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Abstract 

This paper has a twofold purpose. The first is to compute the Euler characteristics of hyperbolic Coxeter 
groups Ws of level 1 or 2 by a mixture of theoretical and computer aided methods. For groups of level 1 
and odd values of | S |, the Euler characteristic is related to the volume of the fundamental region of Ws in 
hyperbolic space. Secondly we note two methods of imbedding such groups in each other. This reduces 
the amount of computation needed to determine the Euler characteristics and also reduces the number of 
essentially different hyperbolic groups that need to be considered. 

1991 Mathematics subject classification (Amer. Math. Soc): primary 20F55; secondary 52A38. 

The Euler characteristic of a Coxeter group Ws was defined by Serre, who gave 

an inductive formula [13, p. 110] for its computation. More recently, Chiswell [4, 

Proposition 3] has derived the explicit formula 

where the summation extends over all subsets X of S for which Wx is finite. 

A crucial property of Euler characteristics is that 

whenever H is a subgroup of finite index in G. It follows in particular that x(Ws) = 

1/| W s I for finite Ws. 
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0. Introduction 

(0.1) 
XcS 

(0.2) X(G) = [G : H]X{H), 
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150 George Maxwell [2]

After preliminary discussion in Section 1, we show in Section 2 that x(Ws) = 0
for affine Ws and then find, with the help of a Mathematica program, the Euler
characteristics of 'hyperbolic' Coxeter groups in the sense of [7, 6.8], as well as of
'hyperbolic groups of level 2' in the sense of [11]. The numerical results are shown
in Section 5.

It frequently happens that a Coxeter group Ws> can be naturally imbedded as a
subgroup of finite index in another Coxeter group Ws. The value of x(W5) then
follows from (0.2). In Section 3, we describe two types of such imbeddings, some of
which were observed earlier by the author in [11].

Finally we note in Section 4 that, for hyperbolic Coxeter groups, the volume of a
fundamental region C of Ws in hyperbolic space W is given by

(0.3) (-1)"/2 vol(C) = anX(Ws)/2,

whenever \S\ = n + 1 is odd (an is the volume of the sphere §"). For even values of
|S|, x(Ws) — 0 and gives no information about vol(C).

Earlier computations of vol(C) were made by Meyerhoff [12] for \S\ = 4. These
can be considerably shortened by using the fact that

(0.4) vol(C') = [Ws : Ws>] vol(C)

whenever WS' is imbedded in Ws. We have checked that the calculations of [12]
conform with equation (0.4) and list the volumes again in Table 1.

For \S\ = 6, Kellerhals [10] has obtained an exact formula in one case, shown in
Table 1. Using (0.4), we can deduce the volumes for related groups, two of which
were also found in [10]. In addition, Kellerhals [9] has computed the volumes for
'orthoschemes', classified earlier by Im Hof [8], when \S\ is odd. In view of (0.3),
this amounts to finding their Euler characteristics. We have checked her values and
found different answers in four cases. The second last graph on [9, p. 206] has a
volume of 61 n2/10800, the second and seventh graphs from the top of page 209 have
volumes of 7T3/259200 and 7T3/12960 respectively, while the last graph on page 210
has a volume of 177T4/43545600.

The author would like to express his gratitude to M. Cherkasoff for an independent
computer verification of some of the numerical results.

1. The Schlafii space

In this section, we establish certain combinatorial formulas whose origins lie in the
work of Schlafii [1, 5.2] on volumes of simplices. When applicable, these formulas
are helpful in reducing the amount of computation needed to find
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[3] Hyperbolic Coxeter groups 151

Let T be a finite graph and K a simplicial complex of subsets of F. We denote
by K(X) the complex consisting of all proper subsets of a set X c F. If X{, X2 are
disjoint subsets of F such that no element of Xj is adjacent to an element of X2, the
union of X! and X2 is written as Xt LJ X2. We also use this notation to indicate that
X, and X2 have this property.

The Schlafli space S(K) of K is the real vector space spanned by elements [X], for
X € K, subject to the relations:

(1) If A u X e K and |X| is odd, then

We call £ = J^xeK(-1)|X|[X] the Euler element of S(K).
A real-valued function x on K is a Schlafli function if it has the following properties:

(2) x(0) = i;
(3) *(X) = x(X,)*(X2) whenever X = X, u X2;
(4) 2*(X) = EK^<x,(-1)|1'lX(y) if 1*1 is odd.

It follows that x (M) = 1/2 for all x e F. For example, the function

(1.2) *i(X) = l/2|X|

always enjoys these properties.
A Schlafli function x has the same value on both sides of (1.1) and can therefore

be extended to a linear function on §(K). We call

(1-3) X(E) =
XaK

the Euler characteristic of x- Our aim is to find shorter formulas for E, in order to
simplify the calculation of x ( £ ) .

Suppose that A u X e F is such that AuYeKforallYe K(X). We can then
construct the element

ofS(K). If A uX itself belongs to AT and |X| is odd, E(A, X) = 2[A u X] by (1.1).
Let {ak} be the sequence of numbers defined by ax = 1 and

(1.5) 2ak=2-('l)ai ( k

V1/ \k ~ !
LEMMA 1.1. We have ak = 4(2*+l - l)Bk+i/(k + 1), where Bk is the kth Bernoulli

number. In particular, ak = Ofor even values ofk.
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152 George Maxwell [4]

PROOF. The recursion formula implies that

k = \

On the other hand, starting from the equation

k=\

substituting 2t for t and subtracting, we obtain

oo

2 - £ (4 (2*+1 - 1) Bt+l/(k + 1)) tk/k\ = 4/ (e' + l).
k=l

since B) = —1/2.

PROPOSITION 1.2. Suppose that AuX c r / sswcA^arAuy e K for all Y €

In particular, E(A, X) = 0 / / |X | w even.

PROOF. We argue by induction on \X\. If \Y\ is odd, the term (-1)|K|[A u Y] on
the right side of (1.4) is equal to —E(A, Y)/2 by (1.1) and can therefore be expanded
by the stated formula.

In the resulting expansion of E(A, X), consider an element [A u Z], with \Z\ even.
It occurs once on its own with a coefficient of + 1. In addition, each element [A u Y],
with Z c Y c X, Y ^ X and \Y\ odd, contributes [A u Z] with a coefficient of
-a2j+i/2, where 2j + 1 = \Y\Z\. Since there are f*^1) such subsets of X, the total
coefficient of [A u Z] is

\x\z

by (1.5), which is equal to 0 if |X| is even.

COROLLARY 1.3. Suppose that K — K{T). Then E = 0 ;/|f| is even and

ml(
k=0 \|J'|=2m-2t

if\r\ = 2m + l is odd.
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PROOF. Take A = 0 and X = F in Proposition 1.2.

For special graphs F, one can further simplify this formula by using

LEMMA 1.4. Suppose that A u X c F is such that AuYeKforallYe K(X). If
K(X) can be expressed as the disjoint union of a family {Kp}, where Kp = [Bp u Y' \
Y' C Cp}for a pair of subsets (Bp, Cp) of X such that Bp u Cp, we have

E(A, X) = 2 ^ ( - ! ) '\-A u BP u CP\-
p

PROOF. We have

Yi-\)m[A u Y] = (-l)iS"' V (-l)in[A UB.U H
r e AT, rcC,

= (-I)1*"1 (E(A u Sp, Cp) + ( - l ) 1 0 ' 1 ^ u Bp u Cp]),

which is equal to (—l)|Si [A u Bp u Cp] by Proposition 1.2. Summing over p , we
obtain the desired result.

PROPOSITION 1.5. Suppose that AuX c F is such that AuY e K for all Y e K{X)
and that X = [1, ... ,n] is a linear graph, with i adjacent to j only ifi—j = ±l.
Then

E ( A , X ) = Y ^ ( - l ) ^ 1 \ A U | l , . . . , j , . . . , / i l l .
4 ^ LI J J

P R O O F . A p p l y L e m m a 1.4 w i t h fi, = { 1 , . . . , / - 1} a n d C , = {/' + 1 , . . . , « } f o r
1 <i<n.

COROLLARY 1.6. Let F = {1, . . . , 2m + 1} be a linear graph, with i adjacent to j

only if i — j = ± 1 and suppose that K = K{T). Then

E = 2_^{—\y l \l, ..., j , .. .,2m

7 = 1

Other useful results of this type are

PROPOSITION 1.7. Let V = {I,... ,2m + 1} be a cycle with i adjacent to j only if

i — j = ± 1 mod2w2 + 1 and suppose that K = A"(F). Then

p

https://doi.org/10.1017/S1446788700001658 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700001658


154 George Maxwell [6]

PROOF. Apply Lemma 1.4 with Bu — {j + 1 , . . . , 2m + 1, 1 , / - 1} and
Cu = {i + 1, . . . , ; - 1}, for 1 < / < j < 2m + 1.

PROPOSITION 1.8. Let T be a linear graph {1, . . . , « } , with an extra vertex n + 1

adjacent only to the vertex q and suppose that K = K(T). Then

i) [l, . . . , / , . . . , « + l] + J^ (-1)'"' [lE =
i-~i ' i i

i=q + \

where e(i) = (—1)' l for l<i<qori— n + \ and€(i) = (— \ ) ' for q + 1 < / < n.

P R O O F . Let B,• = { 1 , . . . , / - 1}, B\ = { 1 , . . . , / - 1, n + 1}, C, = {/ + 1 , . . . , « }

and C,' = {/ + 1, . . . , « + 1}. Now apply Lemma 1.4 with pairs (fi,, C,') for 1 < / < q,

(Bh C;) for <? + 1 < / < n + 1, and (B-, CO for <? + 1 < / < «.

2. Euler characteristics of Coxeter groups

Suppose that Ws is a Coxeter group, F its Coxeter graph and Kw the simplicial
complex consisting of all X c 5 such that Wx is finite.

Let

be the Poincaire series of a Coxeter group Wx. The formal identity [7, Prop. 5.12]

(2.1) ^ ( - 1 ) | K | / W K ( O = tN/Wx(t) (Wx finite)
YCX

(2.2) = 0 (Wx infinite).

where N is the length of the element of largest length in Wx, enables one to calculate
Wx(t) by induction on |X|. In particular, it follows that Wx(t) is a rational function
of t, whose complex zeros are roots of unity other than t = 1; therefore 1 / Wx (1) is a
finite number.

When | A" | is odd and Wx is finite, taking t = 1 in (2.1) shows that

YeK(X)

On the other hand, if Wx is finite and X = X, u X2, then Wx is a direct product of
WXl and Wx,, so that
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[7] Hyperbolic Coxeter groups 155

These equations imply that

(2.3)

is a Schlafli function on Kw in the sense of Section 1. The Euler characteristic of x
is equal, by (0.1), to the 'Euler characteristic' x(Ws) of Ws in the sense of Serre [13].
We recall that

(2.4)

by [13, Proposition 17].

PROPOSITION 2.1. The Euler characteristic of an affine group Ws is equal to 0.

PROOF. According to Bott's theorem [2].

where Wz is a finite Coxeter group corresponding to Ws and {m,} the set of exponents
of Wz. It follows from equation (2.4) that x(ws) — 0.

Alternatively, one can note that Ws contains a normal subgroup of finite index
isomorphic to 1". Since x(%") = 0> w e conclude from (0.2) that x(Ws) is also 0.

In [5], Coxeter gives a heuristic argument for this result and point out that it allows
an inductive computation of the order of a finite Weyl group Wz for both even and
odd values of | Z |.

In [ 11 ], we have defined F to be of level < / if the deletion of any / vertices from F
leaves the graph of a finite or an affine Coxeter group. If F is not also of level < / — 1,
then / is called the level of Ws.

Groups of level 1 are the hyperbolic Coxeter groups in the sense of [7, 6.8]; they
exist only for 3 < |S| < 10. We extend x to a function x on K(F) by letting x(X) = 0
whenever Wx is of affine type. It follows from Proposition 2.1 that x remains a Schlafli
function. Therefore x(Ws) can be computed as the Euler characteristic of x by one
of the formulas in Section 1; the results are listed in Table 1 below for \S\ > 4. Since
it is well known that

X(WS) = l/2»il2 + 1/2/H.3 + l/2m23 - 1/2 < 0

for \S\ = 3, we conclude

PROPOSITION 2.2. Suppose that Ws is a group of level 1. Then x(Ws) = 0/or even
values of \ S \, while
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(a)
(b) x(Ws) <0 if \S\ = 3 mod4.

Groups of level 2 exist only for 4 < \S\ < 11 and are described in [11]. They
are also 'hyperbolic' in the sense that the standard bilinear form associated to Ws is
of signature (\S\ — 1, 1). In this case, we extend x to A"(F) by denning, in addition,
X(X) = x(Wx)/2 when Wx is hyperbolic. Again, x remains a Schlafli function.
If \S\ is odd, x(Ws) can be computed as the Euler characteristic of x by one of the
formulas of Section 1. For even values of | S|, the latter is equal to 0 by Corollary 1.3
and therefore

(2.5) X(WS)= ^ X(Wx)/2.
XaK(V),Wx hyperbolic

In particular, it follows from Proposition 2.2 that x(Ws) < 0 if \S\ — 0 m o d 4 and

X(WS) > 0 if \S\ = 2 m o d 4 . The results are shown in Table 2 below for \S\ > 5; we

observe

PROPOSITION 2.3. Suppose that Ws is an irreducible group of level 2. Then

(a) x(Ws) >Oif\S\ = 1, 2 mod 4;
(b) x(Ws) < 0 i / | 5 | = 0,3mod4.

3. Imbeddings of Coxeter groups

Suppose that a Coxeter group WS' is imbedded as a subgroup of finite index in
another Coxeter group Ws. It follows from equation (0.2) that either

(3.1) x(Ws,)=x(Ws)=0,

or

(3.2) x(Wy)/x(Ws) € Z

and is equal to the index of WS' in Ws.
The following two results describe some standard ways of constructing imbeddings

of Coxeter groups. Table 1 shows all the resulting imbeddings for groups of level 1.
(Some of these were observed earlier by the author in [11].) In particular, we see that
these groups fall into a relatively small number of commensurability classes.

PROPOSITION 3.1. Suppose that the Coxeter graph F of Ws is a disjoint union
Fi U F2, where
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[9] Hyperbolic Coxeter groups 157

(i) T, = Is, , . . . , * / _ , } is of type A,^;

(ii) there is exactly one edge {s,_\,s,) between the element S/_i e T\ and an
element st e F2 and no other edges between elements ofTi and F 2 ;

(iii) m(si-i, si) is an even number 2m > 4.

Let S' be the set obtained from S by replacing sk with

Sk = sksk+l ' ' ' Sl-\SlSl-\ " " ' Sk+\Sk,

for some k such that 1 < k < / — 1.
Then Ws- is a Coxeter group with graph F ' = T\ U F2, where T\ is obtained from

Fi by replacing sk with sk and joining sk to s*_i (ifk > 1) with an edge marked by 2m,
and also to si with an edge marked by m(ifm > 2). Furthermore, a vertex s e F2

joined to st with an edge marked by n is also joined to s'k with an edge marked by n.
The index of Ws> in Ws is equal to Ck).

PROOF. Using the notation of [3, V.4], s'k is the reflection with normal

e'k = e, + 2cos(7r/2/?j){e,_i H h ek}.

Therefore BM(e'k, es) is equal to — cos(n/m) for j = I, to - cos(^/2m) for j — k — 1
and to 0 for other j in the range 1 < j < I — 1. On the other hand, for s e F2, we
have BM(e'k, es) = BM(eh es).

If W is the abstract Coxeter group with graph F", these equations show that, with
respect to the basis obtained from {es} by replacing ek with e't, the form BM provides
the standard geometric realisation of W. By a fundamental result of Tits [3, V.4.4,
Corollary 2 of Theorem 1], W is isomorphic to its image W r .

Consider a coset WS'W of Ws> in Ws, with l(w) minimal. Using induction on l(w),
the relation sksk+i • • • j ; = s'kskst+i • • • 5/_i shows that w € W%,?... i(_l}. Since

ws- n w{s ,,_,, = wlJl,...A,...i,_l),

we conclude that the cosets of Ws< in Ws correspond to the cosets of W{si i,,...,^,) in
W{Sl „_,, and that therefore [Ws : W,?] = Q.

In a similar way one can prove

PROPOSITION 3.2. Suppose that the Coxeter graph F of Ws is a linear graph
[s\,... 5/_i, Si,..., sn], with all edges marked by 3, except for the edge between
5/_i and Si, which is marked by 3m > 6.

Let S' be the set obtained from S by replacing S/_i with s/_l = SiSi-\Si and Si with
Si = Si~\StSi-\. Then WS' is a Coxeter group with graph V, in which sl_l is joined
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158 George Maxwell [10]

to i /_20// > 1), s,+\{ifl < n) and s\ by edges marked with 3, 3m and m{ifm > 2),
respectively, while s', is joined to s/_2, S/+i and s'l_1 with edges marked by 3m, 3 and
m.

The index of WS' in Ws is equal to n + 1.

4. Volumes of fundamental regions

Let §" be the unit sphere in R"+1. The volume an of §" is equal to

2k+lnk 2jrk+l

i4A)

for even and odd values of n, respectively.
Suppose that a finite Coxeter group Ws, with \S\ = n + 1, acts on §", rather than

R"+i. The volume of its fundamental region C is given by

(4.2) wol(C) = anX(Ws),

since V decomposes into \WS\ copies of C.
On the other hand, a Coxeter group Ws of level 1, with |5 | = n + 1, acts on the

hyperbolic space H". Copies of C then cover the interior of M", while elements s e S
for which WS\{S) is of affine type correspond to the vertices of C which lie on the
boundary of HI".

When | S \ is odd, the volume of C is given by

(4.3) (-1)" / 2 vol(C) = anX(Ws)/2.

(See [6] for a recent history of this formula.) This explains why the sign of x (Ws) must
be as described in Proposition 2.2. However, if \S\ is even, the Euler characteristic of
Ws is zero and gives no information on the volume of C. The imbeddings of Coxeter
groups shown in Table 1 at least reduce the number of cases to be considered, because
of equation (0.4).

For groups of level 2, the fundamental region C is not contained in HI" and there
is no concept of 'volume', so that the significance of Proposition 2.3 remains unclear.
However, such groups are related in [11] to packings of Euclidean space by unequal
spheres.

5. The tables

The subgroup relations for groups of level 1 obtained by methods of Section 3 are
shown in Table 1. For each value of | S |, the groups are numbered in the same order as
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[11] Hyperbolic Coxeter groups 159

| S | =

|5 |=

10
9

|5 |=4

TABLE 1. Groups of level 1

3->2 2, 1
3-+22, 1, 4
X'(l) = 2. *'(2) = 17, x'(4) = 25-17
2->2 1, 3, 4

X'(\) = -7, x'O) = - 2
2 • 13

7 ->2 5 -^ 1, 9 ̂ 2 8 ->3 4 ̂ 4 2 ->5 1, 8 ->2 6 ̂ 6 2,
4 ^ 2 3 ̂ io 1, 10, 11, 12
v{\) = It, (3)/46080 = 0.000183
13 -*2 11 ->3 8-^26, 13-»2 1 2 - > 2 9 ^ 3 6 , 11 - 2̂ 9,
4->2 1, 10 ->2 7, 2, 3, 5, 14
X'(l) = 17, x'(2) = 2, x'(3) = 22 • 13, x'(5) = 5-11,

32 ->2 16 ̂ 3 27 ̂ 4 26, 16 ̂ 2 28 ̂ 6 26, 12 ->2 29 ̂ 5 26,'
11 ->5 27, 13 ̂ 2 26, 12 - 2̂ 14 ->2 24, 29 ->2 24,
7 ->2 31 ̂ 2 23 ->3 22, 5 ̂ 2 30 -+2 22, 4 ->2 1, 15 -+2 25,
2, 3, 6, 8, 9, 10, 17, 18, 19, 20, 21
u(26) = L(TT/3)/8 = 0.042289, u(22) = L(TT/4)/6 = 0.076330,
u(l) = 0.035885, v{2) = 0.039050, v(3) = 0.093326,
u(6) = 0.556282, u(8) = 0.364107, u(9) = 0.525840,
u(10) = 0.672986, u(17) = 0.085770, u(18) = 0.222229,

= 0.358653, u(20) = 0.205289, u(21) = 0.502131,
= 0.171502

in Section 6.9 of [7], by going down the first column and then (for \S\ = 4, 6) down
the second. (The table in [7] actually contains an error: group number 12 for \S\ = 5
should have one of its edges marked by 4.) Notation such as m —>-k n means that
group number m is a subgroup of group number n of index k. A group not involved
in subgroup relations is mentioned as a single number n.

Since x(^s) is, for these groups, a small rational number, it is convenient to scale
it by a factor dlS\ given by

24 • 3 - 5, d5 = 27 • 32 • 52,

d1, </9 = 2 1 5 - 3 5 - 5 2 - 7 ,

d7 = 2 1 0 • 3 4 • 5 • 7 ,

du = 2 1 8 • 3 6 • 5 2 • 7 • 1 1 .

When |5| is odd, the values of x'(Ws) = d\S\X(Ws) are listed in Table 1 for the
largest group in a commensurability class and can be deduced for the others by using
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160 George Maxwell [12]

equation (0.2). For even values of \S\, we show instead the known volumes of the
fundamental region C, taken from [10] and [12]. The letter L denotes the Lobachevsky
function.

Table 2 gives the value of x'(^s) for groups of level 2 when \S\ > 4. The groups
are taken in the same sequence as in [11, Table II]. Since the groups listed in brackets
in that table can in fact be imbedded in the main group (and give rise to the same
sphere packings), we do not list the value of x'(Ws) for them, but merely indicate
their position by ().

TABLE 2. Groups of level 2

= 10

|S|=6

|5|=5

-33 , - 2 , -2112
2, 4, 4, 1088, 68, 19, 1160
255, 1252, 164, 8704, 480, 4804, 1200, 12960
- 7 , -14, -28, -14, -52, -104, -104, -312, -132
- 2 1 , (), -63 , -196, -248, -684, -896, -2912, -882,-1015,
-486, -2016, -1944, -5040
2, 17, 2, 4, 55, 55, 36, 120, 25, (), 50, 50, 15, 15, 30, 60, 30,
200, 50, 150, 120, 90, 180, 65, 85, 34, 325, 400, 120, 170, 290
400, 85, 82, 182, 122, 375, 272, 507, 265, 165, 244, 240, 362,
555, 462, 724, 1200, 180, 735, 662, 842, 600, 842, 1920, 1560,
75, 0, 150, 200, 40, (), 200, 125, 75, 240, 600, 122, 390, 480,
1800, 625, 300, 300, 325, 300, 240, 280, 375, 960, 482, 1440,
1200, 540, 625, 390, 675, 1250, 750, 964, 480, 750, 480, 900,
925, 975, 2400, 1082, 840, 962, 675, 1200, 1800, 865, 1200,
1920, 700, 2400, 2400, 780, 960, 1080, 1200, 900, 1200, 1500,
1080, 1275, 1200, 1585, 1825, 1440, 962, 1800, 2400, 2160,
2160
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