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In this volume, we are proud to present two invited edi-
torials that provide guidance for future gene-
by-environment interaction (G × E) studies. Ruud van
Winkel (2014) argues that the field needs to undergo a
conceptual shift related to our expectations – we need
to shift focus away from the assumption that G × E stud-
ies are new tools to help ‘hunt for genes’. Instead, these
studies can help partition subgroups of affected indivi-
duals, who aremore likely to share aetiology and patho-
genetic mechansims. This partitioning, in turn, may
help to identify biological mechanisms associated
with relevant environmental exposures (henceforth
exposures) and/or risk alleles. Van Winkel reminds us
that clinical diagnostic boundaries (which have been
used to define caseness in genomewide association
studies; GWAS), do not capture genetic nor neurobio-
logical reality. Nor should they define tight linkages
between exposures and psychiatric disorders.

In the second invited editorial, Anna Vinkhuyzen
and Naomi Wray outline two modern analytic strat-
egies that can help advance the G × E field
(Vinkhuyzen & Wray, 2014). Wray and her colleagues
have made key contributions to the field of statistical
genetics and were pioneers in the application of
Genomic Risk Profile Scores (GRPS) in human genetics
(Purcell et al. 2009; Wray & Visscher, 2010; Lee et al.
2013). Vinkhuyzen and Wray highlight the properties
of the GRPS and provide guidance on how this meas-
ure can be incorporated into standard epidemiological
analytic models. GRPS are quantitative estimates of an
individual’s aggregated genetic risk for a particular
disease. The ability to include a continuous measure
of genetic liability in statistical models is an important
advance for the field (more on this topic below). Wray
and colleagues have also pioneered single nucleotide

polymorphism (SNP)-based heritability estimates for
quantitative traits (Yang et al. 2010, 2013) and disease
traits (Lee et al. 2011). In their editorial, Vinkhuyzen
and Wray outline mixed linear model methods that
can incorporate both SNP and exposure data into the
matrix of pairwise comparisons.

The G × E field has moved slowly, partly due to the
lack of informative datasets (McGrath et al. 2013), but
also because the traditional methods may have oper-
ated as ‘intellectual flypaper’. The field has become
somewhat preoccupied with G × E technical issues
related to (a) scale (e.g., disease v. liability), (b) the
nature of the interplay (e.g., dissecting out product–
term interaction and gene–environment correlation,
etc.) and (c) interpreting the findings (e.g., the bio-
logical meaning of results that suggest additive v.
multiplicative interplay). These issues can be difficult
to follow (Zammit et al. 2010) which in turn may
have stifled scientific progress (thus ‘sticky’). The two
editorials provide welcome suggestions on how the
field can move forward.

The GRPS offers other properties of interest to the
G × E field. As the discovery samples used to generate
disease-specific GRPS increase, the scores become
more powerful with respect to both disease-linked
risk alleles and disease-linked exposures. If an exposure
is linked to a disease, and if this exposure is influenced
by common variants, then exposure-linked variants
will be automatically incorporated into the disease-
specific GRPS. The task for the research community
will be to develop tools to decipher this cryptic infor-
mation. This property is a ‘by-catch’ for the field –
while looking for genes that directly impact on disease
risk (i.e., the main goal of the exercise), the GRPS will
blindly incorporate clues related to environmental risk
factors for the disease of interest. While epidemiolo-
gists did not expect this innovation, statistical geneti-
cists may have provided our field with a ‘Rosetta
Stone’ to help translate clues from genetics into candi-
date environmental risk factors.
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Significant associations between (a) exposure-linked
SNPs v. (b) diseases linked to the exposure of interest,
are well described in the current literature. For example,
the links between risk alleles near certain nicotinic
receptors (the CHRNA5-A3-B4 gene cluster) on
Chromosome 15 provide an interesting pointer to
what might lie ahead for GRPS (Ware et al. 2012).
A set of SNPs in this region is linked to disease pheno-
types such as peripheral arterial disease, chronic
obstructive pulmonary disease, airflow obstruction,
and lung cancer. In addition, the same SNPs are strong-
ly associated with smoking behaviour and nicotine
dependence. Because the link between smoking behav-
iour and lung disease is beyond reasonable doubt, this
pattern of finding strongly suggests that common var-
iants in this region influence smoking behaviour direct-
ly, and then lung disease indirectly via exposure to
smoking. It can be deduced that (a) if smoking is a risk-
modifying factor for lung cancer and (b) if theGRPS dis-
covery sample includes a reasonable proportion of indi-
viduals who smoke, and (c) if smoking is influenced by
common variants, then (d) the lung cancer-specific
GRPS will be automatically enriched with these
smoking-related variants.

It is a small step to speculate how a well-powered
GRPS might amplify the properties of (a) SNPs linked
to one causal variant that influences one disease-related
exposure v. (b) SNPs linked to all causal variants that influ-
ence all disease-related exposures. In a thought experiment
where we have a well-powered lung cancer-specific
GRPS, it would not be necessary to specify the particu-
lar risk alleles linked to smoking behaviour. The GRPS,
by definition, collects information across the genome, in
a hypothesis-free fashion. Thus, the GRPS will blindly
harvest SNPs linked to all disease-related exposures –
both known and unknown (see Fig. 1).

Armed with a powerful GRPS, the researcher can
then go to an independent sample (e.g., a general
population sample) – there is no need to enrich the
sample for lung cancer or smoking above that found
in the general community. This sample needs both
SNP data and exposure data related to a panel of candi-
date environmental risk factors associated with lung can-
cer. This panel will likely contain a mix of some true
risk modifiers (i.e., causal agents), some proxy risk
indicators that are strongly correlated with risk modi-
fiers, and some candidates that are false leads. First,
the lung cancer-specific GRPS needs to be calculated
for the independent samples, based on the weighted
risk alleles. Everyone will get a score that estimates
the liability to lung cancer based on common variants.
Next the association between the lung cancer-specific
GRPS v. each of the candidate exposures included in
the panel is explored. It is predicted that causal expo-
sures are more likely to be significantly associated

with the GRPS compared with the false leads included
in the exposure panel. Proxy risk factors (strongly cor-
related with causal exposures) will also be more likely
to be significantly associated with the GRPS (akin to
SNPs in linkage disequilibrium).

This strategy could allow the diligent researcher to
‘fine map’ the environmental exposures of interest in
future studies. For example, within a general popula-
tion sample, a GWAS for the candidate exposure
could be done only in those with high disease-specific
GRPS (e.g., the top quartile). When the genetic archi-
tecture of both the disease and exposure of interest
are highly polygenic, the particular risk alleles contrib-
uting to a disease-specific GRPS may not be shared by
others in the same GRPS strata (i.e., many different risk
alleles may push individuals into top GRPS quartile).
Van Winkel (2014) reminds us to expect this type of
heterogeneity (the ‘unique disease principle’). A
GWAS for the candidate exposure in subgroups strati-
fied by disease-linked GRPS may reveal strongly asso-
ciated SNPs linked to biological pathway of interest to
both (a) the disease underpinning the original GRPS
and (b) the exposure driving the GWAS. These candi-
date SNPs can then be taken back to case–control
studies for hypothesis-driven G × E analyses. Pathway-
specific GRPS can also be derived. For example, nested
within the disease-specific GRPS, a subscore could be
generated for SNPs in or close to genes involved in
biological pathways of interest. As outlined by
Vinkhuyzen & Wray (2014), these bespoke GRPS can
be included in epidemiological statistical models. The
methods could also isolate subgroups that share aeti-
ology or pathogenesis, as proposed by van Winkel
(2014). This analytic framework can help reduce the
risk architecture ‘search space’, and rank-known candi-
date exposures and risk alleles. This, in turn, can help
catalyse the generation of new hypotheses.

There are important caveats to this application of
out-of-sample risk-profiling. Variants may have pleio-
tropic properties. Thus, a set of SNPs may impact on
more than one disease phenotype (e.g., both risk of
lung cancer and also the risk of nicotine dependence).
Biological plausibility can help weigh up this issue.
Environmental exposures often cosegregate in a social-
ly patterned matrix (e.g., education, socioeconomic sta-
tus, risk of mental illness, risk of substance use,
exposure to trauma etc.), thus unmeasured residual
confounding may underlie an association between
some candidate risk factors and a disease. This con-
founding may be mirrored in the analytic strategies
proposed in the two editorials and in the methods
described above.

Twin and family studies have demonstrated that
many environmental events (e.g., trauma exposure)
are heritable (Kendler & Baker, 2007). Thus, if
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environmental exposures impact on the risk of adverse
mental health outcomes, they may be detected using
GRPS in an out-of-sample profile framework. Will
these new additions to the G × E toolkit unmask previ-
ously unsuspected exposures and risk alleles? This
remains to be seen, but it is heartening to know that

if we can generate large genotyped sample with
detailed information on exposures, we have some
innovative methods to explore. The vision outlined
by van Winkel (2014) and by Vinkhuyzen & Wray
(2014) offers important new leads to guide the research
community.

Fig. 1. While simplified, the figure outlines how common variants can directly impact on the risk of developing a disease (yellow
arrow). In addition, environmental exposures (e.g. diet, substance use, trauma) may also directly impact on the risk of developing
this same disease (pink arrow). However, if common variants are associated with the environmental exposure of interest, these
will also be identified in the GWAS. GRPS are based on large GWAS studies, and will incorporate information related to direct
risk alleles (yellow bars in the GWAS ‘Manhattan’ plot) and exposure related risk alleles (pink bars in the GWAS ‘Manhattan’
plot).
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