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Compressible potential flows around round
bodies: Janzen–Rayleigh expansion inferences
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The subsonic, compressible, potential flow around a hypersphere can be derived using
the Janzen–Rayleigh expansion (JRE) of the flow potential in even powers of the incident
Mach number M∞. JREs were carried out with terms polynomial in the inverse radius
r−1 to high orders in two dimensions, but were limited to order M4∞ in three dimensions.
We derive general JRE formulae for arbitrary order, adiabatic index and dimension.
We find that powers of ln(r) can creep into the expansion, and are essential in the
three-dimensional (3-D) sphere beyond order M4∞. Such terms are apparently absent
in the 2-D disk, as we verify up to order M100∞ , although they do appear in other
dimensions (e.g. at order M2∞ in four dimensions). An exploration of various 2-D and
3-D bodies suggests a topological connection, with logarithmic terms emerging when
the flow is simply connected. Our results have additional physical implications. They are
used to improve the hodograph-based approximation for the flow in front of a sphere. The
symmetry-axis velocity profiles of axisymmetric flows around different prolate spheroids
are approximately related to each other by a simple, Mach-independent scaling.

Key words: general fluid mechanics

1. Introduction

While ideal flows (inviscid, with no heat conduction or additional energy dissipation
effects; e.g. Landau & Lifshitz 1959) are an extreme limit, they play an important role
in research, for example (i) as a basis for more realistic flows, with additional effects such
as viscosity; (ii) for modelling the bulk of weakly interacting Bose–Einstein condensate
superfluids, which can be approximated as an inviscid, compressible fluid with a polytropic
index γ = 2; (iii) for modelling flow regimes which are not sensitive to the level of weak
viscosity, such as in front of a round object; and (iv) for code validation and pedagogical
reasons.
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Janzen–Rayleigh expansions (JREs) can be broadly identified as an expansion of the
flow variables in terms of the Mach number. JREs were used by Janzen (1913) and
Rayleigh (1916) as a method to study the d’Alembert paradox with the addition of
compressibility effects. They considered an inviscid, compressible, subsonic flow of a
fluid with a polytropic equation of state (EoS), with no external forces or initial vorticity.
Specifically, steady flow was assumed around a disk in two dimensions or around a sphere
in three dimensions, with an incident uniform flow far from the body. Introducing the
flow potential, a scalar nonlinear partial differential equation (PDE) was obtained, and
expanded in the incident Mach number squared, M2∞.

Using the same set-up, the JRE was used to solve the flow around various blunt objects
(Goldstein & Lighthill 1944; Heaslet 1944; Hasimoto 1951; Kawaguti 1951; Hida 1953;
Longhorn 1954; Imai 1957; Kaplan 1957; Van Dyke 1958). The JRE has been generalized
to several areas of research, such as vortex flows (e.g. Barsony-Nagy, Er-El & Yungster
1987; Heister et al. 1990; Moore & Pullin 1991, 1998; Meiron, Moore & Pullin 2000;
Leppington 2006; Crowdy & Krishnamurthy 2018), porous channel flows (Majdalani
2007; Maicke & Majdalani 2008, 2010; Cecil, Majdalani & Batterson 2015), and acoustics
(Slimon, Soteriou & Davis 2000; Moon 2013) and could be used in a wide range of other
applications, as we demonstrate below.

The two-dimensional (2-D) flow around a disk has been researched extensively (Janzen
1913; Rayleigh 1916; Van Dyke & Guttmann 1983; Guttmann & Thompson 1993), for
example in search for a solution to the transonic controversy, namely, ‘the existence, or
non-existence, of a continuous transonic flow, that is, without a shock wave, around a
symmetrical wing profile, with zero incidence with respect to the undisturbed velocity’
(Ferrari 1966). These and other problems that require a high-order expansion could not be
explored as thoroughly in the 3-D case, because previous JREs for the sphere were limited
to second, i.e. M4∞, order (Kaplan 1940; Tamada 1940). Indeed, a power series in the
inverse radius r−1 yields non-physical behaviour at the third, i.e. M6∞, expansion order.
We avoid this supposed behaviour by showing that an additional power series emerges
with radially logarithmic terms, allowing for JRE-based computations around a sphere to
an arbitrary order. The resulting high-order 3-D expansions now facilitate a wide range of
physical applications, including, for example, modelling the compressible flow in front
of a sphere in order to model axisymmetric bodies in various fields of physics (e.g.
Keshet & Naor 2016, and references therein), and exploring claims for an approximate
universality among flows in front of such objects. Flows in higher dimensions, d > 3,
are also important, mainly for theoretical and pedagogical purposes, and similarly require
logarithmic terms.

The paper is organized as follows. In § 2, we derive the JRE equations from the
hydrodynamical ones. In § 3, we show that each term in the JRE of the flow potential
around a hypersphere is a finite sum of a product of powers of the radial coordinate,
powers of its logarithm and a set of orthogonal functions (Jacobi polynomials) of the
polar coordinate. In § 4, we outline a semi-analytic algorithm to compute the JRE and a
numerical pseudospectral method to solve the nonlinear compressible flow. We present
the results of the semi-analytical JRE and the pseudospectral numerical solver, focusing
in particular on the emergence of logarithmic JRE terms and compressibility effects, in
§ 5. The JRE is used to improve a hodograph approximation for the flow in front of the
sphere in § 6. In § 7, we show that the axisymmetric flow in front of prolate spheroids
is well approximated by that of the scaled flow in front of a sphere. We summarize and
discuss our results in § 8. Appendix § A outlines the numerical solver, whereas the other
supplementary material are available at https://doi.org/10.1017/jfm.2021.965 (OSM) and
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Janzen–Rayleigh inferences

provide low-order JRE coefficients for flows around a disk and a sphere, and general results
for the hodograph approximation.

A reader already familiar with the JRE may wish to skip its general derivation in § 2.
A reader focused on the physical implications may wish to skip the mathematical section
§ 3 and the semi-analytic and numeric section § 4, and jump directly to the results in § 5.
Sections §§ 6 and 7 demonstrate some applications of the JRE, and can be skipped if the
reader is uninterested in the hodograph and prolate approximations.

2. Janzen–Rayleigh expansion

Consider an isentropic flow in d dimensions with no external forces of a perfect fluid with
a polytopic, ideal gas EoS of adiabatic index γ ,

p ∝ ργ . (2.1)

The equations governing the flow are the continuity equation,
∂ρ

∂t
+ ∇ · (ρu) = 0, (2.2)

and the Euler equation,

∂u
∂t

+ (u · ∇)u = −∇p
ρ

= − ∇c2

γ − 1
. (2.3)

Here, ρ, u and p are respectively the mass density, velocity and pressure, c ≡
(dp/dρ)1/2 = (γ p/ρ)1/2 is the sound velocity and ∇ is the gradient operator in d
dimensions.

We henceforth assume steady flow. Combining (2.1) and (2.2) to eliminate ρ in favour
of c then yields

1
γ − 1

u · ∇c2 = −c2∇ · u. (2.4)

For our inviscid, steady flow, (2.3) yields the Bernoulli principle, namely, the quantity
wu2 + c2 is constant along streamlines, where we define w ≡ (γ − 1)/2.

We consider the flow along a body for a uniform flow incident from infinity,

c(r → ∞) = c∞ and u(r → ∞) = u∞ẑ, (2.5a,b)

where r is the radial coordinate, z is the coordinates along the flow, u = |u| is the speed
and the subscript ∞ indicates the far field region (tending to spatial infinity). Using the
boundary conditions (2.5a,b) and the assumption that every streamline starts at infinity,
the Bernoulli equation may be written as

wu2 + c2 = wu2
∞ + c2

∞. (2.6)

Considering the subsonic regime, we restrict the discussion to a potential flow, writing
the velocity as the gradient of the flow potential φ,

u ≡ ∇φ. (2.7)

Isolating c2 from (2.6), substituting it into (2.4) and using the potential (2.7), we obtain a
single PDE for the potential φ (Rayleigh 1916),

1
2(∇φ) · ∇(∇φ)2 = [wu2

∞ + c2
∞ − w(∇φ)2]∇2φ. (2.8)

We normalize the variables to obtain them in a dimensionless form, by taking φ →
(u∞R)φ, and r → Rr (which also normalize the velocity, u → u∞u), where R is a
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characteristic length scale, for example the radius of a hypersphere. Defining M∞ ≡
u∞/c∞ as the Mach number at infinity, we then arrive at the dimensionless equation

1
2(∇φ) · ∇(∇φ)2 = [w + M−2

∞ − w(∇φ)2]∇2φ. (2.9)

We supplement this equation for the potential with two boundary conditions (BCs): the
uniform incident flow from infinity, and the slip, no-penetration condition on the surface
of the body (n̂ · u = 0), namely

φ(r → ∞) = z = r cos θ and n̂ · ∇φ = 0. (2.10a,b)

Here, n̂ is the normal to the body, and we use hyperspherical coordinates: a radial
coordinate 0 ≤ r ≤ ∞, a polar angle 0 ≤ θ ≤ π measured with respect to the uniform
flow at infinity and (d − 2) additional angles. For axisymmetric flows such as in the case
of a hypersphere, the flow is (by symmetry) independent of these additional angles.

To arrive at the JRE, we substitute the expansion

φ(r) ≡
∞∑

m=0

φm(r)M2m
∞ , (2.11)

into (2.9), and isolate the different powers of M∞. This leads to a recursive set of PDEs
for φm (for m ≥ 1),

∇2φm = −w∇2φm−1

+ w
m∑

{m1,m2,m3}=0

δm1+m2+m3,m−1(∇φm1 · ∇φm2)∇2φm3

+ 1
2

m∑
{m1,m2,m3}=0

δm1+m2+m3,m−1∇(∇φm1 · ∇φm2) · ∇φm3, (2.12)

with an initial equation
∇2φ0 = 0, (2.13)

along with BCs
φm(r → ∞) = δm,0r cos θ, (2.14)

at infinity, and
n̂ · ∇φm = 0, (2.15)

on the body. Here, δi,j is the Kronecker delta symbol.
The zeroth-order (2.13) is the Laplace equation for φ0, corresponding to the

incompressible limit M∞ → 0. For higher orders, (2.12) can be regarded as a set of
Poisson equations for φm at each order m, with a source term being a function of the
lower-order solutions, {φi}m−1

i=0 , and their derivatives. In general, the solution to (2.12) at
any order m ≥ 1 under the BCs (2.14) and (2.15) is a sum of an inhomogeneous solution
and a homogeneous solution,

φm = φ(in)
m + φ(ho)

m , (2.16)

where φ
(ho)
m solves the Laplace equation.

The JRE (2.11) is constructed by iteratively determining the functions φm. One starts
by deriving φ0, obtained as the solution to the zeroth-order Laplace equation (2.13) under
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Janzen–Rayleigh inferences

the BCs. Increasingly higher-order functions φm are then incrementally derived, by solving
the corresponding Poisson equations (2.12) under the same BCs. At each order m ≥ 1, the
inhomogeneous solution φ

(in)
m is fixed by the source term in the corresponding (2.12),

which is explicitly written once all lower-order functions φm are determined. This solution
is then combined with an expansion φ

(ho)
m of homogenous solutions, the coefficients of

which are determined by applying the BCs to the resulting (2.16).

3. JRE for a hypersphere

Simple solutions exist for the flow around a d-dimensional hypersphere, for which
the Laplace equation has known analytic solutions, and the Poisson equation is easily
solved. Choosing the characteristic length R as the hypersphere radius, the normalized
no-penetration BC (2.15) here simplifies to

∂rφ(r = 1, θ) = 0. (3.1)

Considering the hyperspherical and axial symmetries, it is useful to write the general
solution to the Laplace equation (2.13) as an infinite sum of positive and negative radial
powers (e.g. Feng, Huang & Yang 2011)

∞∑
n=1

(Anrn + Bnr−n−d+2)J (d)
n (μ), (3.2)

where we define μ ≡ cos θ , the normalized Jacobi polynomials

J (d)
n (μ) ≡ J((d−3)/2,(d−3)/2)

n (μ)

J((d−3)/2,(d−3)/2)
n (1)

= C(d/2−1)
n (μ)(n+d−3

n

) , (3.3)

and numerical coefficients An and Bn. Here, J(α,β)
n (μ) and C(α)

n (μ) are respectively the
standard Jacobi and Gegenbauer polynomials.

The source term in (2.12) is a sum of multiple terms, each composed of even derivatives
in θ and odd multiples of functions φ. Therefore, the polar dependence will always
exhibit the same symmetry as the zero-order solution φ0. As the hypersphere is isotropic,
the incompressible flow also shows a backward–forward symmetry. We conclude that
the functions J (d)

n appearing in φm at all orders m have only odd n. Next, we construct
the hypersphere JRE by considering increasingly larger orders m.

3.1. Zeroth order: m = 0
For the m = 0 order, the infinity BC (2.14) allows only the radially linear and decaying
terms in the solution (3.2). The no-penetration BC (3.1) restricts the solution further,
allowing for only the decaying term proportional to J (d)

1 (μ) = μ. The solution to the
Laplace equation (2.13) around a d-dimensional hypersphere thus becomes

φ
(d)
0 (r, θ) =

[
r + 1

(d − 1)rd−1

]
cos θ. (3.4)

Henceforth, we omit the dimension superscript (d) unless necessary.
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3.2. First order: m = 1
The first-order potential, φ1, is determined by

∇2φ1 = −w∇2φ0 + 1
2 (∇φ0) · ∇(∇φ0)

2 + w(∇φ0)
2∇2φ0, (3.5)

which, by the zeroth-order (2.13), simplifies to

∇2φ1 = 1
2 (∇φ0) · ∇(∇φ0)

2. (3.6)

Plugging the m = 0 solution (3.4) into (3.6) gives the Poisson equation with the explicit
source term,

∇2φ1 = [−3μ+(2 + d)μ3]r−d−1 d
d − 1

+ [(−3 + d)μ+(2+d − d2)μ3]r−2d−1 2d
(d − 1)2

+ [(−3 + 2d)μ + (2 + d − 3d2 + d3)μ3]r−3d−1 d
(d − 1)3 . (3.7)

The orthogonal decomposition of Jacobi polynomials (Chaggara & Koepf 2010) then
yields

∇2φ1 = J3(μ)r−d−1d

+ [−2dJ1(μ) − (1 + d)(d − 2)J3(μ)]r−2d−1 2d
(d − 1)(d + 2)

+ [d(−4 + 3d)J1(μ) − (1 + d − d2)(d − 2)J3(μ)]r−3d−1 d
(d − 1)2(d + 2)

.

(3.8)

This result may be compactly written in the form

∇2φ1 =
∑
k,n

s(in)
1,k,nrkJn(μ), (3.9)

where s(in)
m,k,n are the expansion coefficients of the order-m Poisson source term, for radial

order k and angular order n; these coefficients are directly read off the right-hand side
of (3.8). The OSM provides these and other coefficients explicitly, for d = 2 and d = 3
(tables 1-3 therein).

As the Poisson equation is linear, it suffices to solve, for arbitrary k and n, the equation

∇2φk,n = rkJn(μ). (3.10)

This equation has the particular solution

φ
(in)
k,n = rk+2Jn(μ)

(k + 2)(k + d) − n(n + d − 2)
, (3.11)

provided that k /∈ {−d − n, n − 2}. These two exceptional values of k do not occur at order
m = 1, as seen from (3.8), but they may appear at higher orders, as discussed below in
§ 3.3. We may now expand the inhomogeneous solution as

φ
(in)
1 =

∑
k,n

s(in)
1,k,nφ

(in)
k,n , (3.12)

where the numerical coefficients s(in)
1,k,n are determined by equating (3.8) and (3.9).
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From (3.8) and (3.11), we see that the largest (i.e. least negative) power of r for m = 1
is kmax = −d + 1 < 0, implying that φ

(in)
1 includes only radially decaying terms. For

higher orders, (2.12) combines the derivatives of multiple φm functions, but the highest
radial power kmax in the source term remains no larger than −d − 1. Consequently, the
inhomogeneous solution for all m ≥ 1 orders includes only radially decaying terms. This
conclusion, combined with the BCs, indicates that the homogeneous solution may be
expanded with only negative powers of r for any m > 0,

φ
(ho)
m>0 =

∞∑
n=1

s(ho)
m,n r−n−d+2Jn(μ), (3.13)

where s(ho)
m,n are numerical coefficients, to be determined below.

The full solution for m = 1 now becomes

φ1 = φ
(in)
1 + φ

(ho)
1 =

∑
k,n

s1,k,nrkJn(μ), (3.14)

where we have introduced the combined numerical coefficients

s1,k,n = s(in)
1,k−2,n

k(k + d − 2) − n(n + d − 2)
+ s(ho)

1,n δk,−n−d+2. (3.15)

These coefficients may now be determined from the no-penetration BC (3.1),

∂φ1

∂r
(r = 1) =

∑
k,n

ks1,k,nJn(μ) = 0, (3.16)

implying that

s(ho)
1,n = 1

n + d − 2

∑
k,n

ks(in)
1,k−2,n

k(k + d − 2) − n(n + d − 2)
. (3.17)

As the coefficients s(in)
1,k,n are known from (3.8) and (3.9), the solution (3.14) is completely

specified by (3.15) and (3.17).

3.3. Higher orders: m ≥ 2
Substituting φ0 and φ1 in the Poisson equation (2.12) for the next m = 2 order results
again in an equation of the form (3.9), but now for φ2 and with different coefficients.
Equations of the same form persist for higher orders m, as long as the source term in (2.12)
is free of non-zero terms sm,k,n which satisfy one of the aforementioned special conditions,
k = −d − n or k = n − 2. Indeed, the source term consists of differential operators of the
form ∇2f (r, μ) and ∇f (r, μ) · ∇g(r, μ), where f and g are constructed from lower-order
φ terms. As long as f and g are sums of terms, each of which is a product of powers of r
and Jacobi polynomials in μ, the source term remains of the form (3.9).

For the special cases k ∈ {−d − n, n − 2}, the solution to (3.10) is no longer given by
(3.11), which formally diverges as its denominator vanishes. It is sufficient to consider the
former case, k = −d − n, as the latter, k = n − 2, is then obtained by the transformation
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n → −n − d + 2, under which J (d)
n remains invariant. Here, the inhomogeneous solution

to (3.10) becomes

φk=−d−n,n = −Γ [2, (2n + d − 2) ln(r)]

(2n + d − 2)2 rnJn(μ), (3.18)

where Γ (ξ, η) is the incomplete gamma function, defined by

Γ (ξ, η) =
∫ ∞

η

tξ−1e−t dt. (3.19)

Once a logarithmic term from (3.18) appears in the inhomogeneous solution for φm, as
a result of a special k term in the source-term expansion (3.9), a power series in r as in
(3.14) is no longer sufficient. Indeed, when ξ = 
 + 1 and η = τ ln(r) for integers 
 and τ ,

Γ [
 + 1, τ ln(r)] = 
!
rτ


∑
j=0

[τ ln(r)] j

j!
, (3.20)

contains logarithmic, and not only polynomial, radial terms. Since ln(r) cannot be
expanded as a power series of r−1 valid over the full 1 ≤ r < ∞ range, one must then
take into account logarithmic terms in the expansion of φm and in the resulting source
terms of higher-order functions.

Generalizing the prototypical source term in (3.9) to include a logarithm of r to some
power 
, we must therefore also consider the generalized equation

∇2φk,n,
 = rkJn(μ) ln
(r). (3.21)

As long as k, d, and n do not satisfy one of the special cases

k ∈ {−d − n, n − 2}, (3.22)

the inhomogeneous solution to this equation is

φk,n,
 = Jn(μ)

2n + d − 2

(
r−n−d+2 Γ [
 + 1, (−d − k − n) ln(r)]

(−d − k − n)
+1

−rn Γ [
 + 1, (n − k − 2) ln(r)]

(n − k − 2)
+1

)
, (3.23)

whereas for k = −d − n we find

φk=−d−n,n,
 = −rnJn(μ)
Γ [
 + 2, (2n + d − 2) ln(r)]

(
 + 1)(2n + d − 2)
+2 . (3.24)

The case k = n − 2 is again obtained using the transformation n → −n − d + 2,

φk=−n−d+2,n,
 = −r−n−d+2Jn(μ)
Γ [
 + 2, (−2n − d + 2) ln(r)]

(
 + 1)(−2n − d + 2)
+2 . (3.25)

The overall solution for φm may now be expanded as the finite sum

φm =
∑
k,n,


sm,k,n,
rkJ (d)
n (μ) ln
(r), (3.26)

where the numerical coefficients sm,k,n,
 are determined using the BCs in analogy with the
above m = 2 discussion. The expansion (3.26) is complete, as the inhomogeneous solution
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yields only powers of r and ln(r), and the homogeneous solution yields only powers of r,
so the resulting higher-order source terms are again of the form (3.21).

One can prove, by induction, the following rules for the m ≥ 1 indices in (3.26),

1 − d − 2md ≤ k ≤ 1 − d, (3.27)

and
1 ≤ n ≤ 1 + 2m. (3.28)

Logarithmic terms, if they emerge, are limited to indices

0 ≤ 
 ≤ m, (3.29)

because combining the particular solutions (3.24) and (3.25) with the property of the
incomplete gamma function (3.20) shows that the highest logarithmic power increases at
most by one in each JRE order (Imai 1942, which considered only 2-D flows). Additional
rules for the logarithmic term are discussed in § 5.

4. Semi-analytical and numerical solvers for disk and sphere flows

We explicitly solve (2.12) analytically and using a computer-aided symbolic algebra
program (Wolfram Mathematica; Wolfram, Research Inc 2019; a notebook is provided
at https://physics.bgu.ac.il/~wallersh/) for the hypersphere in the d = 2 and d = 3 cases;
namely, we derive the flows around a 2-D disk and around a 3-D sphere. The normalized
Jacobi functions reduce to Chebyshev polynomials Tn in two dimensions,

J (2)
n (cos θ) = Tn(cos θ) = cos(nθ), (4.1)

and to Legendre polynomials Pn in three dimensions,

J (3)
n (cos θ) = Pn(cos θ). (4.2)

As discussed in § 3, we consider the generalized expansion (2.11) and (3.26) of the flow
potential in each case,

φdisk =
(

r + 1
r

)
cos θ +

∞∑
m=1

m∑

=0

2m+1∑
n=1

−1∑
k=−1−4m

am,k,n,
M2m
∞ rk cos(nθ)ln
(r), (4.3)

and

φsphere =
(

r + 1
2r2

)
μ +

∞∑
m=1

m∑

=0

2m+1∑
n=1

−2∑
k=−2−6m

bm,k,n,
M2m
∞ rkPn(μ)ln
(r), (4.4)

where a and b are the expansion coefficients in two and three dimensions, respectively,
and the summation index n takes only odd values.

We compute these JREs analytically, following the steps outlined in § 3. The m = 0 term
is given by (3.4). For each order m > 0, we compute the source terms on the right-hand
side of (2.12), and decompose them into a sum of terms proportional to rkJn(μ) ln
(r)
as in (3.21). The inhomogeneous solution φ

(in)
m is then obtained as the corresponding sum

of solutions of the form (3.23)–(3.25), and added to the homogeneous solution φ
(ho)
m of

(3.13). The coefficients s(ho)
m,n in the latter sum are determined from the no-penetration BC,
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as demonstrated for m = 1 in (3.17). This process is repeated until the designated order of
the JRE is reached.

The JRE results are also compared with the flow obtained from a numerical solution
to the nonlinear equation (2.9). We follow Pham, Nore & Brachet (2005) and use a
pseudospectral collocation method (Boyd 2001) for a fast numerical convergence. In the
pseudospectral method, the solution to a PDE is expanded in terms of basis functions, each
being a product of individual (and typically orthogonal) functions for each coordinate. In
collocation methods, the PDE is then evaluated and solved at a set of points, usually taken
as the roots of the basis functions. This leads to a set of linear equations for the basis
function coefficients, which are solved to give an approximate PDE solution. In general
for pseudospectral methods, if the solution is smooth (all derivatives of all orders are
continuous) then the convergence is exponential in the number N of collocation points
(Boyd 2001), O(e−N).

Pham et al. (2005) use the Chebyshev–Fourier set of basis functions, with cos(nθ)

and sin(nθ) with integer n as angular basis functions. As discussed in § 3, the analytical
solution for φ is a sum of cos(nθ) terms with odd positive n, so we expand the flow
potential in odd cosine functions. To achieve the same accuracy as Pham et al. (2005), we
need only a fourth of the angular basis functions.

For the radial part, we apply an inversion map � ≡ r−1 and expand in Chebyshev
polynomials Tk(�), to resolve both small and large r behaviour. The pseudospectral
expansion thus becomes

φps = φ0 +
kmax∑
k=0

nmax∑
n=0

ck,nTk(�) cos[(2n + 1)θ ]. (4.5)

Here, kmax + 1 and nmax + 1 are the radial and angular resolution, i.e. the number of
collocation points, and ck,n are real coefficients. The BCs for φps are guaranteed by
offsetting collocation points from the boundaries and picking a potential φ0 consistent
with the BCs; a simple choice is the incompressible solution (3.4). Since the effective
computational domain and symmetry are the same in our 2-D and 3-D frameworks, we
expand both flows, around a disk and around a sphere, in the same basis functions (4.5).
Appendix § A provides more details on the calculations of ck,n and shows the numerical
convergence.

5. Results

We calculate the JRE (4.3) and (4.4) up to order m = 30 for the disk and m = 18 for the
sphere. We provide explicit expressions for the coefficients a and b up to order m = 3
(i.e. M6∞) for a general γ in the OSM (tables 1-3). For the pseudospectral code, we use
a resolution up to 32 Chebyshev and 64 odd cosine functions, but as shown below, much
lower orders and resolutions are sufficient to capture the behaviour of the flow with high
accuracy even for maximal compressibility (see figure 2 and 6). The results are presented
in the following figures mainly for γ = 7/5. Different choices of γ give qualitatively
similar results, as demonstrated for γ = 5/3 in figure 3(b).

Figure 1 shows the flow around a disk (a) and a sphere (b) for incident Mach numbers at
infinity approaching the respective critical (i.e. sonic) Mach numbers. The latter are tuned
to yield a sonic flow at the equator of the hypersphere, M(r = 1, θ = π/2) = 1, leading
to Mdisk

c 
 0.3982 in two dimensions and Msphere
c 
 0.5619 in three dimensions. We

compute the critical Mach number M∞ = Mcr by substituting M = 1 in the Bernoulli
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0 0.5 1.0 1.5 2.0
|u|

m = 0

m = 1m = 3

m = 5

–2 –1 0 1 2

–1

0

1

2

z

x

0 0.5 1.0 1.5
|u|

m = 0

m = 1m = 3

m = 5

–1 0 1 2–2

–1

0

1

2

z

(a) (b)

Figure 1. JRE solution to the critical flow around a unit hypersphere (white disk) for γ = 7/5 in two
dimensions (a unit disk; (a); incident near-critical Mach number M∞ = Mdisk

c 
 0.3982) and three
dimensions (a unit sphere; (b); Msphere

c 
 0.5619). In such a critical flow, the Mach number at the equator of
the body locally reaches Meq = 1. Streamlines (arrows) represent the trajectory of the flow (passing through
equidistant points at z = ±2 (black dots). The normalized (dimensionless) speed |u| is computed up to different
JRE orders m (of M2∞ in (2.11); see labels) in each quadrant. The effect of compressibility is particularly
noticeable by comparing the m = 0 and m = 5 approximations along the x > 0 axis.

equation and solving the resulting implicit equation

u(Mcr)
2

u2∞
= w + M−2

cr

w + 1
, (5.1)

where u is evaluated at the equator, using a high-order JRE.
The colour intensity (cubehelix; Green 2011) in the figure represents the normalized

speed |u|. The flow is symmetric under both x and z reflections, i.e. θ → −θ and θ →
π − θ , so it is sufficient to plot only one quadrant of the x − z plane. We thus utilize all
four quadrants to show the differences between the JRE obtained up to different, m = 0 to
m = 5, orders (see labels). To show the JRE corrections to the flow, we plot the streamlines
(arrows) that pass through a set of fixed equidistant points at z = ±2, so the differences
between quadrant arrows are meaningful. Comparing the different quadrants shows that
the compressible effects captured by higher orders m raise the velocity and lower the
density in the equatorial plane (notice the misaligned streamlines and mismatched colours
along the z = 0, x > 1 line).

Figure 2 shows the compressible contribution to the flow around a sphere; qualitatively
similar results are obtained for the disk. The contribution is computed based on JREs of
different orders, as well as on the numerical solution, and shown for the polar velocity
on the sphere (column a), the polar velocity at the equatorial plane (column b) and the
radial velocity along the symmetry axis (column c). We plot these profiles for two different
flows, with incident Mach numbers M∞ = 0.1 to demonstrate a subsonic case (row 1),
and M∞ = Mc 
 0.5619 for the critical case (row 2). As seen from row 1, at low Mach
numbers, the JRE converges rapidly: the m = 1 JRE is sufficient to accurately (within
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m = 0
m = 1
m = 3
m = 5
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Velocity correction

along meridian

uθ(r = 1,θ)–u0,θ(r = 1,θ)

Velocity correction

above equator

uθ(r, θ = π/2)–u0,θ(r, θ = π/2)

Velocity correction

along axis

ur(r, θ = 0)–u0, r(r, θ = 0)

(1)

–1 × 10–3

0

1 × 10–3

2 × 10–3

3 × 10–3

0

1 × 10–3

2 × 10–3

3 × 10–3

–8 × 10–4

–6 × 10–4

–4 × 10–4

–2 × 10–4

0

(2)

Critical\sonic

0 π
6

π
3

π
2

2π
3

5π
6

π
–5.0 × 10–2

0

5.0 × 10–2

1.0 × 10–1

1.5 × 10–1

θ

0 π
6

π
3

π
2

2π
3

5π
6

π

θ

0 0.2 0.4 0.6 0.8 1.0
0

5.0 × 10–2

1.0 × 10–1

1.5 × 10–1

r–1

0 0.2 0.4 0.6 0.8 1.0

r–1

0 0.2 0.4 0.6 0.8 1.0

r–1

r–1
0 0.2 0.4 0.6 0.8 1.0

–3 × 10–2

–2 × 10–2

–1 × 10–2

0

(a) (b) (c)

Subsonic     ∞ = 0.1

∞ =    c −∼←0.5619

(equator) = 1

Figure 2. Compressible corrections to the flow around a 3-D sphere for γ = 7/5 according to different JRE
orders and to the pseudospectral (ps, 8 × 8 resolution) solver (see legend). Profiles are shown for the flow along
the longitude of the sphere (column a), at different radii above the equator (column b) and along the symmetry
axis (column c), for both a subsonic flow with M∞ = 0.1 (row 1) and for the critical flow (row 2).

∼ 0.005 % in u for M∞ = 0.1) capture the compressible effects. Convergence is slower
for larger M∞, with high orders needed to obtain an accuracy sufficient for precision
applications (compressible effects captured within ∼ 5 % in u for m = 1) and delicate
questions (such as the transonic controversy) in the critical limit.

For the flow around a disk in two dimensions, we find no logarithmic (ln r) terms in
the flow potential, for any γ . Namely, all computed JRE (4.3) coefficients a with 
 /= 0
vanish, as illustrated in table 1 in the OSM up to order m = 3. We confirm this behaviour
for arbitrary γ up to order m = 30. Using a prescribed γ speeds up the JRE computations,
allowing us to reach higher orders. We thus compute the JRE up to order m = 50 for
the specific cases γ ∈ {1, 7/5, 5/3, 2}, corresponding respectively to isothermal, ideal
diatomic, ideal monatomic and weakly interacting Bose, gasses. In all of these cases, we
find no logarithmic terms in the flow potential.

In contrast, logarithmic terms are unavoidable in the flow around a sphere in three
dimensions, for any γ . Indeed, the JRE (4.4) shows the first logarithmic term at order m =
3, for k = −8, n = 7 and 
 = 1, as indicated in table 3 in the OSM. This is proportional
to 5 + 7γ + 2γ 2, which vanishes only for negative, non-physical γ values. In addition to
such 
 = 1 terms for all orders m ≥ 3, we find 
 = 2 terms for all orders m ≥ 6, 
 = 3
terms for all orders m ≥ 9, and so on, with the highest logarithmic term order increasing
by one every three orders in m. Furthermore, the term with the highest logarithm power is
also proportional to ∝ r−2m−2P2m+1(μ). This behaviour is verified up to order m = 18 for
arbitrary γ > −1, and up to order m = 30 for the specific values of γ chosen above.

While proving that these effects persist as m increases to infinity is beyond the scope of
the present work, we hypothesize that they do:

CONJECTURE 5.1. Logarithmic JRE terms never appear in the flow of a polytropic γ ≥ 1
fluid around a disk.
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m = 0 m = 1 m = 2 m = 3 m = 4

q0 1.5 1.3809 1.3783 1.3766 1.3762
q1 −0.5 −0.5 −0.5 −0.5 −0.5
q2 0 0.0254 0.0259 0.0263 0.0265
q3 0 0.0585 0.0662 0.0689 0.0688

Table 1. Coefficients of the first four terms in the Taylor expansion of q(u), for different JRE orders m, at the
critical Mach number M∞ = M∞ 
 0.5619 for the flow of a γ = 7/5 fluid around a sphere. See the OSM,
appendix B for analytic expressions for q with arbitrary M∞ and γ .

CONJECTURE 5.2. For the flow around a sphere, the highest 
 of JRE terms ∝ M2m∞ ln
(r)
is 
max = �m/3
.

6. Example: an improved axial hodograph approximation

The flow in front of a blunt body has important implications in diverse physical
applications, and is well approximated in both subsonic and supersonic regimes by
expanding the perpendicular gradients q ≡ ∂θuθ |θ=0 in terms of the parallel (normalized)
velocity u = |ur| (Keshet & Naor 2016). In the subsonic regime of this hodograph
approximation, q = q(u) is defined in the 0 < u < 1 region between the stagnation point
and spatial infinity, and is expanded around the stagnation point in the form q(u) ≈
q0 + q1u + q2u2 + q3u3, which we designate as a third-order hodograph approximation,
Hodo(3). It can be shown that q0 does not vary much with respect to the incompressible
case, q1 = −1/2, and q2 is small with respect to q3 (Keshet & Naor 2016).

Using the JRE for the sphere, here we calculate the coefficients qi analytically, for given
order m. The resulting expressions for the coefficients are provided for 1 ≤ m ≤ 4, as a
function M∞ and γ , in table 4 in the OSM. For illustration, table 1 provides the numerical
values of these coefficients for the critical Mach number with γ = 7/5. The coefficients
converge rapidly, reaching three-digit accuracy for m = 4. The effect of compressibility
can be seen to be small, as q2 and q3 are smaller than q0 and q1 by two orders of magnitude.
We verify the small deviation of q0 from its incompressible value 3/2, the precise result
q1 = −1/2 for all orders, and that q2 ≈ q3/3 is small albeit non-negligible.

Figure 3 shows the compressible contribution to the radial velocity along the symmetry
axis of a sphere, with and without the JRE corrections, for a flow at the critical Mach
number. Results are shown for both γ = 7/5 (a) and γ = 5/3 (b). The two panels slightly
differ because they pertain to different M∞ values; for the same M∞, the axial flow
for different 1 < γ < 2 values are nearly indistinguishable. The corrected hodograph
approximation provides a much better fit to the JRE and to the actual flow; an advantage
of this approximations is its smooth transition into the supersonic regime (Keshet & Naor
2016).

7. Example: an approximately universal flow in front of spheroids

It has been suggested (Keshet & Naor 2016) that the flow in front of an axisymmetric
body is well approximated by the flow in front of a sphere, rescaled to give the same
nose curvature. Consider general prolate or oblate spheroids of the form (x2 + y2)α−1 +
z2α−2 = 1, chosen to be axisymmetric along the ẑ flow axis and with unit curvature at
the nose. We shift the z coordinate such that the resulting spheroid overlaps with the
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γ = 7/5

0 0.2 0.4 0.6 0.8 1.0

r–1

γ = 5/3

0 0.2 0.4 0.6 0.8 1.0

–0.04

–0.03

–0.02

–0.01

0

r–1

–0.04

–0.03

–0.02

–0.01

0
u r(

r,θ
=

0
)–

u 0
,r(

r,θ
=

0
)

JRE(1)

ps (8×8)

Hodo(3) q2 = 0
Hodo(4) q2 ≠ 0

JRE(2)

(a) (b)

Figure 3. Compressibility contribution to the velocity along the symmetry axis of a sphere near the critical
Mach number, for γ = 7/5 ((a) M∞ = Mc 
 0.5619) and γ = 5/3 (b) M∞ = Mc 
 0.5462). Results
shown for a numerically converged pseudospectral calculation (ps, 8 × 8 resolution, solid black curve), a
first-order JRE (JRE(1), dot-dashed red) and second-order (JRE(2), dot-dash-dashed cyan) and hodograph
approximations with (Hodo(4), dotted blue) and without (Hodo(3), dashed green) the q2 coefficient.

–2 0 2 4 6 8 10
–3

–2

–1

0

1

2

3

z

x
α = 1

α = 2

α = 3

α = 4

α = 5

Figure 4. Different prolate spheroids of noses coincident with the unit sphere, shown in the y = 0 plane,
along with streamlines (black arrows) of an incompressible flow around the most prolate of these bodies; see
text.

unit sphere at the nose, by z → z + 1 − α2. The pseudospectral code (details in § A) is
modified to solve the flow around such spheroids.

Figure 4 demonstrates the shapes of a sphere (α = 1) and of four shifted prolate
spheroids (α ∈ {2, 3, 4, 5}), along with the incompressible flow along the most prolate,
α = 5 of these cases. Figure 5 shows both the incompressible (a,c) and the critical (b,d)
flows in front of these bodies. The normalized velocity u (upper panels) varies with α

and M∞ (and slightly with γ , see figures 5d and 3). However, a nearly universal result is
obtained for the scaled velocity

uuniversal
r (r) ≡ u(α)

r (r, θ = 0)/(r−1 + 1)α
−1/4

, (7.1)

being approximately insensitive to the Mach number, prolate body profile and value of γ .
For oblate spheroids (α < 1), the velocity does not scale to the universal curve.
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JRE(3) (α = 1)

sphere (α = 1)
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spheroid (α = 4)

spheroid (α = 5)
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0.6

0.8
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M∞ = 0.5619

Figure 5. Incompressible (a,c) and critical (for the sphere: M∞ = 0.5619; b,d) flows in front of the different
prolate spheroids of figure 4 (legend), showing the normalized velocity u (a,b) and the scaled velocity
ur/(r−1 + 1)α

−1/4
(c,d). Results are based on the pseudospectral code with a converged (better than line width),

(kmax, nmax) = (8, 8) resolution, for γ = 7/5. In the bottom row, we also plot the third-order JRE around a
sphere (JRE(3), solid blue), for comparison.

8. Summary and discussion

We generalize the JRE of a hypersphere beyond two dimensions, providing an exhaustive
solution that supplements previous approaches with additional, usually necessary,
logarithmic radial terms. Such a generalization is found to be essential in three dimensions,
required for obtaining the correct solution for the sphere even at third (m = 3, i.e. M6∞)
order, although it is apparently not needed for the special case of a disk in two dimensions.
The resulting, arbitrary-order JRE is a useful tool for studying various problems, as we
demonstrate by generalizing and extending previous solutions for the axial flow of a
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sphere, and by presenting a simple approximate scaling that generalizes the axial flow
for prolate spheroids.

We briefly summarize the analysis as follows. The JRE of a potential, compressible
flow is derived in general (in § 2) and around a hypersphere of arbitrary dimension d (in
§ 3). The expansion is based on combining the continuity equation (2.4) and the Bernoulli
equation (2.6) into a single equation (2.9) for the flow potential, φ, which depends on
the incident Mach number M∞ far away from the hypersphere. An expansion of φ in
powers of M∞ results in a set of recursive equations (2.12), with the zero order being the
incompressible solution (3.4). The equations for higher orders, φm, are derived as a sum of
particular Poisson equations (3.21), with an exhaustive solution that is a finite sum (3.26)
of terms combining powers of r, Jacobi polynomials J (d)

n (cos θ) and, in addition, powers
of ln (r) that emerge when the Poisson source terms satisfy one of the special conditions
(3.22).

Previous JRE calculations were typically carried out with only part of the general
solution, each order being considered as a sum of powers of r and Jacobi polynomials
alone. This approach works well in two dimensions, where one does not encounter any
divergence, thus avoiding logarithmic terms, at least up to order m = 50. However, this
approach severely limits the JRE in three dimensions, as without logarithmic terms, the
m = 3 order diverges. The inclusion of logarithmic terms allows us to calculate terms
much higher than available for any previous work in three dimensions (Kaplan 1940;
Tamada 1940; Lighthill 1960; Fuhs & Fuhs 1976), and with higher accuracy (Frolov
2003). Furthermore, we are able to compute the JRE to arbitrary order in any dimension,
providing interesting insights on the flow. For instance, the JRE of the 4-D hypersphere
shows logarithmic terms already at order m = 2, indicating that the 3-D sphere is not
unique in requiring such terms.

After deriving the general solutions to all possible Poisson equations that can emerge
in the problem ((3.23), (3.24) and (3.25)), one can directly compute the hypersphere JRE
to arbitrary order, dimension and EoS. Low-order terms can be derived manually and
compared with previous results (e.g. Imai 1938, 1941; Shimasaki 1955). The derivation of
high-order terms can be assisted by a computer-aided symbolic algebra program (e.g. Van
Dyke 1984), which we provide as a link to a symbolic algebra program (Wolfram, Research
Inc 2019). While various physical phenomena are adequately described by low-order JREs,
higher orders are needed to demonstrate the emergence of logarithmic terms in some cases
(like m = 3 in the 3-D sphere), and very high orders are needed for precision tests and near
the singular points of the expansion. Calculating the high-order expansion symbolically
allows us to study with high accuracy the flow at arbitrary subsonic Mach number and
equations of state, which is much more efficient than running an individual numerical
simulation for each case. We calculate the JRE analytically for general γ to order m = 30
in two dimensions and m = 18 in three dimensions. For select values of γ , we proceed to
compute 50 JRE orders in two dimensions and 30 orders in three dimensions, allowing us
to verify previous numerical results of the high-order JRE (Guttmann & Thompson 1993).
Using complex variables (e.g. Imai 1942; Barsony-Nagy et al. 1987; Rica 2001, in two
dimensions) leads to simpler recursive PDEs, but yields the same analytic results and does
not show numerical advantages over the real-variable JRE.

The logarithmic term emerging at the m = 3 order in the 3-D sphere JRE is proportional
to 5 + 7γ + 2γ 2 (table 3 in the OSM), which does not vanish for any γ > 0, including the
special case γ = 1 (i.e. w = 0). This shows that both nonlinear terms on the right-hand
side of (2.12) contribute to the logarithm. We find that the highest order of any logarithmic
term in the expansion increases by one every three orders in m; when this occurs,
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only one logarithmic term appears, multiplied by a single power of r and a single Legendre
polynomial ∝ r−2m−2P2m+1(μ) (see table 3 in the OSM for m = 3). We speculate that
these findings are true for higher orders in the JRE and all physical values of γ (conjecture
5.2).

We expect the absence of logarithmic terms in the 2-D disk JRE to persist for all orders
m and for all γ (conjecture 5.1). To elucidate the absence of these terms, consider how
logarithmic terms could have putatively emerged in this JRE. The m = 0 potential φ0 =
(r + r−1) cos θ induces the m = 1 Poisson source 2(r−7 − 2r−5) cos θ + 2r−3 cos 3θ in
(2.12), none of whose components satisfies (3.22), so φ1 has no logarithms. This source
curiously lacks terms such as r−5 cos 3θ , which would have produced a logarithm in
φ1. Such a (k = −5, n = 3) term is conspicuously absent also from the (m = 2, n = 3)
Poisson source [3r−11 − 2(2 + 3γ )r−9 + 18γ r−7 + 19r−3] cos(3θ)/6. Inspecting (2.12),
one sees several combinations (mi, ki, ni) of terms among φm1, φm2 , and φm3 in the sum
which should have produced, in the φ2 source, a term

f

⎛
⎝m1 k1 n1

m2 k2 n2
m3 k3 n3

⎞
⎠r−5 cos 3θ, (8.1)

where f are numerical coefficients. However, the sum of these coefficients vanishes,

f

⎛
⎝1 −3 1

0 1 1
0 1 1

⎞
⎠ + f

⎛
⎝0 −1 1

0 1 1
1 −1 1

⎞
⎠ + f

⎛
⎝0 −1 1

1 −3 3
0 1 1

⎞
⎠ + f

⎛
⎝0 1 1

0 1 1
1 −3 1

⎞
⎠

+ f

⎛
⎝0 1 1

1 −1 3
0 1 1

⎞
⎠ + f

⎛
⎝0 −1 1

0 −1 1
1 −1 3

⎞
⎠ = 3

2
− 3

4
+ 3

2
− 3

4
− 3

4
− 3

4
= 0, (8.2)

giving no logarithms in φ2. Such a cancellation of terms persists at higher orders m.
Logarithmic JRE terms emerge in all 3-D objects we examined, including a

paraboloid of revolution φ0 = r cos θ + ln [r(1 + cos θ)]/2 (Kaplan 1957), the 3-D
Rankine half-body φ0 = r cos θ + Q/r and the Rankine ovoid. They also appear to emerge
at higher dimensions, like the m ≥ 2 logarithmic terms obtained in four dimensions. In
contrast, the absence of logarithmic terms is not a property of 2-D flows in general, nor is
it unique to the disk. The 2-D disk itself does show logarithmic terms in its JRE if a finite
circulation is included, emerging already at order m = 1 and persisting at higher orders
with indices reaching 
max = m (Hasimoto & Sibaoka 1941; Heaslet 1944). Logarithmic
terms emerge starting at order m = 1 also in the JRE of the flow around the 2-D Rankine
half-body φ0 = r cos θ + (σ/2π) ln r, obtained (e.g. Anderson 2001) by adding a source
term of strength σ > 0 to a uniform flow. These Rankine half-body logarithmic terms
persist if one adds a sink on the symmetry axis, except in the special case where the
sink has strength (−σ): the resulting Rankine oval shows no ln r terms. More generally,
2-D Rankine bodies (defined by a series of sources and sinks on the symmetry axis)
show logarithmic terms already at order m = 1 unless the sum of all source and sink
strengths precisely vanishes. The flows around 2-D compact objects with closed-form
algebraic prescriptions (Wallerstein & Keshet, in preparation) appear to resemble the disk
in showing no logarithmic JRE terms in the absence of circulation.

These results suggest that the emergence of logarithmic JRE terms is directly related to
the topological nature of the flow domain. Indeed, we identify logarithmic JRE terms in
all the flow domains that are simply connected, and no logarithmic terms in flow domains
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that are not simply connected. The example of the 2-D disk is particularly interesting:
a circulation term (∝ θ ) introduces branch cuts that change the non-simply connected
domain into a simply connected Riemann surface. The different analytic properties
of flows with and without logarithmic JRE terms – whether or not the difference is
topological in its essence – can have physical implications for various applications and
questions. One example is the validity of attempts to infer the analytic properties of one
type of flow based on studies of the other. For instance, it is unclear if the substantial
efforts to analyse the transonic controversy based on the 2-D disk are directly relevant
to any 3-D body (Wallerstain & Keshet, in preparation). A topological connection would
have important implications for a wide range of systems, ranging from the manifestation
of the d’Alambert paradox in inviscid flows around spheres moving in superfluids (e.g.
Rica 2001; Keeling & Berloff 2009) to the use of multi-dimensional potential flows as
field duals of N-dimensional spacetimes (Keeler, Manton & Monga 2020).

Regardless of logarithmic terms, the angular part the solution includes Jacobi
polynomials of odd n for all JRE orders, so the flow is symmetric fore and aft of the
hypersphere. Hence, as long as the JRE converges and no additional effects are included,
there is no net force on the hypersphere, and the flow is drag free for all dimensions. The
d’Alembert paradox thus persists in all dimensions.

Even though we calculate the JRE to high orders, many physical features can be
adequately captured with only a few low orders (figure 2), even for sonic flow. For example,
we find an accuracy better than ∼1 % in u for m = 5. The low JRE orders (m ≤ 5) show
that compressibility effects are more prominent in the vicinity of the hypersphere, and
in particular at the equatorial plane (figures 1 and 2). High-order JREs, necessary for
some applications and for delicate questions such as the transonic controversy, are now
straightforward also for the 3-D sphere and in higher dimensions.

With the ability to calculate the JRE to any desired accuracy, we compare it with
other approximation methods, such as the hodograph approximation for the flow on the
symmetry axis in front of a sphere, which has important physical implications even in
the inviscid regime (e.g. Keshet & Naor 2016). The hodograph approximation of Keshet
& Naor (2016) performs better (i.e. agrees better with a JRE or the high-resolution
pseudospectral solver) than the JRE of order m = 0, but worse than the JRE of order m = 1
for any γ (figure 3a and 3b). We use the JRE to improve the hodograph approximation
(OSM, appendix B), so that it performs better than JRE of order m = 2 (but not m = 3)
for any γ except far (r � 2) from the sphere; see figure 3(a). The corrected approximation
is simple, readily continued to the supersonic regime (Keshet & Naor 2016) and now also
accurate.

It has been speculated that the flow in front of the sphere can be applied to axisymmetric
bodies with a similarly scaled nose curvature (Keshet & Naor 2016, and references therein),
such as prolate spheroids (figure 4). While the flows in front of different spheroids are not
identical (figures 5a and 5b), they can be approximately mapped onto each other with a
universal scaling, independent of γ and M∞, for flows ranging from the incompressible
(figure 5c) to the sonic (figure 5d) regimes. The velocity u(α)

r in front of prolate spheroids
with semi-axes α > 0 and α1/2 can be well approximated by a scaled JRE for a sphere

u(α)
r (r, θ = 0) ≈ (r−1 + 1)α

−1/4−1u(1)
r (r, θ = 0)

≈ (r−1 + 1)α
−1/4−1

mmax∑
m=0

M2m
∞ ∂rφm(r, θ = 0). (8.3)
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It is natural to ask if such scalings can be identified using the generalized JRE in front of
other bodies and in other dimensions, but this is beyond the scope of the present work.

Supplementary material. Supplementary material are available at https://doi.org/10.1017/jfm.2021.965.
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Appendix A. Details and convergence of the pseudospectral solver

In order to capture the behaviour of the flow far and near the sphere, we map the
radial domain from r ∈ [1, ∞] to � = r−1 ∈ [0, 1]. This mapping is used only in our
pseudospectral code. We review the implementation for the 3-D case here; the 2-D case is
similar, differing only in differential operators. The differential operators with respect to �

are

∇� = (−�2∂�, �∂θ ) and ∇2
� = �4∂�� + �2 cot (θ)∂θ + �2∂θθ . (A1a,b)

The pseudospectral method requires the expansion of the solution as a series of
functions (Boyd 2001) (not required to be orthogonal) and evaluating the equation at
collocation points. To ensure the polar BCs (no polar velocity on the poles i.e. Neumann
BC for three dimensions and periodic boundary in two dimensions), we expand in cosine
functions only. Furthermore, the back and front reflection symmetry of the sphere limits
the cosine functions to only odd cosines (as analytically shown for the JRE in § 3),
cos[(2n + 1)θ ]. In the radial direction, we use the Chebyshev polynomials of the first kind
(4.5). We take the collocation points to be

�i = cos
(

πi
2kmax

)
, 1 ≤ i ≤ kmax − 1; θj = πj

2(nmax + 2)
, 1 ≤ j ≤ nmax + 1.

(A2a,b)
We do not consider the collocation points θ ∈ {0, 1} because the expansion in odd

cosines fulfils the BCs identically. On the points � ∈ {0, 1}, we solve the BCs at infinity
and at the sphere respectively and not the nonlinear equation (2.9). To solve the nonlinear
equation, we use a simple Newton–Raphson algorithm where at each step we solve a linear
set of equations. In all computation, we take the error to be the maximal deviation of the
equation at the collocation points and take a tolerance of 10−11. Most of the computations
converge rapidly and do not require more than seven Newton–Raphson steps.

Figure 6 shows the compressible contribution to the polar velocity on the sphere for
various resolutions of the pseudospectral code. The code is quite converged, for most
angles, except close to the equator and poles. A resolution of four by four shows the
largest relative error (with respect to resolution of 16 by 32), which is smaller than 2 %
at the equator. To test the robustness of the computation, we expand the solution with
different functions, e.g. odd and even cosines as well as in sine functions. This resulted
in vanishing coefficients of even cosine and sine functions. For the radial functions,
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Figure 6. Numerical convergence of the pseudospectral code. Compressibility contribution to the polar
velocity on the sphere for different resolutions at M∞ = 0.5619 and γ = 7/5.

we expand in a linear combination of Chebyshev polynomials that fulfils the BC identically
and in Legendre polynomials. All combinations gave the same results with respect to the
tolerance.

We modify the code for the calculation of a compressible flow around spheroids of the
form (x2 + y2)α−1 + z2α−2 = 1. We use prolate spheroidal coordinates, μ, ν defined by

x =
√

α2 − α cosh (μ) cos (ν) and z =
√

α2 − α sinh (μ) sin (ν). (A3a,b)

(We omit the azimuthal coordinate ϕ from symmetry considerations.) In this set of
coordinates the body is described by the equation cosh(μb) = √

α/(α − 1). We normalize
this coordinate and inverse it such that the computational domain is [0, 1] × [0, π/2] just
as in the case of the sphere. This changes the differential operators to (after the change of
variable μ = μb�

−1):

∇(α)
� = 1√

(α2 − α)[sinh2(μb�−1) + sin2(ν)]
(−�2μ−1

b ∂�, ∂ν) and

∇2,(α)
� = 1

(α2 − α)[sinh2(μb�−1) + sin2(ν)]
[μ−2

b (�4∂�� + 2�3∂�)

− �2μ−1
b coth(μb�

−1)∂� + ∂νν + cot(ν)∂ν].

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(A4a,b)

We take φ0 to be a function that fulfils both BCs

φ
(α)
0 =

(√
α2 − α cosh(μb�

−1) + √
α�μb

)
cos(ν). (A5)
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