NOTES ON NUMERICAL ANALYSIS III

Further Remarks on Sectionally Linear Functions

Hans Schwerdtfeger

(received August 11, 1960)

This note is to complement the earlier paper on the same subject (Canad. Math. Bull. 3 (1960), 41-57) in two points. The first part presents a simpler proof of the minimum property (cf. 1.c. section 3) of the orthogonal functions $\psi_{\nu}(x)$ (cf. l.c. p.46). In the second part we introduce another orthogonal system of sectionally linear functions $\chi_{0}(x), \ldots, \chi_{n}(x)$ which leads to a particularly simple interpolation formula. These functions appeared, mutatis mutandis, in the author's study on sectionally linear functions over an infinite range about which a report will be given elsewhere.

1. Minimum property of the functions $\psi_{v}(x)$. Since the functions $\psi_{0}(x), \ldots, \psi_{n}(x)$ are linearly independent, it will be possible to express the $\phi_{\nu}(x)$ as linear combinations of the $\psi_{v}(x)$, viz.

$$
\begin{aligned}
\phi_{0}(x)= & \psi_{0}(x), \phi_{1}(x)=\psi_{1}(x)-\alpha_{0}^{(1)}, \ldots, \\
\phi_{m}(x)= & \psi_{m}^{(x)+\beta_{m}^{(1)} \psi_{m-1}(x)+\beta_{m}^{(2)} \psi_{m-2}(x)+\ldots} \\
& +\beta_{m}^{(m)} \psi_{0}(x), \ldots
\end{aligned}
$$

with certain numerical coefficients $\beta_{\mathrm{m}}^{(\mu)}$ Hence

$$
f_{m}(x)=\eta_{0}+\eta_{1} \psi_{1}(x)+\ldots+\eta_{m-1} \psi_{m-1}(x)+\psi_{m}(x)
$$

with coefficients η_{μ} depending linearly on the ξ_{μ}. Thus with regard to the orthogonality relations

$$
\begin{equation*}
\left(\psi_{\mu}, \psi_{\nu}\right)=0 \tag{2}
\end{equation*}
$$

Canad. Math. Bull. vol. 4, no. 1, January 1961
and
(4):

$$
\begin{gathered}
\left(\psi_{\mu}, \psi_{\mu}\right)=\sigma_{\mu}: \\
\left(f_{m}, f_{m}\right)=\sigma_{0} \eta_{0}^{2}+\sigma_{1} \eta_{1}^{2}+\ldots+\sigma_{m-1} \eta_{m-1}^{2}+\left(\psi_{m}, \psi_{m}\right)
\end{gathered}
$$

This will have its least possible value if all η_{μ} vanish, that is if $f_{m}(x)=\psi_{m}(x)$, q.e.d.

It need hardly be mentioned that this method of proof is well known.
2. An orthonormal system of sectionally linear functions. We consider the following system of $n+1$ sectionally linear functions:

$$
\begin{aligned}
\chi_{0}(x)= & \phi_{0}(x)-\frac{1}{x_{1}-x_{0}} \phi_{1}(x)+\frac{1}{x_{1}-x_{0}} \phi_{2}(x), \\
\chi_{v}(x)= & \frac{1}{x_{v}-x_{v-1}} \phi_{v}(x)-\frac{x_{v}+1-x_{v-1}}{\left(x_{v}+1-x_{v}\right)\left(x_{v}-x_{v-1}\right)} \phi_{v+1}(x) \\
& +\frac{1}{x_{v}+1-x_{v}} \phi_{v+2}(x) \quad(v=1,2, \ldots, n-2), \\
\chi_{n-1}(x)= & \frac{1}{x_{n-1}-x_{n}-2} \phi_{n-1}(x)-\frac{x_{n}-x_{n-2}}{\left(x_{n}-x_{n-1}\right)\left(x_{n-1}-x_{n}-2\right)} \phi_{n}(x), \\
X_{\cdot n}(x)= & \frac{1}{x_{n}-x_{n-1}} \phi_{n}(x) .
\end{aligned}
$$

It is readily established that

$$
\chi_{v}(x)=\left\{\begin{array}{l}
0 \text { for } x \leq x_{v-1} \\
\text { linear increasing for } x_{v-1} \leq x \leq x_{v} \\
1 \text { for } x=x_{v} \\
\text { linear decreasing for } x_{v} \leq x \leq x_{v+1} \\
0 \text { for } x \geq x_{v+1}
\end{array}\right.
$$

where for $v=0$ the first two, for $\nu=n$ the last two entries are to be neglected. These functions represent an orthonormal system:

$$
\left(\chi_{\mu}, x_{\nu}\right)=\chi_{\mu}\left(x_{v}\right)= \begin{cases}0 & \text { if } \mu \neq \nu \\ 1 & \text { if } \mu=\nu\end{cases}
$$

and therefore a basis of the space of all sectionally linear functions over the partition P_{n}.

Any such function can thus be written in the form

$$
f(x)=\sum_{\nu=0}^{n} b_{\nu} \chi_{v}(x)
$$

with the coefficients

$$
b_{v}=\left(f, \quad \chi_{\nu}\right)=f\left(x_{\nu}\right) .
$$

The coefficients, being the "vertex values" of the function $f(x)$, therefore require no computation at all. In particular one has

$$
\begin{aligned}
\phi_{v}(x)= & \left(x_{v}-x_{v-1}\right) \chi_{v}(x)+\left(x_{v+1}-x_{v-1}\right) \chi_{v+1}(x)+\ldots \\
& +\left(x_{n}-x_{v-1}\right) \chi_{n}(x), \quad(v=1,2, \ldots, n), \\
\phi_{0}(x)= & 1=\chi_{0}(x)+\chi_{1}(x)+\ldots+\chi_{n}(x) .
\end{aligned}
$$

It may be pointed out that in the sum

$$
f(x)=\Sigma_{\nu=0}^{n} f\left(x_{\nu}\right) \chi_{\nu}(x)
$$

for every fixed value of x in the interval $[a, b]$ at most two, consecutive, terms are different from zero: If $x_{m} \leq x \leq x_{m+1}$,

$$
f(x)=f\left(x_{m}\right) \chi_{m}(x)+f\left(x_{m+1}\right) \chi_{m+1}(x)
$$

McGill University

