
ON THE THEORY OF RING-LOGICS 
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Introduction. Boolean rings (B, X, + ) and Boolean logics ( = Boolean 
algebras) (B, P\, *) are equationally interdefinable in a familiar way (6). 
Foster's theory of ring-logics (1; 2; 3) raises this interdefinability and indeed 
the entire Boolean theory to a more general level. In this theory a ring (or an 
algebra) R is studied modulo K, where K is an arbitrary transformation group 
(or "Coordinate transformations") in R. The Boolean theory results from the 
special choice, for K, of the "Boolean group," generated by x* — 1 — x 
(order 2, x** = x). More generally, in a commutative ring (R, X, + ) with 
identity the natural group N, generated by xA = 1 + x (with xY = x — 1 as 
inverse) was shown to be of particular interest. Thus specialized to N, a 
commutative ring with identity (R, X, + ) is called a ring-logic, mod N, if 
(1) the + of the ring is equationally definable in terms of its iV-logic (R, 
X,A , v) , and (2) the + of the ring is fixed by its iV-logic. It was shown (2) 
that each p-r'mg (5) is a ring-logic mod N. It was further shown (3) that each 
pk-r'mg (3; 5) is a ring-logic mod Z), where D is a somewhat more involved 
group. 

All these known examples of ring-logics have zero radical, and the question 
presents itself: do there exist examples of ring-logics (modulo a suitable group) 
with non-zero radical? We shall answer this in the affirmative. Indeed, we shall 
show that the ring of residues mod n (n arbitrary) is a ring-logic modulo 
the natural group N itself. 

1. The ring of residues mod pk. Let (R, X, + ) be a commutative ring 
with identity 1. We denote the generator of the natural group N by 

(1.1) xA = 1 + x, 
with inverse 
(1.2) xv = x - 1. 
As in (1), we define 
(1.3) a XAb = (aA X &A)V. 
I t is readily verified that 

(1.4) a XAb = a + b + ab. 

The following notation is used (2): 

xA" = ( . . . ( (*T) • • -)A; *v" = ( • • • ( (*T) • • -)T, 
n iterations. Again 
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We now consider (Rpk, X, + ) , the ring of residues mod pk (p prime) and 
prove the following 

THEOREM 1. (Rpk, X, + ) is a ring-logic (mod N). The ring + is given by the 
following N-logical formula 

(1.5) x + y = {(x(yy?h-vk-l-1Y)i?h-*k-1} XA 

{(x\y(xyk-pk-1-lyy(xpk-pk-ly2}-

Proof. By Euler's generalized form of Fermât's Theorem, we have 

(1.6) apk-pk~x = 1, a e RPk, 

a not divisible by p. We now distinguish two cases: 

Case 1: Suppose p does not divide x. Then, by (1.6), the right side of (1.5) 
reduces to 

{x(l + yx?-**-1-1) • 1} XA0 = x + yxvli~vk~x = x + y, 

since 
(Xpk-P*-Y = jv2 = 0 ; a X A Q = ^ 

This proves (1.5). 

Case 2: Suppose p divides x. Then, clearly, p does not divide xA — 1 + x. 
Hence, using Case 1, the right side of (1.5) reduces to 

o x j ^ i i ^ ) ^ 1 " 1 ) ) ' ' ! ! = (XA + y{xyk~pk~y 
= (xA + y)v = x + y, 

since 

{xv^~Y = 0
v2 = 1; 0XAa = a. 

Again (1.5) is verified. Hence (Rpk> X, + ) is equationally definable in terms of 
its iV-logic. Next, we show that (Rpk, X, + ) is fixed by its iV-logic.1 Suppose 
then that there exists another ring (RPk, X, +')» with the same class of 
elements Rpk and the same X as (Rpk, X, + ) and which has the same logic 
as (Rpky X, + ) • To prove that + = + ' . Again we distinguish two cases. 

Case 1 : p does not divide x. Then 

x +'y = *(1 + V*"**"1"1) = xiyo?"-*'1-1)* = x(l + yxpk-pk~1-1) = x + y, 

since, by hypothesis, xA = 1 + x = 1 +'x. 

JA ring (R, X, + ) is said to be fixed by its iV-logic if there exists no other ring (R, X, +')» 
on the same set R and with the same X but with + ' ^ -f-, which has the same AMogic; 
i.e., 

xA = 1 + x = 1 + ' # ; xv — x — 1 = x — ' 1 . 
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Case 2: p divides x. Then, clearly, p does not divide xA = 1 + x. Hence, by 
Case 1, 

x +'y = xA +'yv = xA + yY = x + y. 

Therefore + ' = + , and the theorem is proved. 

COROLLARY. {RP, X, + ) = (Fp, X, + ) , the ring {field) of residues (mod£), 
p prime, is a ring-logic (mod N) the + being given by setting k = 1 in (1.5), 
and making use of xp= x: 

(1.7)2 x + y = {(x(xp-*y)A)} XA&U^Y^yYY^Y*}-

2. The ring of residues (mod n)9 n arbitrary. In attempting to 
generalize Theorem 1 to the residue class ring (Rni X, + ) , where n is any 
positive integer, the following concept of independence, introduced by Foster 
(4), is needed. 

Definition. Let 21 = {2Ii, 2Î2, . . . , 3tn} be a finite set of algebras of the same 
species ©. We say that the algebras 2Ii, 2Ï2, • • • , 2lw are independent if, corres­
ponding to each set {<£*} of expressions of species © {i — 1, . . . , w), there 
exists at least one expression X such that 

<t>t = X (mod 21,) (i = 1, . . . , » ) . 

By an expression we mean some composition of one or more indeterminate-
symbols f, . . . in terms of the primitive operations of 2li, 2Ï2, . . . , 2IW; <t> = X 
(mod 31), also written as <£ = X(2I), means that this is an identity of the 
algebra 21. 

We now prove the following 

THEOREM 2. Let (811, X, + ) , . . . , (2t*, X, + ) be a finite set of ring-logics 
(modiV), such that the N-logics (2li, X, A), . . . , (31*, X, A) are independent. 
Then 21 = 2ïiX . . . X2Ï* {direct product) is also a ring-logic (mod N). 

Proof. Since 21 * is a ring-logic (mod N), there exists an iV-logical expression 
<j>i such that, for every xt, yt G 21, {i = 1, . . . , /), 

%i + yt = <t>i = *i(^i, 3V, X, A, v) = <t>i{xi, yû X, A). 

In view of the independence of the logics, there exists an expression X such 
that 

Ui (mod Hi), 
X= . . . 

Ut (mod», ) . 

Then, for a = (alf a2, . . . , a«) 6 21; b = {bu b2, . . . , &*) G 2Ï, we have 

2This formula is considerably shorter than the formulas for + given in (2; 3). 
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X(a,b; X,A) = X{{a1,a2,...,at), (Jblf b2, . . . , bt); X,A) 
= (X(au bi; X, A), X(a2, b2; X, A), . . . , X(at, bt; X,A)) 
= (ai + bu a>2 + &2, . • • , dt + bt) 
= (fli, a2l . . . , a f) + (&i, 62, . . . , &<) 
= a + J; 

i.e., 
a + 5 = Z ( a , 6 ; X , A ) ; a , b G 31. 

Hence, 31 = 3liX . . . X31* is equationally definable in terms of its iV-logic. 
Next, we show that 31 is fixed by its iV-logic. Suppose there exists a + ' such 
that (SI, X, + 0 is a ring, with the same class of elements SI and the same 
X as the ring (21, X, + ) , and which has the same logic (31, X, A) as the ring 
(31, X, + ) . To prove that + = + ' . 

Now, let a = (ah a2, . . . , at) Ç 31; b = (bu b2l . . . , bt) 6 31. A new + ' 
in 31 defines and is defined by new + '1 in 3li, + '2 in 2Ï2, . • • , +'t in 31*, such 
that (3Ti, X, + ' i ) is a ring, and similarly for (3I2, X, +'2), . . . , (31*, X, +'t); 
i.e., 

/g j \ a +'* = (ah a2, . . . , a*) + '(&i, 62, . . . , 61) 

= (#i +'161, #2 +'2^2, • • • , at +'tbt). 

Furthermore, the assumption that (31, X, + ' ) has the same logic as (31, X, + ) 
is equivalent to the assumption that (3li, X, + 'i) has the same logic as 
(3Ii, X, + ) , and similarly for (St,, X, + ',) and (3U X, +)(i = 2, . . . , /). 
Since (3Ii, X, + ) is a ring-logic, and hence with its + fixed, it follows that 
+ '1 = + ; similarly + '2 = + , . . . , + '« = + . Hence, using (2.1), + ' = + , 
and the proof is complete. 

We shall now prove the following 

LEMMA 3. Let pi, . . . , pt be distinct primes, and let 

(Rni, X, + ) , fit = pi1 = pWU i = 1, . . . , t, 

be a set of residue class rings (mod n t). Then the logics (Rni, X, A) (i = 1, • . . , /) 
are independent. 

Proof. Let 
t 

P(i) = I l nj, j * i, 

Then, clearly 
(P{i),nx) = 1. 

Hence, there exist integers rt > 0, st > 0 such that 

rtP{i) — Sint = 1. 

Now, define 
/ \ (ni—mi)(n2—m2)...(nt—mt) 

€ I JC J — JC . 
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Then one easily verifies that, for i 9e j , 

co, = «,(*) = {«(*) XA((«(*))T)("1 

Now, to prove the independence of the logics (Rni, X, A), let {<£*} be a set of / 
expressions of species X,A ; i.e., a primitive composition of indeterminate-
symbols in terms of the operations X, A; then, if we define (cf. 4) 

X = 0i«l XA4>2U2 XA . . • XJ>tUti 

we immediately obtain 

<t>t = X (mod Rm), 

since a XA0 = a = 0 XAa. This proves the theorem. 

Recalling the well-known fact that 

(2.2) (Rni X,+)^RniX ...XRnt (direct product), 

n arbitrary, n — n\. . . nu a combination of Theorems 1, 2, Lemma 3 and 
(2.2) readily yields 

THEOREM 4 (Fundamental Theorem on Rn as ring-logics). (Rnt X, + ) , 
the residue class ring (mod n), n arbitrary, is a ring-logic (mod TV). 

We conclude with several illustrative examples. 

Example 1. Rpk = R2 = F2 = {0, 1}. 
It is readily verified that each of (1.5) and (1.7) reduces to the familiar Boolean 
formula 

(2.3) x + y = xyA XAxAy. 

Example 2. Rpk = Rz = Fz = {0, 1, 2}. 
Formula (1.7) yields 

(2.4) x + y = {x(xy)A} XA{[(xA(xA^)A)]v(x2)v2î. 

Compare with (1) in which the following formula was obtained: 

(2.5) x + y = xyAXAxAyXAx2yK 

It is noteworthy to observe that the + of (FP1 X, + ) , the field of residues 
(mod p), p prime, may also be expressed in the following form: 

(2.6) x + y = {x(yxp-2)A} Xjy(x\A2 . . . x^" 1) 2}. 

or by 

(2.7) x + y = {x(yxp~2)A} X ^ ^ - 1 ) ^ ) . 

The last formula, when specialized to F3, gives a simpler expression for + 
than (2.4). 

l (#n.) 
Q(Rniy 
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Example 3. Rpk = R22 = {0, 1, 2, 3}. 
Formula (1.5) reduces to 

(2.8) x + y = {(x(xy)Ax2)} XA{[(xA(xA3;)A)]v(x2)v2}. 

It may be verified that the + in (JR4, X, + ) is also given by 

(2.9) x + y = {{xyYixyY X A ( x X j ) (xj)A2} {(xy) (ry)2v}A. 

This last formula excels most of the others in obviously displaying the 
symmetry of + . 

Example 4. Rn = R6 = {0, 1, 2, 3, 4, 5}. 
The correspondence 

0 ~ (02,03), 3<->(l2>03), 

1 <-> (12, Is), 4<->(02, Is), 

2^> (02, 23), 5<-> (12, 23), 

determines an isomorphism of RQ and R2 X -K3 (direct product), where R2 = 
{02, 12} and i^3 = {03, 13, 23}. 

It is readily verified (compare with the proof of Lemma 3 and (2.3), (2.5) 
above) that 

(2.10) x + y = {(xyAXAxAy) (*2X>2)v2)A2} 

X A {(x /X A x> XAxV)(x2XA(x2)v2)A3}. 

Formula (2.10) may be verified either by direct substitution from RQ, or 
via the R2 X Rz representation above. 
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