ON THE THEORY OF RING-LOGICS
ADIL YAQUB

Introduction. Boolean rings (B, X, +) and Boolean logics (=Boolean
algebras) (B, N, *) are equationally interdefinable in a familiar way (6).
Foster’s theory of ring-logics (1; 2; 3) raises this interdefinability and indeed
the entire Boolean theory to a more general level. In this theory a ring (or an
algebra) R is studied modulo K, where K is an arbitrary transformation group
(or “‘Coordinate transformations’”) in R. The Boolean theory results from the
special choice, for K, of the ‘“Boolean group,” generated by x* =1 — x
(order 2, x** = x). More generally, in a commutative ring (R, X, +) with
identity the natural group N, generated by x* = 1 + x (with x¥ = x — 1 as
inverse) was shown to be of particular interest. Thus specialized to N, a
commutative ring with identity (R, X, +) is called a ring-logic, mod N, if
(1) the + of the ring is equationally definable in terms of its N-logic (R,
X, "), and (2) the 4 of the ring is fixed by its N-logic. It was shown (2)
that each p-ring (5) is a ring-logic mod N. It was further shown (3) that each
pE-ring (3; 5) is a ring-logic mod D, where D is a somewhat more involved
group.

All these known examples of ring-logics have zero radical, and the question
presents itself: do there exist examples of ring-logics (modulo a suitable group)
with non-zero radical? We shall answer this in the affirmative. Indeed, we shall
show that the ring of residues mod # (» arbitrary) is a ring-logic modulo
the natural group N itself.

1. The ring of residues mod p*. Let (R, X, +) be a commutative ring
with identity 1. We denote the generator of the natural group N by

(1.1) x* =14 x,

with inverse

(1.2) ¥ =x— 1. .
As in (1), we define

(1.3) a X,b = (a* X b*)".

It is readily verified that

(1.4) a X,b=a+ b+ ab.

The following notation is used (2):
= (oo (@YD) = (@)L
n iterations. Again
xAkn = (xAk)n; kan — (ka)n.
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We now consider (R, X, +), the ring of residues mod p* (p prime) and
prove the following

THEOREM 1. (Ru, X, +) is a ring-logic (mod N). The ring + is given by the
following N-logical formula

15) x+y={(@O T,

e IC i DM A\

Proof. By Euler’s generalized form of Fermat’s Theorem, we have
(1.6) P21, 4 € Ry,

a not divisible by p. We now distinguish two cases:

Case 1: Suppose p does not divide x. Then, by (1.6), the right side of (1.5)
reduces to

e+ 9”1 X0 = v+ 9 = x4y,
since
@ =1"=0; 2 X0 =

This proves (1.5).

Case 2: Suppose p divides x. Then, clearly, p does not divide x* = 1 + «.
Hence, using Case 1, the right side of (1.5) reduces to

0 X, { (L + 7T )1} = @y
=@+ =x+y,
since
Y =0 =1; 0 X,a = a.

Again (1.5) is verified. Hence (R, X, ) is equationally definable in terms of
its N-logic. Next, we show that (R, X, +) is fixed by its N-logic.! Suppose
then that there exists another ring (R, X, +’), with the same class of
elements R, and the same X as (R, X, +) and which has the same logic
as (Ru, X, +). To prove that 4+ = +’. Again we distinguish two cases.

Case 1: p does not divide x. Then
x4y =21+ 7T = w T = w1 T = x4y,
since, by hypothesis, x* = 1 4+ x =1 +'x.

A ring (R, X, ) is said to be fixed by its N-logic if there exists no other ring (R, X, +'),
on the same set R and with the same X but with 4+’ # +, which has the same N-logic;
ie.,

*=14+x=14+xx"=2—1=x—"1.
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Case 2: p divides x. Then, clearly, p does not divide x* = 1 4+ x. Hence, by
Case 1,
x+y=x*+yY=x*4+9y=x+y.

Therefore +’= -+, and the theorem is proved.

COROLLARY. (R,, X, +) = (Fp, X, ), the ring (field) of residues (mod p),
p prime, is a ring-logic (mod N) the + being given by setting k = 1 in (1.5),
and meking use of x* = x:

(L.7)? x4y = {(x@ )} X { @ (()P2)97 ().

2. The ring of residues (mod #), » arbitrary. In attempting to
generalize Theorem 1 to the residue class ring (R,, X, +), where z is any
positive integer, the following concept of independence, introduced by Foster
(4), is needed.

Definition. Let % = {A1, As, ..., A} be a finite set of algebras of the same
species &. We say that the algebras %y, As, . . ., A, are independent if, corres-
ponding to each set {¢;} of expressions of species & (4 = 1,...,n), there
exists at least one expression X such that

¢ = X (mod %, (Gt=1,...,n).

By an expression we mean some composition of one or more indeterminate-
symbols ¢, . .. in terms of the primitive operations of Ay, Az, ..., Wn; ¢ = X
(mod %), also written as ¢ = X (), means that this is an identity of the
algebra 9.

We now prove the following

THEOREM 2. Let (Ay, X, 4+), ..., (A, X, +) be a finite set of ring-logics
(mod N), such that the N-logics (U1, X,%), ..., (U, X,2) are independent.
Then A = A X ... XU, (direct product) is also a ring-logic (mod N).

Proof. Since ¥, is a ring-logic (mod N), there exists an N-logical expression
¢ such that, for every x;, v, € A; G =1,...,0),
Xty =¢r= ¢,y X, 47 = di(wy, ¥ X, 4.

In view of the independence of the logics, there exists an expression X such
that
b1 (mOd %[1)7
X =4...
¢, (mod ¥,).

Then, for ¢ = (a1, a2, ...,a,) € ;b = (b1, by, ...,b,) € Y, we have

2This formula is considerably shorter than the formulas for 4 given in (2; 3).
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X(a, b; XyA) = X((a‘lr A2y o« oy a’t)r (bly be L ) bt)r X7A>
= (X(al, bl; X, A), X(d‘g, bz; X, A), e ooy X(a,, b;; X,A))
= (a1 + by, as + by, ...,a,+ b))
= (al,ag,...,a,)—l— (b1,b2,...,b¢)
=a+0b;
ie.,

a+b=2X(a,b; X,%;a,bc U

Hence, % = A1 X ... XU, is equationally definable in terms of its N-logic.
Next, we show that ¥ is fixed by its N-logic. Suppose there exists a 4+’ such
that (¥, X, +’) is a ring, with the same class of elements ¥ and the same
X as the ring (¥, X, +), and which has the same logic (3, X, *) as the ring
2, X, +). To prove that + = +'.

Now, let ¢ = (a, @y, ...,a,) € A; b= (b1, by, ...,0,) €A A new +’
in ¥ defines and is defined by new +’;in Uy, +’2in s, ..., +',in A,, such

that (3, X, +’1) is a ring, and similarly for (s, X, +'2), ..., s X, +'0);
ie.,
(2'1) a+,b = (al, (12,..-,(1[) +’(bly b2y---)bt)

= (a1 +'1b1, a2 +"2bs, . . . ya, +'10y).
Furthermore, the assumption that (¥, X, +’) has the same logic as (¥, X, +)
is equivalent to the assumption that (%, X, +’1) has the same logic as
21, X, +), and similarly for (2, X, +’;) and U, X, +)E =2,...,1).
Since (A, X, +) is a ring-logic, and hence with its + fixed, it follows that
+'y = +; similarly +’y = +,..., +’, = +. Hence, using (2.1), +' = +,
and the proof is complete.
We shall now prove the following

LemMMA 3. Let py, ..., P, be distinct primes, and let
(Rm', X, +)y ng = Pik" = pmy; 7= 1,...,1,
be a set of residue class rings (mod n;). Then the logics (R,;, X,*)(z =1,...,%)
are independent.
Proof. Let
12
P(/L)=Hn1r J¢7’y
Jj=1
Then, clearly
(P(@),n;) = 1.

Hence, there exist integers ; > 0, s; > 0 such that
71P(1) — Sin; = 1.
Now, define

€ (x) — x(nl—ml) (n2—ms2)... (nt—mt)‘
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Then one easily verifies that, for 7 # j,

oc = ) = (o) X, (el ry-m-nmm o=t _ A LR

0(Rx)

Now, to prove the independence of the logics (R,;, X, *), let {¢;} be a set of ¢
expressions of species X, *; i.e., a primitive composition of indeterminate-
symbols in terms of the operations X, #; then, if we define (cf. 4)

X = ¢r1 X,pawz Xy oo Xyb s
we immediately obtain
¢; = X(mod R,,),

since ¢ X,0 = a = 0 X,a. This proves the theorem.

Recalling the well-known fact that

(2.2) (Ruy X, +) = R, X ... X R,, (direct product),
n arbitrary, # = n;...n, a combination of Theorems 1, 2, Lemma 3 and
(2.2) readily yields

TaEOREM 4 (Fundamental Theorem on R, as ring-logics). (R, X, +),
the residue class ring (mod n), n arbitrary, is a ring-logic (mod N).

We conclude with several illustrative examples.

Example 1. Rp = Ry = Fo = {0, 1}.
It is readily verified that each of (1.5) and (1.7) reduces to the familiar Boolean
formula

(2.3) x4y = xy* Xt

Example 2. Ry = Ry = F; = {0, 1, 2}.
Formula (1.7) yields

(2.4) x +y = {xley)*} X, {[@* @) )72
Compare with (1) in which the following formula was obtained:
(2.5) x 4+ y = xy* X xty X x4y

It is noteworthy to observe that the 4+ of (F,, X, +), the field of residues
(mod p), p prime, may also be expressed in the following form:

(2.6) x4y = (O} X,y

or by

2.7 x4y = {x(x")* X,y

The last formula, when specialized to Fj, gives a simpler expression for +
than (2.4).
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Example 3. Ry = Ry = {0, 1,2, 3}.
Formula (1.5) reduces to

(2.8) x4y = {(xley)x?)} Xl ty))] ()7}
It may be verified that the 4+ in (R,, X, +) is also given by
(2.9) x4y = {(ey)*(xy)? X, (o X,p) ()2} { (xy) (xy) >}

This last formula excels most of the others in obviously displaying the
symmetry of +.

Example 4. R, = R¢ = {0, 1,2, 3,4, 5}.
The correspondence

0« (02, 03); 3 (12! O3)r
1+ (12, 13), 4 (02y 13):
2 < (0z, 23), 5 (1y, 23),

determines an isomorphism of Rg and R; X R; (direct product), where R, =
{02, 12} and R; = {03, 13, 23}.

It is readily verified (compare with the proof of Lemma 3 and (2.3), (2.5)
above) that

(210) x+ 3 = {(xy*Xx"y) @ X, ("))}
X, f ey X 'y X xy") (6" X, (%)) ")

Formula (2.10) may be verified either by direct substitution from Rg, or
via the Ry X R; representation above.
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