- n-abelian case: If a finite group G is semi- n-abelian for at least 4 consecutive integers then G is semi- n-abelian for all integers and these groups are exactly the nilpotent groups, where the Sylow-2-subgroup is abelian, the Sylow-3-subgroup is any element of the Levi-variety ($[\mathrm{g}, \mathrm{h}], h]=e \forall g, h \in G$) and the Sylow- p-subgroup $(p>3$) is of class <2. As a consequence we get a description of all finite (3-)groups, which are elements of the Levi-variety.

1980 Mathematics subject classification (Amer. Math. Soc.): primary 20 D 15; secondary 20 E 10.

1. According to Kowol (1977) a group G is called semi- n-abelian, if there exists to every $g \in G$ at least one element $a(g) \in G$, depending only on g, such that $(g h)^{n}=a^{-1}(g) g^{n} h^{n} a(g)$ holds for all $h \in G$. These groups are closely connected with nilpotent groups of class $\leqslant 2$; for instance we have (see Satz 9 of Kowol (1977)): A finite semi- n-abelian group whose order is relatively prime to $n\left(n^{2}-1\right)$ is nilpotent of class $\leqslant 2$. Conversely (see Bemerkung 2 of Kowol (1977)) the following holds: A nilpotent group of class $\leqslant 2$ and of odd order is semi- n-abelian for every $n \in \mathbf{Z}$.

In this paper we transfer a question of Durbin (1967) concerning n-abelian groups (that are semi- n-abelian groups with $a(g)=e$ for all $g \in G$) to the case of semi- n-abelian groups: Which finite groups are semi- n-abelian for all $n \in \mathbf{Z}$ and what is the minimal number k, such that G semi- n-abelian for k consecutive

[^0]numbers implies G is semi- n-abelian for all $n \in \mathbf{Z}$? This question is answered in the n-abelian case in Durbin (1967): Exactly the abelian groups are n-abelian for every $n \in \mathbf{Z}$ and $k=3$. In the case treated here we give the following answer: \mathbf{A} finite group G is semi- n-abelian for all $n \in \mathbf{Z}$ if and only if G is nilpotent with Sylow-2-subgroup abelian, Sylow-3-subgroup an element of the Levi-variety (that means $[[g, h], h]=e \forall g, h \in G$) and Sylow- p-subgroup ($p>3$) of class $\leqslant 2$. For the minimal number k we derive $k=4 ; k \leqslant 3$ is impossible, because every group of exponent n is semi- $(n-1)$-, semi- n - and semi- $(n+1)$-abelian, evidently (see Lemma 3a of Kowol (1977)).
As a consequence we derive a description of all finite groups, in particular finite 3 -groups, which are elements of the Levi-variety.
All groups considered in this paper are assumed to be finite.
2. We state the following lemma:

Lemma 1. If G is semi-m-abelian and semi-n-abelian then G is semi-mn-abelian too.

Proof. Evident.

We start with the case G is a 2-group.

Theorem 1. Let $o(G)=2^{a}$. Then the following properties are equivalent:
i) G is semi-n-abelian for 4 consecutive integers.
ii) G is abelian.
iii) G is semi-2-abelian.
iv) G is semi-n-abelian for every $\boldsymbol{n} \in \mathbf{Z}$.

Proof. ii) \Leftrightarrow iii) is part of Lemma 11, c in Kowol (1977).
i) \Rightarrow ii) We use induction on the order $o(G)$ of G. Since property i) is hereditary to homomorphic images (see Bemerkung 10 in Kowol (1977)) we can assume that all non-trivial ones are abelian. This implies $o\left(G^{\prime}\right)<2$ and $c(G)<$ $2-c(G)$ denoting the class of G. Thus we can apply Hilfssatz III.1.3a of Huppert (1967) and obtain $\left[g^{2}, h\right]=e$ for all $g, h \in G$, which means $g^{2} \in Z(G)$ for all $g \in G$. Now among the 4 consecutive integers for which G is semi-nabelian there exists exactly one, denoted by m, which fulfills $m \equiv 2(\bmod 4)$, that is $m=4 s+2$. Taking into account that $g^{2} \in Z(G)$ for all $g \in G$ the definition of a semi- m-abelian group gives the equality $(g h)^{m}=g^{m} h^{m}$. Using
finally Hilfssatz III.1.3b of Huppert (1967) we derive

$$
(g h)^{2}=(g h)^{4 s+2}(g h)^{-4 s}=g^{4 s+2} h^{4 s+2}\left(g^{4 s} h^{4 s}[h, g]\binom{4 s}{2}\right)^{-1}=g^{2} h^{2}
$$

thus G is abelian and ii) holds.
ii) $\Rightarrow \mathrm{iv}) \Rightarrow \mathrm{i})$ is evident.

The next case we want to treat of is $o(G)=3^{a}$. For this we need the following.

Lemma 2. Let $o(G)=3^{a}$. If G is semi-2-abelian then $c(G)<3$.

Proof. We can assume $\exp G>3$. Since 2 is a primitive root mod $\exp G, G$ is semi-5-abelian too, because of Lemma 1. The proof of Satz 19 in Kowol (1977) then implies the regularity of G. Thus we have G^{\prime} is abelian by Satz III.10.3b in Huppert (1967). According to Lemma 5 of Kowol (1977) the property of being semi-2-abelian is hereditary to subgroups of G. Therefore we can assume using an induction argument that all proper subgroups of G have class $\leqslant 3$. We distinguish three cases:
a) G is generated by at least 4 elements. Then each subgroup of G which is generated by 3 elements has class $\leqslant 3$, therefore $c(G) \leqslant 3$ by Satz III.6.10 of Huppert (1967).
b) The minimal number of generators of G is exactly 3 . Since G^{\prime} is abelian we can apply Theorem 1.3 of Gupta (1965) in this case and we again have $c(G) \leqslant 3$.
c) $G=\langle a, b\rangle$. The regularity of G then implies G^{\prime} cyclic (see Satz III.10.3b of Huppert (1967)) thus $K_{3}(G):=\left[G^{\prime}, G\right] \subseteq\left(G^{\prime}\right)^{3}$ since $\left(G^{\prime}\right)^{3}$ is the only maximal subgroup of G^{\prime}.

On the other hand Lemma 4d of Kowol (1977) with $n=2$ implies $\left[G^{3}, G\right] \subseteq$ $C_{G}\left(G^{2}\right)=Z(G)$. Because of the regularity of G we have $\left[G^{3}, G\right]=\left(G^{\prime}\right)^{3}$ (Satz III.10.8c of Huppert (1967)) which together with the above result yields $K_{3}(G)$ $\subseteq\left(G^{\prime}\right)^{3}=\left[G^{3}, G\right] \subseteq Z(G)$ which means $c(G) \leqslant 3$.

Theorem 2. Let $o(G)=3^{a}$. Then the following properties are equivalent:
i) G is semi-n-abelian for 4 consecutive integers.
ii) G is semi-2-abelian.
iii) G is semi-3-abelian and $c(G) \leqslant 3$.
iv) G is a homomorphic image of a subgroup of the direct product $P \times H$ where P is a finite group of exponent 3 and H is a finite 3-group with $c(H)=2$.
v) G is semi-n-abelian for every integer n.
vi) $[[g, h], h]=e \forall g, h \in G$.

Proof. i) \Rightarrow ii) Let G be semi-n-abelian for $n \in I=\{i, i+1, i+2, i+3\}$. Then there exists an element $k \in I$ with $k-1 \in I$ and $k \equiv 2(\bmod 3)$. If $k \equiv 2$, $5(\bmod 9)$ then k is a primitive root $\bmod 3^{n}$ for all $n \in \mathbf{N}$ (see for example Satz 43 of Scholz-Schönberg (1973)), in particular for the modulus $\exp G=3^{b}$. If on the other hand $k \equiv 8(\bmod 9)$, then by Lemma $1 G$ is semi- $k(k-1)$-abelian too and we have $k(k-1) \equiv 8 \cdot 7 \equiv 2(\bmod 9)$, which means $k(k-1)$ is a primitive root $\bmod \exp G$. Combining both results we have shown the existence of an integer m such that G is semi- m-abelian and m is a primitive root mod $\exp G$. Therefore there exists a natural number r with $m^{r} \equiv 2(\bmod \exp G)$; now Lemma 1 implies that G is semi- m^{r}-abelian hence semi-2-abelian.
ii) \Rightarrow iii) By Lemma 2 we know that $c(G) \leqslant 3$. Now G is semi-2-abelian thus we have by Lemma 5 of Kowol (1977): $\left(g^{2} h\right)^{2}=g^{3} h^{2} g$ which is equivalent to

$$
\begin{equation*}
h g^{2} h=g h^{2} g \forall g, h \in G \tag{1}
\end{equation*}
$$

We calculate ($\left.g^{2} h\right)^{3}$ using (1) twice:

$$
\begin{aligned}
\left(g^{2} h\right)^{3} & =\left(g^{2} h\right)^{2}\left(g^{2} h\right)=g^{3} h^{2} g g^{2} h=g^{3}\left(h^{2} g^{2} h^{2}\right) h^{-2} g h \\
& =g^{3} g h^{4}\left(g h^{-2} g\right) h=g^{4} h^{4} h^{-1} g^{2} h^{-1} h=g^{4} h^{3} g^{2}
\end{aligned}
$$

which is equivalent to G is semi-3-abelian by Lemma 5 of Kowol (1977).
iii) \Rightarrow iv) Essentially this is Satz 13 of Kowol (1977)-there it was shown that G is an element of var $\bar{P} \cup$ var \bar{H}, where \bar{P} is a finite group of exponent 3 and \bar{H} is a finite 3-group with $c(\bar{H})=2$ (the finiteness of \bar{P}, \bar{H} is not stated explicitly but follows from the proof). Since var $\bar{P} \cup \operatorname{var} \bar{H}=\operatorname{var}(\bar{P} \times \bar{H})$, this means that G is a homomorphic image of a subgroup of the infinite direct product of $\bar{P} \times \bar{H}$. By Lemma 4.3 of Higman (1959) it suffices to take only finite direct products of $\bar{P} \times \bar{H}$, but these always are of the form $P \times H$, where P is a finite group of exponent 3 and H is a finite group of class 2 , thus iv) holds.
iv) $\Rightarrow v$) By Lemma 3a of Kowol (1977) finite groups of exponent 3 are semi- n-abelian for all $n \in \mathbf{Z}$, since there can occur only the cases: semi- 0 -, semi-1- and semi-(-1)-abelian. On the other hand according to Bemerkung 2 of Kowol (1977) all finite 3-groups of nilpotence class 2 are semi- n-abelian for all $n \in \mathbf{Z}$ too. Thus P and H (in the notation of condition iv)) satisfy the law $\left(g^{2} h\right)^{n}=g^{n+1} h^{n} g^{n-1} \forall g, h \in G, \forall n \in \mathbf{Z}$ (Lemma 5 of Kowol (1977)). Since G lies in the variety generated by P and H and since $o(G)$ is odd we derive using Lemma 5 of Kowol (1977) once more that G is semi- n-abelian for all $n \in \mathbf{Z}$, hence v).
$v) \Rightarrow i)$ is trivial.
iv) $\Rightarrow \mathrm{vi}$) According to Satz III.6.6 of Huppert (1967) P fulfills condition vi) and so does H, evidently, therefore we have

$$
G \in\left\{K,[[g, h], h]=e \forall g, h \in K, g^{\exp G}=e, \forall g \in K\right\}=\mathfrak{Z}
$$

that means G is element of the Levi-variety \mathcal{R}.
vi) \Rightarrow iii) If G is an element of the Levi-variety \mathfrak{R}, then Satz III. 6.5 of Huppert (1967) first implies $c(G) \leqslant 3$. On the other hand using Hilfssatz III.6.4 of Huppert (1967) we know that $[g, h]$ commutes with g (and h)

$$
\begin{equation*}
[[g, h], g]=e \forall g, h \in G . \tag{2}
\end{equation*}
$$

Applying this we get

$$
\begin{aligned}
\left(g^{2} h\right)^{3} & =g^{2}\left(h g^{2}\right) h g^{2} h=g^{2} g^{2} h\left[h, g^{2}\right] h g^{2} h \\
& =g^{4} h h\left(g^{2} h\right)\left[h, g^{2}\right]=g^{4} h^{2} h g^{2}\left[g^{2}, h\right]\left[h, g^{2}\right] \\
& =g^{4} h^{3} g^{2},
\end{aligned}
$$

which means that G is semi-3-abelian (Lemma 5 of Kowol (1977)).
Note. a) Condition iv) can also be used to rephrase the theorem in terms of varieties of groups: for example we have: the variety generated by all finite semi-2-abelian 3-groups is the join of the variety generated by all finite groups of exponent 3 and the variety generated by all finite 3 -groups of class 2 .
b) Condition vi) of the theorem yields other already known equivalences:
vii) Conjugate elements of G commute (see Huppert (1967), Hilfssatz III.6.4).
viii) $[[g, h], g]=e \forall g, h \in G$ (see also Levi-v.d. Waerden (1932)).

Theorem 2 can be used to give a description of all finite groups satisfying the law $[[g, h], h]=e$-it seems that this characterization has not appeared in the literature yet.

Corollary. Let G be a finite group. G satisfies the law $[[g, h], h]=e$ if and only if G is nilpotent such that the class of every Sylow-p-subgroup is <2 for $p \neq 3$ and the Sylow-3-subgroup is a homomorphic image of a subgroup of $P \times H$ where P is a finite group of exponent 3 and H is a finite 3-group of class 2.

Proof. The result follows immediately from Satz III.6.5 of Huppert (1967) and Theorem 2.

We now turn to the general case; here G_{p} denotes as usually a Sylow- p-subgroup of G.

Theorem 3. For a finite group G the following properties are equivalent:
i) G is semi-n-abelian for 4 consecutive integers.
ii) G is nilpotent with G_{2} abelian, G_{3} a homomorphic image of a subgroup of $P \times H$, where P is a finite group of exponent 3 and H is a finite 3-group of class $c(H)=2$ and G_{p} has nilpotency class $c\left(G_{p}\right) \leqslant 2$ for $p>3$.
iii) G is semi-2-abelian.
iv) G is semi-n-abelian for all integers n.

Proof. i) \Rightarrow ii) Let G be semi- n-abelian for $n \in I=\{i, i+1, i+2, i+3\}$. First we claim that for $(p, 6)=1$ the Sylow- p-subgroup G_{p} is a direct factor of G and has class $\leqslant 2$. This statement follows using Satz 7 of Kowol (1977), since one cannot have $p \mid n\left(n^{2}-1\right)$ for all $n \in I((p, 6)=1)$, thus $G=G_{p} \times G_{p^{\prime}}$. Now condition i) is hereditary to homomorphic images so we get by induction $G=G_{\{2,3\}} \times G_{\{2,3\}^{\prime}}$ where $G_{\{2,3\}}$ satisfies condition ii) (as usual G_{π} denotes a Hall π-subgroup of G and π^{\prime} is the set of all primes not in π but dividing $o(G)$).

Now let G be a group with $o(G)=2^{a} 3^{b}$ and let G be semi- n-abelian for all $n \in I . G$ is solvable, and we may assume $a>0, b>0$. First we claim that G is nilpotent. To prove this we assume indirectly that all homomorphic images of G are nilpotent but G itself is not. Then by well-known results of Ore (see also Huppert (1967), Satz II.3.2 and Satz II.3.3) we have: there exists exactly one minimal normal subgroup N of G, with $o(N)=p^{c}$ and $C_{G}(N)=N$, and if U is a maximal, non-normal subgroup of G, then $G=N \cdot U, N \cap U=E$ and U does not possess any non-trivial normal subgroup of order p^{d}. In our case this last condition yields $o(N)=2^{a}$ or $o(N)=3^{b}$.

1) $o(N)=2^{a}$. Choose $g \in G(g \neq e)$ with $g^{3}=e$ and $n \in I$ with $n \equiv 1$ $(\bmod 3)$ then we get using Lemma 4 c of Kowol (1977)

$$
\left(g^{2} h\right)^{n}=g^{n+1} h^{n} g^{n-1}=g^{2} h^{n}=g^{2 n} h^{n}
$$

and thus

$$
\left(h g^{2}\right)^{n}=\left(g^{-2} g^{2} h g^{2}\right)^{n}=g^{-2}\left(g^{2} h\right)^{n} g^{2}=h^{n} g^{2}=h^{n} g^{2 n}
$$

Now Baer (1951/52), p. 173, Folgerung 2 implies $g^{2 n}=g^{2} \in C_{G}\left(\left\langle G^{n-1}\right\rangle\right)$. Assume $G^{n-1} \neq E$; then we have $N \subseteq\left\langle G^{n-1}\right\rangle$ and therefore $g^{2} \in C_{G}(N)=N$, but $g^{3}=e, g \neq e$. Therefore it follows $\exp G \mid(n-1)$. If $n \in I$, then either $n+1 \in I$ or $n-2 \in I$, thus we have that G is semi-($\pm 2)$-abelian, which by Lemma 3 of Kowol (1977) implies that G is semi-2-abelian, too. But Satz 7 of Kowol (1977) yields the nilpotence of G, contrary to the assumption.
2) $o(N)=3^{b}$. In this case we have $o(U)=2^{a}$ and $G / N \cong U$, which implies U semi- n-abelian for all $n \in I$, too. Theorem 1 yields that U is abelian and therefore $G^{\prime} \subseteq N$ and G^{\prime} is nilpotent. Corollary 2 in Baer (1957), p. 159 gives $U / \operatorname{Core}_{G} U$ is cyclic and since N is the only minimal normal subgroup of G we get $\operatorname{Core}_{G} U=E\left(o\left(\operatorname{Core}_{G} U\right) \mid 2^{a}\right)$ and thus U is cyclic itself. Assume that $\exp U>2$. Then we choose an element $g \in U, g \neq e$, with $g^{4}=e$ and $n \in I$ with $n \equiv 1(\bmod 4)$. As in 1) above we obtain $g^{2} \in C_{G}(N)=N$ or $\exp G \mid$ $(n-1)$ which in both cases gives a contradiction.

Therefore we have $\exp U=2$ and since U is cyclic we get $o(U)=2$ and $o(G)=2 \cdot 3^{b}$. According to Scott (1964), 7.2.15 G is supersolvable, in particular $o(N)=3$ and $o(G)=6$. Since G is not nilpotent $G \cong S_{3}$. But it is easy to see that S_{3} never is semi- n-abelian for n even, thus we have a contradiction.

Having proved the nilpotency of G the further results in ii) now follow from Theorems 1 and 2.
ii) \Rightarrow iii), iv) This follows immediately from Theorem 1,2 and Bemerkung 2 in Kowol (1977), noting that direct products of semi-n-abelian groups are semi-nabelian again.
iv) $\Rightarrow i$) is trivial.
iii) \Rightarrow ii) If G is semi-2-abelian, Satz 7 of Kowol (1977) implies the nilpotency of G and $c\left(G_{p}\right) \leqslant 2$ for $p>3$. The remaining part of ii) follows from Theorems 1 and 2.

References

R. Baer (1957), "Classes of finite groups and their properties", Illinois J. Math. 1, 115-187.
R. Baer (1951/52), "Endlichkeitskriterien für Kommutatorgruppen", Math. Ann. 124, 161-177.
J. R. Durbin (1967), "Commutativity and n-abelian groups", Math. Z. 98, 89-92.

Ch. K. Gupta (1965), "A bound for the class of certain nilpotent groups", J. Austral. Math. Soc. 5, 506-511.
G. Higman (1959), "Some remarks on varieties of groups", Quart. J. Math. Oxford (2)10, 165-178.
B. Huppert (1967), Endliche Gruppen I (Springer, Berlin-Heidelberg-New York).
G. Kowol (1977), "Fast-n-abelsche Gruppen", Arch. Math. 29, 55-66.
F. W. Levi and B. L. van der Waerden (1932), "Uber eine besondere Klasse von Gruppen", Abh. Math. Sem. Univ. Hamburg 9, 154-158.
A. Scholz and B. Schönberg (1973), "Einführung in die Zahlentheorie" (W. de Gruyter, Berlin-New York).
W. R. Scott (1964), Group theory (Prentice Hall, Englewood Cliffs).

Department of Mathematics
 University of Vienna
 1090 Vienna
 Austria

[^0]: © Copyright Australian Mathematical Society 1981

