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A phase-changing dry snowpack model
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ABSTRACT. An interacting continua framework is adopted to model a dry
snowpack, which is viewed as a three-constituent mixture composed of an ice matrix
whose pore space is occupied by water vapour and dry air. We focus on the response of
a one-dimensional vertical snowpack to changes in pressure and temperature at its
surface. The time-scale of the surface forcing is assumed to be much longer than the
time-scale for thermal transfers and phase change to take place. The constituents are,
therefore, in thermal equilibrium with a common temperature 7' which is governed by
a single bulk-energy balance. In addition, each constituent satisfies a mass and
momentum balance. The constitutive postulates and external prescriptions necessary
to close the system of equations are discussed in detail. Non-dimensional variables are
then introduced formally to draw out the major balances in the equations and
construct a reduced system that accurately models the dominant features in the
snowpack. It is shown how the effects of phase change enter the leading-order balance.
An iterative procedure is constructed to solve the system. Illustrations for the case of a

sinusoidal annual temperature gradient imposed at the surface are presented.

NOMENCLATURE

CF[,. le‘, Cg Specific heats of ice, air and vapour
D

T T

vt uY

Temperature mean and its amplitude of
fluctuation
Vertical velocity of the ice, air and vapour

Diffusion coefficient of water vapour in Uy 5t Velocity magnitude of air and vapour
snow 2 Vertical coordinate
q Gravitational acceleration 2" Length scale
k Permeability of the snowpack T Non-dimensional parameters
K', K4 KV Thermal conductivities of ice, air and &, 5" Volume fraction of air and vapour per unit
vapour gas volume
e Latent heat of sublimation o* Magnitude of the vapour-volume fraction
m' Rate of mass supply to the ice from the i Viscosity of moist air
vapour ot Intrinsic density of ice, air and vapour
0%, pY Intrinsic pressure of ice, air and vapour P p, pY Partial density of ice, air and vapour per
7, 0%, p" Partial pressure of ice, air and vapour per unit mixture volume
unit mixture volume ot pY Partial density of air and vapour per unit
pA,pY Partial pressure of air and vapour per unit gas volume
gas volume p Magnitude of the air density
p© Common intrinsic gas pressure Py Magnitude of the vapour-density
Pins P Pressure mean and its amplitude of concentration
fluctuation @, ¢, P Volume fraction of ice, air and vapour per
p.Y Vapour-pressure constant unit mixture volume
Ph Non-dimensional surface gas-pressure @B Matrix porosity
variation Wiy 007 Porosity mean and its amplitude of
2o o Gas constant [or air and vapour fluctuation
t Time
. 2L Seasonal and diurnal time-scales
T Common temperature 1. INTRODUCTION
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Snowpack models have been developed to predict the
mechanical and thermal properties needed f[or engineer-
ing applications, avalanche forecasting, remote sensing
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and risk assessment in meltwater hydrology. Often, the
underlying physies is included in an ad hoc fashion and
assumptions are made without proper discussion and
justification. Here, we derive a reduced model in a
rational manner, discussing the necessary constitutive
postulates and pointing out arecas where the physics is
poorly understood or where it is not self-consistent.

Natural snowpacks in general consist of a porous ice
matrix that is occupied by liquid water and a moist gas,
composed of water vapour and dry air. However, in
maintained sub-zero temperatures, when the water
[reezes, only three constituents remain; these are called
dry snowpacks and are abundant on the Antarctic
continent. Morland and others (1990) laid down a
rigorous theoretical framework for a four-constituent
phase-changing snowpack, in which the conservation
equations for the ice, water, water vapour and air were
derived from the principles of mixture theory (Morland,
1972, 1978), assuming that each constituent has the same
common temperature 7. This theory is considerably
simplified in the special case of dry snowpacks, in which
the mass and momentum balances for the water vanish.
Also, thermal contributions from the water are no longer
present in the bulk-energy balance, and the rates of mass
supply associated with phase changes of melting/freezing
and evaporation/condensation are absent.

A simplified mixture theory for a one-dimensional
vertical snowpack that has no lateral gradients and
whose horizontal velocity components are identically
zero has been investigated by Jordan (1991) and Bader
and Weilenmann (1992). These were primarily devel-

oped to model both wet and dry snowpacks and many of

the terms which may be of importance in dry snowpacks
were neglected without proper justification. Bader and
Weilenmann (1992) assumed that both gases are
stationary and that they make no sensible- or latent-
heat contributions in the energy balance. Jordan (1991)
also assumed that the gas does not move but does allow a
latent-heat contribution due to sublimation in the
energy balance.

In order to determine the relative importance of gas
contributions in the bulk-energy balance, Gray and
Morland (1994) formulated the conservation balances
for a simple two-constituent dry snowpack model
consisting of a stationary porous matrix occupied by dry
air. Focusing on the one-dimensional vertical snowpack,
five constitutive postulates and two external prescriptions
were made to obtain a closed system which was forced by
annual surface variations in the temperature gradient and
pressure. A non-dimensional analysis of the partial
differential equations and the surface conditions deter-
mined the major balances and led to a rational reduced
model. To leading order, there is a small sensible-heat
contribution from the presence of air which modifies the
snow’s bulk thermal conductivity but there is no similar
contribution to the bulk specific heat. For slow surface-
pressure variations, the original assumption that the gas is
stationary, made by Jordan (1991) and Bader and
Weilenmann (1992), is very good since there are neither
convective terms nor pressure working terms involving
the air velocity in the energy balance. However, for faster
pressure forcing, the velocity magnitude is increased and
the work done by the gas travelling through a non-
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uniformly porous snowpack can make a significant
contribution to the energy balance.

A complete description of a dry snowpack should of
course include the third constituent, water vapour. At
these low temperatures, it occupies only a very small
volume fraction of the moist gas and its effect on the
thermal conductivity and specific heat is undoubtedly
small but latent-heat contributions through phase change
with the ice matrix could well be significant. In this
paper, we formulate a three-constituent theory for a
natural dry snowpack that includes the effects of phase
change and, in one dimension, investigates the case of a
sinusoidal surface-temperature gradient.

2. MIXTURE FRAMEWORK

A dry snowpack is a mixture (interacting continua)
composed of the three constituents ice, water vapour and
air. In each element of the snowpack there is a proportion
@" of each constituent, defined as the volume fraction of
constituent ¥ per unit mixture volume. The constituent
letters v =1, v,a will be used to refer to the ice, vapour
and air, respectively. By definition, the volume fractions
all lie between zero and one and their sum over all
constituents equals unity:

0<g” <1, ¢ +¢° +¢° = 1. (2.1}

Partial variables denoted by a lower-case superscript are
defined per unit mixture volume or area, whilst intrinsic
variables, defined per unit constituent volume or area, are
indicated by the upper-case superscript. The partial and
intrinsic densities are therefore related by a volume-
fraction scaling and we adopt the same common as-
sumptions for the scaling of partial and intrinsic stress.
Thus, for constituent v the density p” and stress " satisfy

=g, F=id, (2.2)

o = ~Ltx(e"), (23)

is related to the intrinsic pressure by the same lincar
volume-fraction scaling. The constituent velocity fields v,
however, are associated with the mixture in the sense that
p’v" determines the mass flux per unit mixture cross-
section in the derivation of the usual mass-conservation
equation for each constituent, while the derivation of the
usual conservation equations of momentum and energy
for each constituent also identifies v" as the intrinsic
velocity. Morland (1992) showed that this also requires
the assumption of equal areas and volume [ractions,
independent of the orientation of the cross-section.
Introducing an anisotropic structure will therefore
require re-examination of the velocity interpretation
and of the momentum and energy fluxes. The present
equations, then, are not necessarily appropriate to a
structured snowpack.

Mixture theory lays down the conservation laws of
mass, momentum and energy for each constituent,
including the mechanical and thermal interaction effects
between constituents. Following Gray and Morland
(1994), we focus our attention on a one-dimensional
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vertical snowpack in which there are no lateral gradients
and the horizontal velocity components are identically
zero. The coordinate z measures distance in the vertically
upward sense and v" is the vertical velocity of constituent
. Mass conservation for constituent v is expressed by

w=i,y,a

(2.4)

where m"™ is the rate of mass supply to constituent v
from constituent w due to phase change. The rate of
mass supply from each constituent to itsell, m"”, is by
definition zero, and the rate of mass supply from
constituent ¥ to constituent w is equal but opposite in
sign to the rate of mass supply from w to v, m** = —m*".
The linear momentum halance for constituent v has the
form

G-ZL;B i 7] _1 VoV ! =
W—pg-i— Z pB =5 Z m“ " =) (2.5)

w=i,v,a w=i,0,a

where g is the constant of gravitational acceleration, p is
the bulk mixture density defined by

p= ¥

v=i,a,v

(2.6)

and pB™ is the interaction force exerted on constituent
by constituent w, namely, the force per unit mixture
volume. The interaction force of each constituent on itself,
B, is by definition zero, and the force on constituent ¥
by constituent w is equal but opposite in sign to the force
on w exerted by v, B = —B*". In the next section, we
introduce an explicit drag and also a molecular
interaction force between the miscible gases. The right-
hand side of Equation (2.5) represents momentum
transfer and were termed thrusts by Morland (1992) to
distinguish them from the interaction drags due to the
resistance to relative motion. The particular form in
Equation (2.5) was derived by postulates of linearity in
the mass transfer and relative velocity, consistent with the
total thrust relation, with a common relation for all
binary interactions.

The three constituents are in a state of thermal
equilibrium, provided that the forcing time-scale is much
longer than the time-scale [or thermal transfers between
constituents, which is assumed here. Thus, all constituents
have a common temperature, 7', and there is a single bulk
energy balance expressed by

> ey Vol g B D¥

v=t.a Jﬂ Dt (’f)p Dt
3] i O L o - ;
—e | BPRN — | | = 0V g L T 4 % Es
0z Oz

(2.7)

where for constituent v, C'I’," is the specific heat at constant
pressure, r” is the rate of external energy supply per unit
volume of mixture (e.g. solar radiation), KN is the
thermal conductivity and L, is the latent heat released
due to phase change from constituent w. The convected
derivative D, /Dt, defined as
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D, 8 .8

is a measure of the change following a particle of
constituent . These equations parallel Gray and
Morland (1994) with one extra mass and momentum
balance for the water vapour. Here, however, phase
change between cach of the constituents must be
considered and the resulting rates of mass supply
contribute to each of the balances in Equations (2.4),
(2.5) and (2.7). It has been pointed out by a reviewer that
even small differences in constituent temperatures can
have significant effects upon the mass-transfer rates
(Adams and Brown, 1989, 1990). Since our later reduced
equations show that the mass transfer influences the
leading-order rate of volume-fraction change, this sim-
plifying common temperature assumption may not
always be satisfactory, and comparison is needed to
assess the range of validity.

3. CONSTITUTIVE PROPERTIES

The conservation principles yield three mass balances in
Equation (2.4), three momentum balances in Equation
(2.5) and one energy balance in Equation (2.7), and in
addition the volume-fraction sum equals unity, Equation
(2.1), and the first stress invariant defines the mean
pressure, Equation (2.3), a total of 11 conditions. For
simplicity, we neglect the partial-intrinsic variable
relations in the equation count and need not distinguish
between these two types in the variable count. It follows
that the conservation equations contain three volume
fractions, three densities, three stress fields, three
pressures, three velocities, three rates of mass supply,
three interaction drags, in addition to three external
energy supplies and one temperature, a total of 25
variables. In order to close the model, 11 constitutive
properties are needed and three external energy supplies
must be preseribed.

The first two conditions prescribe the constitutive
properties of each of the gases. The mean pressure is
assumed to be purely hydrostatic, and equal to the
intrinsic gas pressure by Equation (2.3), obeying a perfect
gas law. Thus, for the water vapour

e =—p¥l, p'=p'RVT, (3.1)
and for the air
ot =—ptl, pr= pARAT (3.2)

where RY =4.61 x 10?2 Jkg™'K~! and R* = 2.87 x 102
Jke™' K1 (Gill, 1982) are the gas constants for the water
vapour and air, respectively. Further, a discontinuity in
pressure between the miscible vapour and dry air cannot
be supported, and the third condition is that

(3.3)
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Recall that each constituent has a common temperature
T, so assuming a common gas pressure pY and the
equations of state (3.1) and (3.2) implies that the vapour
and gas densities arce related by

PR =R, (3.4)

Note that, since RV > R*, the vapour density is less than
the air density p¥ < p*, and we might expect the vapour
to be buoyant and rise under the action of gravity. In
practice, however, small-scale turbulence ensures that the
vapour and air are always well mixed. The total gas-
volume fraction, or matrix porosity, is

F=¢' +¢'=1-¢ (3.5)

by the volume-fraction relation (2.1). Volume fractions of
vapour and air per unit volume of gas are obtained by
dividing their mixture volume fractions by the porosity:

0" = ¢" /9", 0" = ¢" /" (3.6)
where the humidity 6% satisfies §* =1 — 6*. The partial

pressures and partial densities per unit volume of gas are
defined as

v a
pvzgv,p\r’=%, pAzﬁﬂpA=%,
. (3.7
V_gv V_p_ A=9a '\:p_ )
p - P —¢,g’ 4 P (bg

where p¥ is commonly referred to as the vapour pressure and
p¥ is termed the vapour-density concentration.

Sublimation from water vapour to ice, or vice versa, is
the only permissible phase change, because the dry air is
inert. There are no phase changes between the air and the
ice matrix, or the air and the water vapour, so the rates of
mass exchange between these pairs of constituents are
identically zero, that is

mi=0, m*"=0, (3.8)

which are the fourth and fifth conditions. There remains
the rate of mass supply m'¥ due to sublimation to prescribe.
We are not aware of an established physical relation, even
though forms can be motivated (Adams and Brown, 1990;
Morland and others, 1990). We therefore adopt a
simplifying approximation that the vapour pressure p is
given in terms of temperature by an equilibrium relation,
which is the sixth condition discussed at greater length in
section 4. Prescription of m! by its own constitutive
relation would in general predict a vapour pressure not
satisfying this equilibrium relation.

Darcy’s law describes the motion of a single fluid
through a porous medium, but there is no established
theory when two miscible fluids pass simultaneously
through the ice matrix, as is the case here with water
vapour and air. Morland (1978) interpreted the usual
Darcy experiment results relating fluid flux to pressure
difference for steady uniaxial flow under uniform pressure
gradient to infer an interaction drag for matrix per-
meability k& and gas viscosity p”, which in this one-
dimensional case becomes

1%
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G 8¢V y’l}

Blr.i =3 L
I F oz .k

¢ (v — o), (3.9)

for constituent . The presence of the porosity-gradient
contribution had been noted by Garg (1971) but in many
applications it is negligible. In the absence of any
accepted two-component fluid relations, we propose to
apply Equation (3.9) for the interaction drags between
the vapour and ice, ,()BVi, and the air and ice, pBHi,
assuming that ¢ = p* = pu, which are conditions seven
and eight.

Experimental evidence suggests that in the presence of
strong temperature gradients the vapour will disperse
significantly through the air. This is driven by a molecular
interaction force (Morland, 1992) pB™ of the air on the
vapour, with corresponding force —pB*" of the vapour on
the air, possibly tempered by inter-fluid drag. However,
the form of such an interaction force is not known, so we
will first consider the conventional diffusion relation

_piBP

= (3.10)

Pt - 1) =

which relates vV to v*. This supposes that the interaction
force pBB* is just that required to impose Equation (3.10).
The mass flux p*(v¥ — v*) of the vapour relative to the air,
and the vapour-density concentration gradient dp¥/dz,
in Equation (3.10) are our interpretations of the
undefined quantities introduced by Male (1980). Male
suggested that the diffusion coefficient D has a functional
dependence on pressure and temperature but, following
Colbeck (1993), we shall assume that the diffusion
coeflicient of vapour in snow is simply five times that of
vapour in air. Given that Dy, = 2.2 x 107" m? s~ (Weast,
1988) then D =~ 10~*m?s™. This is condition nine. An
alternative approximation examined later is that v¥ =%,
imposed by an inter-fluid drag which is the extreme non-
dispersive case. This is given by setting D = 0.

We shall assume that the ice grains are rigid and have
constant density p' = 918 kg m~?; this is condition ten. In
the presence of gravity, the ice matrix collapses under its
own overburden pressure, leading to densification of the
snowpack. Yosida and others (1956), Bader (1962) and
Kojima (1964) interpreted this behaviour by means of a
linearly viscous stress relation with a compactive viscosily 1,
that is dependent on the porosity, temperature and grain-
size, deducing that this viscosity lies in the range 10! <
e < 107 kgm™'s71. Mellor (1975) concluded that the
properties were of such bewildering complexity that it was
sensible to adopt a greatly simplified description that will
dominate in a particular problem, and Gray and
Morland (in press) have derived a pressure-density
relation consistent with the same data. Here, we suppose
that the pack is pre-compacted and, instead of prescribing
the constitutive properties of the stress field o' we shall
simply assume that the ice matrix is stationary. That is,
the ice matrix has zero vertical velocity component

(3.11)

v =0,

allowing the stress component o, to be determined from
the ice-momentum balance in Equation (2.5). The
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horizontal stress components are also required to
determine the ice pressure p' defined in Equation (2.3).
For simplicity, and lacking a shear law, we assume that
the matrix shear stress is zero so that

oy =0y =0 =—p, 0,;=0 (i#]j), (3.12)
since we do not expect distinct horizontal stresses to have
a major effect in this constrained vertical motion.
Equation (3.11) in conjunction with Equadons (3.12)
determine the ice-stress field and provide the eleventh
condition. The stationary ice matrix precludes the
withdrawal of gases by matrix compaction, and is not
applicable to consolidation during the build-up of the

pack, but we may still investigate the main ellects of

surface-temperature and pressure forcing in isolation. In
the same spirit, the final three conditions eliminate solar-
radiation effects in the near-surface layers, i.e. the
external energy supplies r¥ =0, (v = i,v,a). It remains
to determine the ice-vapour mass transfer.

4. PHASE-EQUILIBRIUM THERMODYNAMICS

Natural dry snowpacks contain a small amount of water
vapour, which is free to circulate through the ice matrix.
lee may sublime into water vapour at deeper levels in the
snowpack and move upwards before resolidilying into ice,
possibly forming hoar-frost layers at some later stage.
Although compaction is probably still the dominant
process in dry snowpack densification, vapour transport
and phase change provide an alternative mechanism for
the redistribution of mass. In order to model these elfects,
a relation for the volume fraction of water vapour within
a saturated moist gas at any given temperature and
pressure is required.

As a first attempt to model the process of phase
change, it is assumed that the ice and water vapour co-
exist at all times and are in thermal equilibrium. This
means that the system must always lic on the phase
boundary between the solid and gas on a pressure
temperature phase diagram. Hence, at any temperature
and pressure, the amount of water vapour in the air is
determined by the humidity value on the phase boundary
and the phase change (which can proceed in either
direction) is just enough to keep the system in thermal
equilibrium. Along phase boundaries the change of the
chemical potential of ice, dy', equals the change in
chemical potential of the water vapour, d,u,\". At the pore
scale, the ice constituent appears as a grain with curved
surface, while the water vapour is stll intimately mixed
with the inert dry air which inhibits the exchange of
water molecules. The changes in the chemical potentials
satisfy

1
du! = 7([})1 —51dT,
P

(4.1)
|

dpV = de" B

where p¥ and pY are the partial density and pressure per
unit volume of gas (accounting for the fraction of dry air),
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3 ging dr;

respectively, and Sy and Sy are the specific entropies. For
the reversible process of sublimation these are related to
the temperature by
Liv

Sy —5r = T (4.2)
where the latent heat of sublimation is Lj, = 3 x 105 ]
kg 1. It is conventional to assume that the mechanical
equilibrium of the ice grain is described by Laplace’s
equation (Defay and Prigogine, 1951), in which the
difference of the ice pressure and the pressure exerted by
the gaseous components is balanced by the the surface
tension of the ice grain. Thus,

iv

P+t =p -t =22 )
where the interfacial energy o, = 109m]m~—2 (=~ 1071 ]
m~2) (Hobbs, 1974) and r is the mean radius of
curvature. However, the ice-momentum balance in
Equation (2.5) already determines the ice pressure p'
and the additional requirement of Equation (4.3) either
overdetermines the problem or tells us about the
evolution of the mean radius of curvature.

Equating the chemical potentals in Equation (4.1),
and using Equadons (3.1), (3.7), (4.2) and (4.3), deter-
mines the phase-equilibrium balance

do”

; - dp¥
7\l gl -\ o A
9\' 4 p‘\

dT
T

205,
2“ drr= L'W
r

1 ,
= p—]r'lp\ — (4.4)

which 1s a constitutive relation between the humidity,
vapour pressure and temperature. The latent-heat term is
of magnitude 10° kg ' for an average temperature of
238 K and temperature changes are of 35 K, while the
gas-pressure changes are of the order of 10° Pa, so the
sccond and third terms of the lefthand side are of order
10 and 10 'Jkg '. The first term is, however, of
magnitude 10° Jkg ' based on the the volume [raction
of water vapour changing by its own order of magnitude.
The fourth term, which is essentially the contribution due
to radius of curvature effects, can only contribute to the
balance il

d—; ~ 107 (4.5)

Now, if 7 is the maximum magnitude of the mean radius
of curvature which occurs, then necessarily dr <r and
approximation (4.5) would require r < 107" m. That is,
the fourth term contributes only if the maximum mean
radius of curvature does not exceed 10 “m. While such
radii may exist at a local scale, perhaps in new snow with
branched crystals, we expect such sharp interfaces to be
smoothed rapidly.

Radii of curvature effects do not, therefore, cause
significant changes in humidity, and the first and second
terms on the lefthand side must be those which balance
the latent-heat term on the righthand side. Thus, our
dilemma in using Laplace’s Equation (4.3) is resolved, as
the terms it introduces do not enter the leading-order
balance, and Equation (4.3) is superfluous. In this case,
the phase-equilibrium balance in Equation (4.4) reduces
to
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=6pY Liv (4.6)

e T
—=={n") 7

ar

which becomes, using the perfect gas law for the vapour
in Equation (3.1),

d
6’1‘

Liv
RVT?

(0°pY) — (6"pY) =1, (4.7)

By direct integration, the volume fraction of water vapour
is related to the gas pressure and temperature by

; T e )
e i e il | MBELE — A g
#'p pcexp( RVIT, ) (4.8)

where p! = 610.5 Pa and T, = 273.1 K (Colbeck, 1990).
At a given temperature and pressure, the amount of water
vapour in the pore space is determined by this relation,
and the rate of mass supply m! is that required to
maintain the vapour pressure. That is, the vapour-
pressure relation, Equation (4.8), provides the sixth
constitutive condition, Note that, if order-unity density
changes due to phase change, occur on a time-scale t* so
that m" ~ p*/t* by Equation (2.4), then the vapour
would have to have velocity v¥ ~ gt* in order that the
interaction thrust terms on the righthand side of
Equations (2.5) might balance the gravitational accel-
eration. Even at very fast time-scales t* = 10%s, this
1 and observed velocities are
so these thrust terms are always

implies v¥ ~ 10 ms~
significantly lower,
negligible.

5. MODEL EQUATIONS

The conservation laws in conjunction with the constit-
utive properties, define a rational closed system of
equations for the set of 25 variables. We now reduce
this to a system of nine equations in nine unknowns.
Using the stationary-matrix condition (3.11), the con-
stant intrinsic ice density and the porosity definition in
Equation (3.5), the mass balance in Equation (2.4) for
the ice reduces to

= DS (5.1)

Substituting the density relations in Equations (2.2), (3.4)
and the humidity definition in Equation (3.5) into the
mass balance of Equation (2.4) for the vapour, we obtain

a . J BY
<l gav A i o). o
dt(‘”" )+az(¢’9” ”) T
Similarly, the air-mass balance is
a 0
S e 2 (R o ’
T (qb (1-6%)p )+(9z ((;f) (1—=8")p"v ) 0. (5.3

The interaction forces exerted on the ice due to the
vapour and air are equal but opposite in sign to those
given by Equation (3.9) and, together with the stationary
ice-matrix assumption in Equation (3.11), complete the
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ice-momentum balance in Equation (2.5), which becomes
an equation for the ice pressure, B
a 9¢°

—%((l—qﬁ“)pl)—(l—&)pg B

s %;bg?(e"zv" 41— 6" =0. (5.4)
Adding the vapour and air-momentum balance Equat-
ion (2.5) eliminates the unknown molecular dispersion
forces, pB*", and, substituting the Darcy matrix drags in
Equation (3.9), we obtain the composite relation

W%E;_ phg|1— 6" (1- R*/RY)]
—Bos(0" + [1- ") =0, (5.5)

The vapour velocity is related to the air velocity by the
diffusion relation (3.10)

D 9
w0720

v = —

(5.6)

The thermal conductivity and specific heat of the
composite moist gas are, in general, functions of the
humidity. For simplicity, however, we shall assume that
KA =KV and C;‘RV = C'FYRA, which results in thermal
properties that are independent of the humidity. We will show
in section 7 that these terms do not contribute to the leading-
order balances and so this assumption is not a real restriction.
The energy balance in Equation (2.7) now reduces to

aT
gy 1~ g A ~A
((1 ¢)p'Cy + ¢p C)ar,
- oT (3los]
g A~Al a ViV _ .8 1
+ ¢&p Cp(v + 8% (v v))aerp g

(8- om)

g % ({(1 —¢OK + ¢5Kﬁ}g—2) =m" Ly, (5.7)

where the thermal conductivities K' = 2.2 Jm™ s 1K™}
and K* =224x10"2]Jm~!'s'K™!, and the heat
Lapacmes Cl =2.093 x 103 Jkg7' K~! and C’A = L.012 &
10° T kg™? K1, Fukusako (1990) reviewed the empirical
dependence of snow thermal conductivity on porosity and
catalogued the quadratic and quartic polynomials that
are used to parameterize the large spread of data but
these empirical relations already include the latent-heat
effects due to vapour transport. In the proposed model,
the latent-heat terms, on the right-hand side of Equation
(3.7), are separate contributions to the energy balance
and it is, therefore, appropriate to use a linearly volume-
fraction weighted thermal conductivity, the natural
mixture-theory definition. In addition to the five
conservation principles, we impose the perfect gas
relation for the air

pC® = pARAT (5.8)

and the thermodynamic phase-equilibrium Equation

(4.8) for the humidity
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v pc LiV (T_TC‘)
; ‘p—cexp(m—mT T

which completes the system. The model consists of seven
coupled partial differential Equations (5.1)-(5.7) and two
algebraic relations (5.8) and (5.9), which can be solved
for the nine variables p®, p©, pl, ¢, 6%, v*, vV, m" and T,
when seven bhoundary conditions and four initial
conditions are specilied. The constants are summarized
in Table 1.

It is very important to note that the theory, as it is
presented here, can lead to an inconsistency unless a very
restricted set of basal-boundary conditions is adopted.
Consider the vapour-density concentration, p¥, which,
using Equations (5.8) and (5.9) can be written as

1 L (T°="10)

V.__ gv.V Ko = L
g =g _RVTGXP(R"TH T ) (5.10)

This is a function of temperature T only. The vapour-
density concentration gradient in the diffusion relation,
Equation (5.6), implies that the relative velocity of the
vapour to the air is proportional to the temperature
gradient. It is not unreasonable to suggest that at some
snow depth the pack becomes impermeable and the
vapour and air velocities are identically zero, v¥ = v* = (.
However, the diffusion relation in Equation (5.6) can
then only be satisfied if the temperature gradients are also

identically zero at this point, which is over-restrictive. If

there is an applied basal-temperature gradient, then, to
obtain a self-consistent set of equations, either the
diffusion relation in Equation (5.6) or the phase-
equilibrium Equation (5.9) must be reformulated to
account for different behaviour close to this basal
boundary. We proceed with the present model equations
and restricted class of boundary conditions on the premise
that these eflects take place in a narrow basal-boundary
layer that does not affect the solution within the interior
significantly.

It is also immediately apparent that changes in surface

Table 1. Constants

Gray and others: A phase-changing dry snowpack model

pressure do not change the partial vapour-density
concentration directly (although they can have some
minor effect through the weak coupling with the
temperature) and, therefore, cannot induce disparate
vapour and air velocities. 'This, combined with the weak
humidity dependence on pressure in Equation (5.9),
implies that pressure forcing on seasonal time-scales
essentially reduces to the two-constituent theory of Gray
and Morland (1994).

6. NON-DIMENSIONAL VARIABLES

Natural dry snowpacks are forced by the atmospheric
conditions prevailing at their surface. Our interest lies in
predicting the temperature profile in the snow for a
variety of surface-pressure and temperature scenarios. On
the high Antarctic plateau, surface temperatures range
between 193 and 263 K, with annual mean T;, = 228K
and amplitude of fluctuation 77 = 35 K, whilst in coastal
locations the average temperature 7T, = 250K and
fluctuates by T* = 20K (Wilson, 1968). This suggests a
temperature scaling of the form

Tsz(l +51T) (61)

where the ratio of fluctuation amplitude to mean
temperatures defines g; = 1" /1, equal to 0.15 on the
plateau and 0.08 at the coast. The tilde is used to indicate
a non-dimensional variable. Surface pressures on the high
plateau have a mean value p, =6.8 x 10 Pa (680
mbar), and due to the large stable air mass vary only
by = 10% Pa (10 mbar) (Samson and others. 1990); in
the much lower coastal regions, the mean pressure is
correspondingly higher, p,, = 8 x 10* Pa (800 mbar), and
fluctuates considerably more due to storm passages,
p' =4 x 10° Pa (40 mbar). Thus, temperature forcing is
more extreme on the plateau, whereas pressure [orcing
has more effect near the coast. Temperature and pressure
means, and their amplitudes of variation, are of the same
order of magnitude in both coastal and interior regions,

Constant Symbol S. 1. value
Gravity acceleration q 9.8l ms *
Ice density ot 918 kgm *
Ice specific heat Ch 2.093 x 10° Jkg 'K !
Air specific heat C'l’} ~ (RA/RV)CIY 1.012 x 10°Jkg 'K !
Ice thermal conductivity K! 22Jm's'K"
Air thermal conductivity KA ~ F 224 x 10%Jm's 'K
Air gas constant e 2.87 x 10°Jkg 'K !
Vapour gas constant RY 461 x 10°Jkg 'K
Latent heat of sublimation L, 3.0 % IOHJ ke '
Snow permeability k 10 7 m*
Viscosity of moist air I 1.45 x 10°kgm !5~
Vapour-pressure constant pf 610.5 Pa
Diffusion coeflicient D 10 *m?s !
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and we propose to investigate the balances for a single

scenario which adopts the maximum amplitudes of

variation for scaling, namely the interior temperature
variations, T, =228 K and T* =35K, and coastal
pressure variations, py = 680 mbar and p* = 40 mbar.
In this situation, the air density responds via the ideal gas
relation in Equation (5.8) and has a mean density

plll
RATy,

o — ~1lkgm™, (6.2)
and at the snow surface the humidity is governed by
Equation (3.9), reaching a maximum §* >~ 102 at the
highest temperature and lowest pressure. Thus, terms
involving @' in the balances are small compared to unity.

In the high polar latitudes where perpetual daylight
reigns in summer and perpetual darkness in winter,
surface temperatures change by order T™ on a seasonal
time-scale t* ~ 107s. In lower latitudes, there are also
diurnal changes of temperature with amplitude T = TK
on a time-scale {4 = 2 x 10*s, with mean daily temper-
ature varying over the season. In addition, very rapid
variations in surface pressure caused by wind blowing
over surface dunes or ripples, known as wind-pumping
(Colbeck, 1989), take place in a fraction of a second, but
we note later that such pressure variations are not covered
by the reduced equations developed in section 7. We use
the common notation ¢* for our time-scale, taking either
the seasonal value t° or diurnal value #!, with the
understanding that 7™ is replaced by T¢ and an
appropriate T), is chosen if a diurnal variation is being
investigated. The various parameter magnitudes are not
changed by the modification of T},,. Thus, we introduce a
non-dimensional time by

t=1t, t'=t'=10"s, ort* =t =2 x 10*s. (6.3)
Once the time-scale t* is selected, a balance between the
conduction K'9°T/92* and the local heating pIClI)aT/Bt
terms in Equation (5.7), which are the leading-order
contributions, defines a length scale 2* on which the non-
dimensional time and length derivatives of temperature
have equal status. The vertical coordinate is therefore
scaled as

.l

Ky
where 2" = (—— |, =3mor0.1m, (6.4)

PGy

respectively, for t* = £ or 4 and for K1 =22Jm™1s!

K~! (Glen, 1974; Hobbs, 1974) and C’llj = 2088 % 107 ]
kg ! KL The length scale 2* is typically shorter than the
snow depth h at which pore space ceases to be
interconnected, at a porosity ¢% >~ 0.1 when gas is
trapped within the ice.

Surface pressure is assumed to change by order p* in
time {* but this does not necessarily imply that the
pressure will change by the same magnitude over this
length scale 2*; that is, Op®/0z may be greater or less than
p*/z" in magnitude. Consider the terms in the gas-
momentum balance in Equation (5.5) for comparison
with p*/2* = 10° or 4 x 10* kgm 2572, The gravitational
force has magnitude pug~ 10kgm=2s72
Darcy drag pug®v®/k with an air viscosity

, while the

=] A5
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10 ‘r’kgm’1 s~ (Batchelor, 1967), ice-matrix permeabil-
ity k= 107" m? (Shimizu, 1970) and ¢* ~ 0.1-0.5, has a
magnitude 5 x 10°v*kgm™2s72 when v* is given in
ms L. It is immediately clear that p*/z* is much greater
than the gravity term and much greater than the drag
term unless v* ~ 0.2 or 8 m s~ for the respective z*, which
greatly exceed observed values. We can therefore con-
clude that @p®/dz is much smaller than p*/z*, which
suggests that in the 2*,¢" scaling determined by the
thermal balance, the gas pressure has a natural decom-
position into a time-dependent part uniform in depth,
which corresponds to the surface variation p*f)h(f), and a
depth- (and time-) varying part which is governed by the
momentum balance in Equation (5.5). Thus

PO =pu[l +em®) +ep(E D] (65)

where g2 = p*/pn =~ 5 % 1072, The pressure gradient is
now of magnitude g3py, /z* and can be no larger than the
gravitational force p,g. Allowing this maximum mag-
nitude, and using Equation (6.2), shows that g3 =
97" [(RATy) ~4x 10°* or 1075 for the respective z*.
The ideal gas relation in Equation (5.8) then implies a
density scaling and separation of the form

l+52ﬁ11({) =

A

= pm| ————= | + pume3p(3, t 6.6
P = pu T+ e TG0 PmEap(Z,t) (6.6)

where the non-dimensional density fluctuation p=
7/(1+2,T). The maximum humidity is attained at the
highest temperature T;,, + 1™ < T, and can change hy its
own order of magnitude over the range of temperature
encountered. The humidity is, therefore, scaled on its
maximum attainable magnitude

v :
where 6" ==¢~10"2 (6.7)

Pm

6" =66,

is given by the thermodynamic phase-equilibrium
Equation (5.9). The vapour-density concentration, pv,
has a similar scaling to the humidity, and from Equation

(5.10)

Vv
V * ~) * Pe =8 Poon ¥
= where = ——~5x 10 "kgm .
£ Pvp Pp R\. Tm g

(6.8)

So far, three non-dimensional parameters £y, &9 and &3
(Table 3), and one non-dimensional scaling magnitude 6
(Table 2) have been introduced, of which only g3 is very
small compared to unity. To leading order in the small
parameter €3, the air-density gradient is

I e1pw (1+eopn) OT
S =9 o~ 1 (69)
0z & (el ds

from which it follows that decreases in density with height
are associated with 9T/8% > 0, and vice versa. In the
latter case, dp*/dz >0, the air column is unstably
stratified, which, if the motion was not constrained to
the vertical. could convectively overturn. Palm and
Tveitereid (1979) concluded theoretically that convec-
tion could only take place when extreme f[orcing was
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applied to old coarse-grained snow. However, Sturm and
Johnson (1991) have observed almost continuous natural
convection in the dry sub-Arctic snow. The conditions
under which convection actually takes place are still a
topic for debate but this one-dimensional treatment
ignores the effects of convection. This restricts the
applicability of the model but we believe that the
balances described still hold for a wide range of snow
covers,

The vapour velocity is scaled to be consistent with the
vapour-density concentration-gradient term in Equation
(5.6),

i . D : < B
o =, where &= == % 10 e 10 oy
z

(6.10)

although the latter estimate, for the diurnal time-scale,
represents the most extreme forcing scenario, Hence, the
Darcy drag terms, in Equations (5.4) and (5.3), between
the matrix and the vapour are ol order (,u/k)(t?")zu" ~
10*kgm 2572, which are small compared to the
gravitational body forces, of magnitude plg ~ 10* kg
m~257% and ptg~ 10kgm2572, respectively. We as-
sume an air-velocity scaling of the form

(6.11)

A * ~a
T
v A

where the magnitude ©7 has still to be determined. If the
air Darcy drag in Equation (5.5) has the magnitude of the
gravity term, then v} ~ 2 x 107 % ms ! but we must also
seck consistency with the mass balance in Equation (5.3).
With Equation (6.11) and the density scaling in Equation
(6.6). to leading order in the moderately small parameter
0", Equation (5.3) becomes

¢K£ _1+52]3]1 E;L* a

& ql-t-fzﬁhf
MH\1+eT z )0z [

: Pl =0.
Q‘) 1+EIT
(6.12)

Now, with the above v, vit*/z* ~ 6 x 10* or 4 x 10? for
the seasonal and diurnal scalings, both exceeding (()*)7'.
so Equation (6.12) then has a consistent leading-order
approximation

g1+5'-ff)‘|'ﬁu
1+E]T

= =0 (6.13)

w2

with a solution that is a function of time only, namely

(6.14)

In addition, we require that at some depth, Z =0 say by
choice of origin, the pack becomes impermeable and
0" = 0. Applying this boundary condition, we find that
f(£) =0, which in turn implies that to leading order
0* = 0 throughout the whole of the air column. That is,
the Darcy drag does not contribute to the leading-order
balance in Equation (5.5), so the above estimate of v is
not valid.

The velocity magnitude v} is not then set by the
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momentum balance at all, which must be a pressure-
gradient-gravity balance, but by a balance between the
two terms in the leading-order mass-balance Equation
(6.12). We suppose that the motion is driven by the
surface conditions and not dominated by the initial
porosity gradients. Then, il surface-pressure forcing
dominates,
dpy, Wt -

W R i g I 15
275 (1+ wl)&)z (6.15)

b

and, since the surface-pressure forcing is independent of 2,
the surface velocity is given by

+ h ~ X
=4 il d N |
ot o~ — / - *-p.h =] 2R
vit* [ Jo 14 copy dt (L5l

(6.16)

m
ra
&
()

Therefore, since for a snow depth h = z*h, the scaled
surface velocity 2" is order unity by construction, surface-
pressure forcing induces a velocity magnitude

sah -
= "le-lxl(}_x or 2x 10 msL,

a £*

(6.17)

for the respective scasonal and diurnal time-scales and a
snow depth of 8m. Alternatively, if thermal effects
dominate, the major contributions to the mass-balance
Equation (6.12) are

B 2 @7 i £1 (')T?_’a
(1+eT) ot 2 | 45T G
uit* 1 an =

a

# 1 15eT 02

(6.18)

The third term is of magnitude v}t*/2*, which is &}
larger than the second term; therefore, the leading-order
balance lies between the third and first terms, implying, if
we assume T9 = T*, the respective velocity magnitudes
. EE i o
U = ~4x10™% or 107" ms L.

%

(6.19)

Then, for both seasonal and diurnal temperature forcing,
the velocity magnitude v given by the expression (6.19)
is approximately 107* ms~!, which is also that given by
scasonal pressure forcing, but for diurnal pressure forcing
there is a greater magnitude v} ~ 2 x 10 ° ms !, Recal-
ling the definition of &3, the estimate (6.17) is v} ~
p*h/(pmt™) which can be greater if p* is greater than the
assumed 4 x 10° Pa and/or t* is less than ¢4 =2 x 10%s.
We see now that for both seasonal and diurnal o
estimates, the Darcy drag in Equation (5.5) is less than
the gravity force, so that the latter must balance the
pressure gradient. If a pressure forcing increases v so that
the drag exceeds the gravity force, and balances the
pressure gradient, then our thermally motivated scaling is
inappropriate. Colbeck (1989) has investigated wind-
pumping, which is such a process, with the assumptions of
constant temperature and porosity. The present model
and illustrations apply to a different set of applications of

19
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equal importance and complementary to those of
Colbeck.

We now adopt the expression (6.19) for v, which
allows seasonal and diurnal temperature forcing but
excludes diurnal and more rapid pressure forcing.

In the ice-momentum balance Equation (5.4), the
gravitational force plg. of order 10" kgm=2 572, is largest
in magnitude, and the first term of the Darcy drag
contribution p®8¢#/dz is of comparable magnitude if
there are significant changes of porosity with depth. The
ice-pressure gradient must, therefore, balance the grav-
itational force and, anticipating that the surface-bound-
ary condition requires the intrinsic ice pressure to equal
the atmospheric pressure, a scaling of the form

p'=p" + (plgz")p (6.20)
is suggested, where p% is given by Equation (6.5). Note
that the leading-order drag term (p/k)v; in Equation
(5.4) is of order 107" kg m~2 572 for the estimate (6.19) of
u, which is negligible compared to the gravity term
plg ~ 10 kg m 2572

The rate of mass supply m" is scaled by

m" = m"m (6.21)

where the vapour transport by diffusion in Equation (5.2)
implies a magnitude

~5x10® or 5x10%kgm s . (6.22)

It is worth pointing out that the latent-heat term m™ L;, in
the energy-balance Equation (5.7) does not exceed the
magnitude of the assumed leading-order balance between
local heating and conduction through the ice, on which the
length scale z* is based in Equation (6.4). The local
heaung term is of magnitude pIC]T*/t" ~ 7 or 700 m?
57!, whereas the latent heat is m*Liy ~ 1.5 x 107} or
150 m~3s71, suggesting that latent heats could con-
tribute significantly in an extreme [orcing scenario.

Table

2. Magnitudes used in the scaling argument

Porosity changes in time are of order m*t*/p! by Equation
(5.1), and the porosity is decomposed into a time-
independent part ¢y, = ¢n(2) and a part ¢(Z, 1),

@& = ¢m(Z) + ¢*6, (6.23)

where

* g

m*t

@ = ~5x107* or 1073 (6.24)

This suggests that diffusion alone cannot account for
observations of density doubling in low-density snow-
packs over a single time period 4{*, even in the most
extreme diurnal temperature gradients, so compaction of
the matrix or natural convection must be responsible for
such rapid changes in porosity. Note, however, that the
illustrations in section 10 demonstrate that porosity
increases are compounded every four time units, %, and
it is possible to obtain density doubling if diurnal forcing
persists for several days. The magnitudes used to scale
each of the physical variables are summarized in Tahle 2.
It is worth noting that if there is no diffusion within the
ice matrix, so D =0, then the vapour and air velocitics
are equal, v¥ = ¢*, and the largest term on the lefthand
side of Equation (5.2) is due to changes in humidity with
time, ¢#p™ 00" /Ot. This implies a rate of mass supply of
magnitude

* Pme RA
TR R

5x 10 kgm™3s7!

(6.25)

—g o
= = =10 or

and the contributions to the latent heat are m*L;, ~
3 x 1073 or 1.5 ] m~?s7!, which are negligible compared
to the estimates of the local heating on seasonal time-
scales, but can make moderate contributions with diurnal
forcing. In general, smaller-amplitude fluctuations with
order-unity humidity changes through the non-linear
temperature dependence in Equation (5.9), on cither of
the two time-scales, can have a moderate influence in the
energy balance. However, in most situations, the no-

Quantity Unats Equation Seasonal Diurnal
Mean temperature, 1}, K 238 266
Mean pressure, py mbar 680 680
Mean density, pn kg m " (6.2) i 1
Temperature fluctuation, 7" K 35 7
Pressure fluctuation, p* mbar 40 40
Time-scale, t* S 107 2% 10*
Length scale, 2" m (6.4) 3 0.1
Maximum humidity, 8" (6.7) 102 L=
Vapour density, pi, kgm * (6.8) 5% 107 5% 107°
Vapour velocity, v ms ' (6.10) 3% 107 1072
Air velocity, v, ms ' (6.17) 4x10%® 2% 107
Rate of mass supply, m”* kgm e (6.22) 5 % 107° 5x 107°
Porosity fluctuation, ¢* (6.24) 5% 10 1
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diffusion scenario will produce a temperature distribution
that is to all intents and purposes the same as that
obtained by Gray and Morland (1994). Changes in
porosity are estimated to be ¢* ~ 1075 in the no-diffusion
case, by Equation (6.24),

At this point, the equations are still complete, and
numerical solution of problems not conforming to the
suggested scalings would simply involve gradients
exceeding unity in magnitude. The intention, however,
is to derive reduced equations which correctly describe
the classes of problem used to motivate these scalings. If
subsequent solutions reveal large gradients, then clearly
the reduction is not applicable and the above system must
be retained or reduced according to the new features. It
was correctly questioned by a reviewer how the reduction
to seasonal variations, implying very small velocity
magnitudes, could take account of the much larger
velocity associated with diurnal and storm-scale events
commonly arising during the year.
seasonal forcing at the surface automatically ignores
diurnal, or other short time-scale, forcing, so our later
illustrations are unrealistic in that sense, but are presented
to demonstrate the simplification that can be achieved by
identifying the leading-order balances appropriate to a
given problem. The effects of diurnal forcing superposed
on seasonal forcing can be investigated with the reduced
equations based on the 14 time-scale, but to extend the
solution over the same period of vears will require the
number of time steps to increase by a factor 365, and the
number of space steps by a factor of 20 to describe the
same pack depth. The overall solution will depend on the
(varying) amplitude of the diurnal variation about the
seasonal forcing. Our present simple illustrations do not
address the more realistic problem

7. DIMENSIONLESS EQUATIONS

A system of dimensionless equations 1s now obtained by
substituting the scalings argued in section 6 into the
model equations of section 5. The leading-order balance
between the dominant terms in each of these equations is
of order unity and the importance of the remaining terms
is measured by the size of the non-dimensional para-
meters, which are necessarily less than order unity. Thus,
it is possible to make a clear assessment of which terms
contribute to the balances and neglect those that do not
to obtain a reduced system with a simplified structure,
For notational consistency, the non-dimensional para-
meters £;—¢7, of which £,-g3 have been introduced
already, are given the same definitions as those in Gray
and Morland (1994) and are summarized in the first half
of Table 3.

Substituting the rate of mass-supply scaling in
Equation (6.2]1) and the porosity scaling in Equation
(6.23) into the ice mass-balance Equation (5.1), we
obtain

—L = . (7.1)

The vapour mass balance (Equation (3.2)) can be
considerably simplified by first substituting for the
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Table 5

nitudes

Non-dimensional parameters and their mag-

Non-dimensional parameter Magnitude
g1 =T*ITy 0.15
€2=7"/Pnm 0.059

g3 = gz* /(R My 4x 10"
eq = (p/k)vi/(pmg) 6 x 107
£5 ZPmCA (p IC!) 5x 10"
E(j:tlpm/(p C']T*) 10"

g7 = RA/I ifome

e = (2*)?/(#*D 14

g9 = e3pm/(p'92") 10"

g1 = (u/k)vj/(p'g) 10 ®

en = (u/k)D(0°)/(p'gz") 5% 107
g1z = (1 — R"/RY)H* 4x10°
€13 = (/"‘/!‘7) ( 5 /(pmJ’ ) 4% 10"
gl = vi2"/D 16

€15 = 0%es5/es 5x 10"
Em—gzq&/C'IT*) 2x 107
€17 = 6" pu/( PC,,T*ES) 9x 10"
ey = pyLiv/(p [ClT*EK) 2 x 10
€19 = ElLi\:/(R T) 3.5

vapour velocity from Equation (5.6) to decompose the
transport into the air-convection and diffusional terms

and, recalling the expression (6.19) for o}, it becomes

E&;( UH(P /ﬂm)) uluﬂg‘(‘f’"() /f’m) )
dlpv
N

(7.2)

= —1m

where the non-dimensional density in Equation (6.6) and
porosity in Equation (6.23) are not substituted at this
stage for notational compactness. The non-dimensional
parameter

(3*)2 —9
. v IE=,
- [0 B

g = (7.3)

for both seasonal and diurnal forcing, indicating that the
terms on the first line of Equation (7.2),
associated with the humidity change due to local
temperature change and air convection, are less than

which are

order unity in magnitude, and the dominant balance lies
hetween the mass transport from vapour diffusion and the
rate of mass supply. Similarly, the air-mass balance in
Equation (5.3) is

19 >
o (61 = & 8)(r" /o)) -,
+$(¢g(1 )(p*‘/pm)ﬁ*‘) =0

where the first term appears to be order e7! which is
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greater than unity. However, when the density is
substituted from Equation (6.6) and the chain rule is
applied, the density gradients are at most of order gy and
so the first term is in fact order unity as required.
Substituting the intrinsic ice-pressure scaling in Equation
(6.20) and the vapour velocity in Equation (5.6) to
simplify the Darcy drag term, the ice-momentum halance
in Equation (5.4) reduces to

) ’ . 85
—=((1- qbg)p‘) — (- ¢%) - a1 — ) 52
N #op (7.5)
+e10(¢%) " —en = T

where the non-dimensional parameters

£9 = &3 ‘Fm*, ~107* or 6x107°,
gz
k)u;, ; :
Eyp = M =BEx 10 o Sx107% (7.6)

~5x%x107 or 107%,

imply that all the terms that arise [rom substituting the
Darcy interaction drags in Equation (3.9) are extremely
small, and to leading order the ice pressure increases
hydrostatically with depth. Similarly, the composite gas-
momentum balance relation in Equation (5.5) reduces to

B 32 a-v
—-(9—13— Il = 1’:‘1_29} P /Pm == E«’lqbgu +513 —Véﬁz 0
(7.7)
where
e =(1—R*/RV)#" ~4 %1073, (7.8)

The last two terms on the righthand side of Equation
(7.7) are the Darcy drags experienced by the air and
vapour as they pass through the matrix, and the non-
dimensional numbers

g4=(”/%, ~6x107° or 3x1072
Pm
(7.9)
DG’&Z }
:WL‘F, ~4x10% or 107
pﬂlgz

indicate that the Darcy drag on the vapour is always
negligible but the drag on the air can enter the lead-order
balance on diurnal and faster surface-pressure forcing
time-scales. In these non-dimensional equations, the
vapour velocity has been substituted throughout, but,
for completeness, the diftfusion relation in Equation (5.6)
reduces to

cn 1 8%
v _6147))'—@!%—;_5];?, (710)
where
fu=22 ~ 1073 or 2x 1072 (7.11)

defines the ratio of the air velocity to the vapour velocity.
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Thus, the bulk air velocity is still much less than the
diffusion velocity even in the latter case of large pressure
variations on diurnal time-scales. The total energy
balance in Equation (5.7) is

T aT T
(1-¢%) 55 +estlo A/pm)( S )

0z
6;3V8T L 0¢ G e OFE
*5155 GE + e16p" E — &6(p" /Pu)¥ = 15
fi T 1 £ ap® .
+eu(p”/pw) ¢g-vaz(¢ ) a5

‘ aT
—% ({(1 = d)g) +E7¢)I’} az) = €1gﬁl

where the dominant balance is between the local heating
in the ice and the thermal conduction through it. The
greater ice density ensures that

(7.13)

and, therefore, local heating in the gas does not con-
tribute to the balances. Recalling the velocity scalings in
Equations (6.17) and (6.19) for pressure- and temper-
ature-driven scenarios on seasonal and diurnal time-
scales, it is clear that the pressure working can reach

P (U:t*/Z*) -
ACIT"

&6

10 or 2 x 107 (thermal),
1074 or 4 x 107* (pressure)
(7.14)

and can be important for pressure forcing on diurnal, or
faster, time-scales but is not significant for the slow
pressure changes investigated here. Thermal conduction
through the air is of minor importance in the leading-
order balance since the ratio of thermal conductivities

KA
Er = T = 10_

= (7.15)

The remaining non-dimensional parameters, which were
not introduced in Gray and Morland’s (1994) theory, are

- Y ~5x 1074,
€8
Ei6 = C]]—Tqb =210 or 10°%,
&7 —z—;p—l%, ~9x 107,
Eig = i% ~2 x 1072, (7.16)

demonstrating that the local heating due to vapour
diffusion, and the vapour- and ice-pressure working, are
always small but that the latent heats can affect the
encrgy balance.

Substituting the temperature, pressure and density
relations, in Equations (6.1), (6.5) and (6.6), respectively,
into the ideal gas relation in Equation (5.8), we obtain
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p=p(l+eT). (7.17)
The vapour-density concentration is related to the
humidity and intrinsic vapour density by Equation
(5.10); substituting the humidity and partial vapour-
density scalings, in Equations (6.7) and (6.8), and using
Equations (3.4) and (6.2),

ﬁv = é(pA/pm), (7.18)
Similarly, the phase-equilibrium relation in Equation
(5.9) becomes

. 1 1
H:‘—_h ex E o ————] 719
1 + eopy + €39 ot gyl 75

where T, = (1./1, —1)/s; and the non-dimensional
parameter

L]\
E19 = &1 R‘T( =35 (720)
is order unity. Note, that from Equation (7.19)
100 , 108
bl & ~ 1 " S E = 3.5, T2
Gam " © o €1 ( . )

so the humidity is not sensitive to changes in surface
pressure and. therelore, contributions to the rate of mass
supply m. and hence to the latent heat due to pressure
forcing are extremely small. However, thermal forcing
produces order-unity changes. Thus, results obtained
with surface-pressure forcing on seasonal time-scales with
no surface-heat input are almost identical to those
obtained in the simple two-constituent theory of Gray
and Morland (1994). The non-dimensional parameters
are summarized in Table 3.

8. REDUCED MODEL

The physical equations of section 5 have been scaled to
yield the equivalent order-unity dimensionless equations
of section 7. No approximations have heen made up to
this point but it is clear that many of the terms with
small non-dimensional parameters can be neglected to
obtain an approximate reduced model with a greatly
simplified mathematcal structure. The reduced model
for temperature forcing on seasonal and diurnal time-
scales is now investigated. We have already demon-
strated that, when no diffusion takes place, D =0, or
when the pressure changes on seasonal time-scales, that
the model essentally reduces to the two-constituent
theory of Gray and Morland (1994). The reduced model

we describe is not intended to apply to the case of

pressure forcing on diurnal or faster time-scales, where
the Darcy drag and the pressure working become

significant, The latter casts doubt on the validity of

assuming both 7' and ¢* are constant during wind-
pumping (Colbeck, 1989).

In order to have a clear understanding of what we
mean by small, we define the small parameter 6 to be the
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maximum magnitude of the terms that we consider to be
small in the thermally driven problem:

~ *
0 = max (3, €4, 5,56, €9, €10, £11, £13+ £15+ €165 E17, @)

o 10 1. (8.1)

Each variable w = T, 6, B, BV, 7, 0, &, P, P is then
approximated by the first two terms of an asymptotic
expansion in &,

w = 1y + 61 (8.2)

and substituted into the non-dimensional equations.
Matching zero- and first-order powers in 4 yields a
leading- and first-order system of equations, which are
accurate to order 6% < 107%, The remaining parameters
£1, €2, £7, £8, €12, £14, €18 and " are less than unity but are
retained, together with 19, which is order unity, as
possible order-unity quantities. To leading order, the
energy balance in Equation (7.12) is

a1,

T, o
FE

(L~ d’m}ﬁ

a0z {(1 = ¢m) + CFT‘f’m}

= Elg'rﬂ.(] :

(83)

Note that the pressure-working and convection terms
involving the ice and gas pressure and the gas velocity do
not enter the leading-order balance, so this is an equation

for Ty if my is known. Thus, given T}, the humidity
relation in Equation (7.19) to leading order is

S T (7 7‘1))
0=T7 = SSDl el —— —= s
1+52Ph 1+E[71|

allowing 6 to be computed. Similarly, the leading-order

(8.4)

partial vapour density per unit gas volume in Equation
(7.18) can also be computed from

1+ eapy,

. 8.5
1+ &y e

ﬁﬂ = 6“

The leading-order air-mass balance in Equation (7.4)
becomes

0 oy I+6213l] &
1 =) R
35 o l]) 1+l Ch
(8.6)
1d = 14 capy

*
= ¢1‘n(1 =g 90) =

g0t 14&1Ty

which, given Tj and 6y, is an equation for the leading-
order gas velocity o', The leading-order vapour mass
balance in Equation (7.2) becomes

2 ??pY 9] 14 eapy
my = af)r,) — &8 = Oty —Fil
i ot 1+ E]T})
i (8.7)
— e | G e g
oz | 1+edy

which determines the rate of mass supply my. This forms a
closed set of five Equations (8.3)(8.7), for the variables Tj,

23
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é(], ,5[]{, ¥fy and my, that completely uncouples from the
remaining variables. An iterative approach is used to solve
this sub-set of the problem. An appropriate guess is made
for 72y to enable the energy balance in Equation (8.3) to be
solved for Ty, and then 6, pY, Uj and an updated my are
computed {rom the balances. The updated my is then used
to re-initialize the problem and the process is repeated until
some convergence criterion is satisfied. Note that the rate of
mass supply from the air transport in Equation (8.7) is of
order £1£g ~ 6 and so could have been neglected, although
it is retained here. If neglected, then the air velocity, @j, is
no longer needed to compute 77 and the velocity balance
in Equation (8.6) does not enter into the iteration
sequence, which reduces to a system of four equations.
Once the leading-order temperature, humidity,
vapour-density concentration, velocity and rate of mass
supply have been determined to a sufficient accuracy, the
remaining variables can be computed from their leading-
order balances. The leading-order gas-momentum bal-
ance in Equation (7.7) is an equation for the pressure py,

po 2 p
—=—(1 — £126 _ 8.8
95 ( €12 n) ] +e.Th ( )

which allows the density to be calculated from the
leading-order perfect gas relation in Equation (7.17),

iy = ———. (8.9)

The leading-order ice-mass balance in Equation (7.1)
keeps track of the change in porosity,

o6y

6? = —Ty (810)

and the leading-order ice-momentum balance in Equat-
ion (7.5) reduces to

% ((1 = ¢m)ﬁ%)) == _(1 — ¢m)a (811)

which determines the ice pressure pj. Finally, the vapour
velocity in Equation (7.10) is determined by

i il el (8.12)

Pmpy 0%

All the leading-order variables have now been deter-
mined. The first-order equations follow the same pattern
as the leading-order equations but are considerably more
complex. The equations for the variables . 0y, f)}), 0y
and my once again uncouple and an iterative procedure is
required to determine them to a specified accuracy. The
remaining variables can then be computed from the
balances. The correction from the first-order scheme is of
order 6 ~ 103 and for all practical cases the leading-
order Equations (8.3)-(8.12) are adequate.
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9. INITIAL VALUES AND BOUNDARY
CONDITIONS

The non-dimensional leading-order Equations (8.3)-
(8.12) require four initial conditions and seven boundary
conditions in order to compute a solution. We shall
assume that at the base of the snowpack, which lies at
z = (), the vapour and air velocities are identically zero,

z=0: U=0, u'=0, (9.1)

and to avoid the inconsistency pointed out at the end of

section 5 we shall restrict our attention to a zero
temperature-gradient condition at this level,

oy
2z

val
I
o

0. (9.2)

The surface of the snowpack is subjected to atmospheric
fluctuations, determined by the prescribed function py in
the pressure scaling in Equation (6.5), so the third
boundary condition requires that

g=h =0, = p=0. (9.3)
Similarly, the intrinsic pressure exerted on the ice
constituent at the snow surface equals the intrinsic gas
pressure, so by Equation (6.20) the leading-order non-
dimensional ice pressure is also identically zero,

g=h: fy=0. (9.4)

Pressure forcing on seasonal time-scales and the no-
diffusion scenario have been shown to reduce to the two-
constituent theory of Gray and Morland (1994), and we
therefore examine the thermal problem in isolation. It is
driven by a sinusoidal temperature gradient at the snow
surface, of the form

% Ty it
=h —= 5| — g
2 5 = acos| < (9.5)

where the normalization factor a ensures that the
maximum non-dimensional temperature is order unity
and where the surface pressure is identically zero,

Z=h Pn=0. (9.6)
Note, that this does not necessarily imply that there is no
net increase in the total energy of the pack. The six
boundary conditions given by Equations (9.1)-(9.6) are
now supplemented by four initial conditions. We assume
that the non-dimensional temperature is initially uniform
at its mean value

Ty(0,2) =0 (9.7)

and the surface pressure

e

Py = (9.8)

The initial humidity is then determined by Equation
(8.4) but the initial porosity is required to compute the
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velocity from Equation (8.5). In these results, we assume
the time-independent ¢,,(2) in Equation (6.23) to have
the uniform value

¢m = 0.5 (9.9)

and the porosity perturbation ¢y to be initially zero

¢y =0. (9.10)

10. ILLUSTRATIONS

A numerical method has been developed to solve the
leading-order system of Equations (8.3)-(8.12) with the
associated initial conditions and boundary conditions
described mn section 9. The algorithm has been tested
against the two-constituent analytic solutions (Gray and
Morland, 1994) and reproduces the same results as an
independent algorithm in the no-diffusion scenario. A
¢yele is defined as four non-dimensional time units and is
the time necessary for the sinusoidal surface-temperature
gradient o repeat itsell. Solutions are presented for a total
of four cycles, which corresponds to t= 0-16, to illustrate
the evolution of the balances from cycle to cycle, and for a
snow depth h =4 units.

The computed temperature is illustrated in Figure 1.
The beginning of the cosine temperature-gradient cycle
lies at t=0,4,8,12,16 when ai}./as =1, and the
temperature lags the gradient by half a time unit at the
surface. As heat is conducted down, the temperature
amplitude decays and its fluctuation lags behind that at
the surface, until at the base of the snowpack the
temperature changes only slightly from the mean. The
latent heat, associated with the change of phase from
water vapour to ice, causes a slow steady rise in the mean
temperature in the snow. Initally, the temperature rises
approximately 2% every cycle but this decreases to about
1% every cycle after 16 time units, The compounded
effect of these small rises in temperature over each cycle is
to raise the mean temperature by about 7%. Longer

Gray and others: A phase-changing dry snowpack model

integrations suggest that by 32 time units the temperature
increase per cycle is about 0.5%, and that the mean
temperature is raised by 10%. We shall explain why later.

The humidity, a new feature, is illustrated in Figure 2,
and is, as one would expect, largest in the warmer regions
of the snowpack. Thus, the maximum humidity is reached
at the surface of the snowpack and, like the temperature,
its intensity decreases with increasing depth and it is
phase-shified in time. The slow increase in mean tem-
perature also leads to a corresponding rise in the mean
humidity. The vapour-density concentration has a similar
behaviour to the humidity and is not illustrated but, to
leading order in &1, Equations (8.4) and (8.5) imply that

apy .

— ~ (1 + T — Ty)py- (10.1)

Thus, the largest gradients of the vapour-density con-
centration with temperature occur when the temperature
is at its lowest value Th = —1.

The air velocity is again similar in form to the results
from Gray and Morland (1994) without humidity effects.
The dominant balance in Equation (8.6) lies between the
velocity divergence and the temporal changes in tem-
perature,

yyid
9%

oz

ot 0z’

~

(10.2)

Integrating with respect to Z and applying the boundary
condition (9.1) implies that the air velocity

ot
9z

s (10.3)

The air-velocity cycle, illustrated in Figure 3, has the
same [eatures as the temperature cycle but it is phasc-
shifted ahead in time by half a time unit. Thermal
expansion, therefore, causes the air to be transported
down through the matrix as the snowpack cools and is
pumped back up as the pack warms, which is intuitively

0o 1 2 15 16
4 _‘.I = 201 I 4
L\ /e i
o L
1N\ Ae=\E
- ey
) /%

3l &/ .Q I
3 L
zZ o\ N " " oy [ 2
.| ) @ <&/ e © s/ @ 5\ &3/ & o
L 1
L o ) I o W T S TR T T R s e
6 1 2 B & B & F @ 8 W M 42 15 14 45 18

t

Fig. 1. Non-dimensional temperature conlours.
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Fig. 2. Non-dimensional humidity contours.

correct. At the end of each cycle, approximately the same
amount of air resides within the matrix and so, to
conserve mass, the velocity magnitude of the outgoing air
when the air is light and hot is 10% greater than that of
the incoming air when the air is cold and dense. The
vapour velocity is balanced by the vapour-density
concentration gradient in Equation (8.12),
~V =
O L SR, W% R
py 0% az

by approximation (10.1). Therefore, the vapour velocity
also behaves like the temperature gradient but it diffuses
up through the snowpack as the air moves down and vice
versa, as illustrated in Figure 4. Intuitively, this is also the
correct behaviour, as the vapour moves [rom hotter
regions, where the vapour-density concentration is high-
er, to colder regions, where the vapour-density concen-
tration is lower, in an attempt to smooth away the
concentration gradients. The largest vapour velocities are
attained during the colder periods when the derivative

(10.1) is larger. Note that, although the air- and vapour-
velocity magnitudes appear to be similar in non-
dimensional variables, their physical magnitudes given
by the scalings in Equations (6.10) and (6.19) are very
much different.

The next new feature is the rate of mass supply shown
in Figure 5. The dominant balance in Equation (8.7) lies
hetween the rate of mass supply and the vapour-diftfusion
terms, and, by approximation (10.1), this behaves like

oY) aQTU

ih T
Mo~ P~

) - (10.5)
Hence, as the temperature is Increasing towards its
maximum, ai“n/abo and 1y 1s positive, vapour
condenses into ice, and then as the temperature passes
through its maximum and begins to decrease, ATy /ot < 0
and 1y is negative, ice is sublimed into vapour. Away
from the temperature maximum, the vapour-density
concentration is so low that hardly any phase change
takes place.

Fig. 3. Non-dimensional air-velocity contours.
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Fig. 4. Non-dimensional vapour-velocity contours.

The porosity increases, illustrated in Figure 6,
indicate that with the particular temperature-gradient
boundary condition (9.5), there is a net accretion of ice
through phase change over each cycle, which decreases
the poresity. While the amount of phase change is not
enough to double the snow density in one cycle, ten, or
so, cycles on diurnal time-scales could achieve this. It
follows that over each cycle there is a net release of latent
heat into the system, warming the snowpack, which
could ultimately raise the maximum temperature to
freezing point and water would then be produced. It
should be noted, that the vapour
to ice comes from

however, which
the outside the
snowpack, as the large positive g correlates exactly
with the diffusive influx of vapour, and it has implicitly
been assumed that the atmosphere can supply the

condenses on

required water vapour. If this is not the case, either
Equation (4.8) must be violated or there is a negative
feed-back mechanism requiring different interface con-
ditions between the snow and atmosphere. The feed-
back cycle starts with an increase in mean snow

temperature, which is associated with the latent-heat
release as water vapour condenses, a net warming of the
atmosphere results and sublimation of the surface ice
makes up the shortfall in atmospheric humidity. Thus,
the latent heat required by the sublimation process
out the latent-heat on condensation
within the pack and the mean temperature is stabi-
lized. This complex coupling is beyond the scope of this
paper, as it requires the treatment of the snow surface as
a moving non-material boundary.

The leading-order non-dimensional pressure in the gas
and the ice have a simple hydrostatic distribution and are
not illustrated. Similarly, the air density behaves in
exactly the same fashion as described by Gray and
Morland (1994) and is not illustrated.

cancels release

11. CONCLUSIONS

An interacting continua theory provides a rational

framework in which to describe the motion, stresses
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Fig. 5. Non-dimensional rale of mass supply contours.
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Fig. 6. Non-dimensional porosity-perturbation contours.

and thermal effects within a natural dry snowpack.
Mixture theory lays down mass, momentum and energy
balances for each of the three constituents: ice, water
vapour and air, in terms of partial variables, including
mechanical and thermal interactions between constitu-
ents. In addition, 11 constitutive properties and three
external energy supplies must be prescribed before a
closed system of equations is obtained. This approach
highlights the assumptions and points to areas where the
physies is poorly understood. It demonstrates clearly
that phase-equilibrium thermodynamics is not consistent
with all plausible basal-boundary conditions, for
example, non-zero temperature gradient and zero
vapour velocity, which suggests that, in general, the
vapour diffusion or equilibrium humidity relation, or
both, are not applicable close to an impermeable
boundary. Except for a very special class of boundary
conditions, which are investigated here, the equilibrium
density relations used widely by other authors (e.g.
Jordan, 1991) are violated, and then non-phase
equilibrium theory must be adopted.

Non-dimensional analysis is used to draw out the
dominant balances in each of the equations for seasonal
and diurnal surface pressure and thermal forcing. It is
assumed that the snowpack is pre-compacted so that the
matrix is stationary and there is no contribution to the gas
velocities from fluid withdrawal due to compaction. Air-
velocity magnitudes are typically of order 10~ ms™ for
thermal forcing and seasonal pressure forcing but are of
order 2 x 10> ms™" for diurnal pressure forcing. Water
vapour occupies only about 1% of the pore space and
diffuses easily through the matrix, reaching velocities of
3% 107% or 10 ms~! for thermal forcing on seasonal and
diurnal time-scales, respectively. However, the vapour-
density concentration is independent of pressure, so the
concentration gradients, which would drive the vapour
relative to the air, are not present and the gas moves en
masse. Seasonal pressure forcing, therefore, reduces to the
two-constituent theory of Gray and Morland (1994), whilst
thermal forcing in the absence of diffusion has only a
moderate influence on the balances.
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Small parameters in the non-dimensional equations
are exploited to yield a rational leading-order reduced
model, applicable to thermal forcing and seasonal
pressure forcing but not diurnal pressure forcing. The
particular surface-temperature gradient boundary cond-
ition, considered in the illustrations, implies that water
vapour is entrained from the atmosphere during warm
periods and, since the humidity is greatly reduced when
the vapour is expelled, there is a net gain in the ice-
volume fraction over cach cycle. Thus, snow-density
doubling in high-porosity snowpacks can be achieved
over a period of several days with thermal forcing on
diurnal time-scales. The latent-heat release associated
with the condensation of vapour into ice makes a
significant contribution to the energy balance, raising
the temperature at each cycle. Meltwater production will
result if the temperature reaches the freezing point. It is
postulated that either a negative [eed-back through
atmospheric coupling, which transports mass from a
moving surface interface into the pack, or violation of
phase-equilibrium thermodynamics, will stabilize the
mean temperature. Implicit inclusion of the latent heat
by combining it with the conduction in the energy
balance, to obtain an effective thermal conductivity (e.g.
Jordan, 1991; Bader and Weilenmann, 1992), is not
supported by the leading-order approximations derived
here.

Finally, it is important to note that the air is unstably
stratified, as cold dense air overlies lighter warmer air
deep in the snowpack for half of each full cycle, and, if the
gas motion were not constrained to one-dimension, it
could convect, transporting large amounts of heat and
mass up through the pack.
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