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Abstract

We consider a two-color, randomly reinforced urn with equal reinforcement distributions
and we characterize the distribution of the urn’s limit proportion as the unique continuous
solution of a functional equation involving unknown probability distributions on [0, 1].
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1. Introduction

An urn initially contains b > 0 black balls and w > 0 white balls. The urn is sequentially
sampled. At time n = 1, 2, . . . a ball is drawn from the urn and its color is observed: if the
sampled ball is black it is replaced in the urn together with a random number, Mn, of balls of
color black, if the sampled ball is white it is replaced in the urn together with a random number,
Nn, of balls of color white. The processes {Mn} and {Nn} are two independent sequences of
independent, identically distributed (i.i.d.), nonnegative, and bounded random variables with
distributions µ and ν, respectively. This urn scheme is called a two-color, randomly reinforced
urn.

A randomly reinforced urn generates the following interesting stochastic processes: the
sequences {Bn} and {Wn} respectively denote the number of black balls and white balls present
in the urn at time n = 1, 2, . . . ; the sequence {Zn} denotes the proportions of black balls in the
urn, i.e. for n = 1, 2, . . . ,

Zn = Bn

Bn + Wn

;

and finally, the sequence {Xn} denotes the colors generated by the urn, where Xn is 1 or 0
according to whether a black ball or a white ball is drawn from the urn at time n = 1, 2, . . . . In
this paper we mostly focus on the process of urn proportions, {Zn}. In [4] it was proved that the
sequence {Zn} is eventually a bounded supermartingale or a bounded submartingale and it thus
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Limit proportion of a randomly reinforced urn 691

converges almost surely to a random limit Z∞ ∈ [0, 1]. When the first moment of µ is strictly
greater than the first moment of ν, the random variable Z∞ is equal to 1 with probability 1.
In the other extreme, [3] showed that if the moments of µ and ν are all equal, i.e. µ and ν

coincide, then Z∞ has no point masses. However, except in a few particular cases, the exact
distribution of Z∞ is unknown; the only nontrivial case being Polya’s urn, where µ and ν are
point masses at a nonnegative real number m and Z∞ has distribution Beta(b/m, w/m). The
main result of this paper states that, when µ = ν, the distribution of the limit proportion Z∞,
regarded as a function of the initial urn composition (b, w), is the unique continuous solution,
satisfying some boundary conditions, of a specific functional equation in which the unknowns
are distribution functions on [0, 1].

The study of the distribution of Z∞ has its origins in the seminal paper of Athreya [1]
and stems from theoretical and applicative motives. In [3] and in [4] it was proved that,
conditionally on Z∞, the random variables of the sequence of colors {Xn} generated by a
randomly reinforced urn are asymptotically i.i.d. Bernoulli(Z∞); hence the distribution of
Z∞ may represent the prior distribution for a Bayesian adopting the randomly reinforced urn
scheme as a metaphor for the construction of the statistical model. Moreover, in [4] and in [5]
it was stressed that a two-color, randomly reinforced urn implements a sequential, randomized,
response-driven design for clinical trials where the experimenter is willing to bias, along the
experiment, the allocation probability toward the better treatment; for a well-informed review
on urns and response-adaptive, randomized designs see [7]. To be specific, suppose that µ

and ν represent the distributions of responses after treatment, say A and B, respectively. If the
mean response after A is greater than the mean response after B, allocating the nth patient in the
clinical trial to A or B according to the color of the nth ball drawn from a two-color, randomly
reinforced urn with reinforcements equal to responses after treatments guarantees that patients
will be assigned to treatment A with higher and higher probability along the experiment, since
Z∞ = 1 almost surely. Hence, for testing hypotheses about treatment effects, it is important to
know the distribution of Z∞ when µ = ν, i.e. there is no difference between treatment effects.
Indeed, a randomly reinforced urn, where both reinforcement distributions are equal to µ, is
the scheme considered in this paper.

After setting the notation and specifying the probabilistic model for a randomly reinforced
urn with equal reinforcement distributions in the next section, in Section 3 we introduce the
function F that, given a probability distribution µ, maps any admissible couple, (b, w), in the
distribution of the limit proportion of a two-color, randomly reinforced urn with reinforcement
distributions equal to µ and initial composition (b, w). After discussing some interesting
properties regarding the class of distributions in the range of F , we close the section with the
introduction of a functional equation solved by F and with the statement of the main result of the
paper, namely that F is the unique continuous solution, satisfying some boundary conditions, of
this functional equation. In Section 4 we prove that F is indeed continuous, while in Section 5
we conclude the proof of the main result by showing that a suitable transformation of F is the
unique fixed point of a certain operator. We conclude the paper with an example in Section 6.

2. Model specification

On a rich enough probability space, define two independent sequences {Mn} and {Un} of
real valued random variables. The variables of the sequence {Mn} are i.i.d. with probability
distribution µ; the support of µ is contained in [0, β], with β > 0. Moreover, it is assumed that
µ({0}) < 1 in order to avoid the trivial case. The random variables of the sequence {Un} are
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i.i.d. with uniform distribution on [0, 1]. Finally, let b and w be two nonnegative real numbers
such that b + w > 0.

Set B0 = b, W0 = w, and, for n ≥ 0, let

Bn+1 = Bn + Mn+1Xn+1,

Wn+1 = Wn + Mn+1(1 − Xn+1),
(2.1)

where, for n = 1, 2, . . . , the variable Xn is the indicator of the event

{Un ≤ Bn−1(Bn−1 + Wn−1)
−1}.

Then the law of the sequence {(Bn, Wn)} is that of the stochastic process counting, along
time, the number of black and white balls present in a randomly reinforced urn with initial
composition (b, w) and reinforcement distributions both equal to µ, whereas the law of the
sequence {Xn} is that of the process of colors generated by the same urn.

For n = 0, 1, 2, . . . , let

Zn = Bn

Bn + Wn

;

Zn indicates the proportions of black balls in the urn before the (n+1)th ball is sampled. The pro-
cess {Zn} is a bounded martingale with respect to the filtration {σ(X1, M1, . . . , Xn−1, Mn−1)},
and it converges almost surely to a random variable Z∞ ∈ [0, 1] (see [3]). Moreover, the
distribution of Z∞ has no atoms and is completely determined once the parameters (b, w, µ)

are specified, even though its analytical expression is unknown. We will say that the distribution
of Z∞ is that of the limit proportion of a randomly reinforced urn with initial composition
(b, w) and reinforcement distributions equal to µ; this paper is focused on this distribution
and its properties. Our approach will be to fix the reinforcement distribution µ and to explore
how the distribution of Z∞ varies according to changes in the urn’s initial composition (b, w).
When the argument requires it, we will draw the reader’s attention to the dependency of the
law of the stochastic elements generated by the urn on its initial composition (b, w) using the
obvious notation Bn(b, w), Wn(b, w), Xn(b, w), Zn(b, w), and Z∞(b, w).

Pemantle [6] introduced the following time-dependent version of Polya’s urn. Let
F : {1, 2, . . . } → [0, ∞) be any function and consider an urn initially containing b ≥ 0
black balls and w ≥ 0 white balls, with b + w > 0. The urn is sequentially sampled; at
time n = 1, 2, . . . a ball is drawn from the urn and reintroduced into the urn together with
F(n) balls of the same color. Pemantle studied the behavior of the sequence of the successive
proportions, Vn, of black balls in the urn. The link between Pemantle’s urn and our two-color,
randomly reinforced urn with equal reinforcement distributions is evident. In fact, let M be the
sigma-field generated by the random variables M1, M2, . . . . Given M, the conditional law of
the process {(Bn, Wn)} (and therefore also the conditional laws of the processes {Xn} and {Zn})
is the same as that of the process counting the number of black and white balls in Pemantle’s
urn once we define his reinforcement function F by setting F(n) = Mn for n = 1, 2, . . . . In
the next sections we will make use of the following two results proved in [6].

Theorem 2.1. For any function F , the sequence of successive proportions {Vn} of black balls
in Pemantle’s urn directed by F is a martingale converging almost surely to a random variable
V ∈ [0, 1]. If F is not the null function and it is bounded by some constant β > 0, then V has
no atoms in [0, 1].
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Theorem 2.2. Consider two Pemantle’s urns; both urns have initial composition equal to
(b, w). The first urn is directed by the function F (1) and the second urn is directed by the
function F (2). Let {V (1)

n } and {V (2)
n } represent the sequences of successive proportions of black

balls in the two urns. If, for all n = 1, 2, . . . ,

F (1)(n)

b + w + ∑n−1
i=1 F (1)(i)

≥ F (2)(n)

b + w + ∑n−1
i=1 F (2)(i)

,

then E[h(V
(1)
n+1)] ≥ E[h(V

(2)
n+1)] for all convex h : [0, 1] → [0, 2].

3. The function F and the characteristic equation

Fix a probability distribution µ on the interval [0, β], with β > 0. Let S = [0, ∞)×[0, ∞)\
{(0, 0)} and indicate with P ([0, 1]) the space of distribution functions with support in [0, 1];
define

F : S → P ([0, 1])
to be the function that maps any couple (b, w) of nonnegative real numbers with positive sum
in the distribution F (b, w) of the limit proportion Z∞(b, w) of a randomly reinforced urn with
initial composition (b, w) and reinforcement distributions equal to µ.

For x ∈ R, let δx be the distribution of the point mass at x.

Theorem 3.1. (i) F (b, 0) = δ1 for all b > 0.

(ii) F (0, w) = δ0 for all w > 0.

(iii) For all (b, w) ∈ S,

F (b, w)(x) + F (w, b)(1 − x) = 1 for x ∈ R.

(iv) For all c ≥ 0 and all (b, w) ∈ S such that b/(b + w) = c,
∫

xF (b, w)(dx) = c,

i.e. the distribution F (b, w) has constant mean equal to c along the line

b

b + w
= c.

Proof. Properties (i) and (ii) are trivial to prove. To prove (iii) note that the distribution of
the limit proportion of a randomly reinforced urn with reinforcement distributions equal to µ

and initial composition equal to (b, w) must be the same as the distribution of one minus the
limit proportion of the same urn when the initial composition is (w, b), i.e. the distribution of
Z∞(b, w) is the same as the distribution of 1−Z∞(w, b); now (iii) follows since the distribution
of Z∞ has no point masses (see [3]). Finally, property (iv) is true because, for all (b, w), the
sequence {Zn(b, w)} is a bounded martingale converging to Z∞(b, w) (see [3]) and thus

E[Z∞(b, w)] = Z0(b, w) = b

b + w
.
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Endow the space S with the lower-right-quadrant order relationship such that (b, w) � (b̄, w̄)

if and only if b ≤ b̄ and w ≥ w̄; give P ([0, 1]) the stochastic order such that G ≤st H if and
only if 1 − G(x) ≤ 1 − H(x) for all x ∈ [0, 1]. The proof of the next result uses, for the first
time, a coupling argument that will frequently appear in the rest of the paper.

Theorem 3.2. F is monotonic.

Proof. We need to prove that if (b, w) and (b̄, w̄) are states of S such that (b, w) � (b̄, w̄),
then

F (b, w) ≤st F (b̄, w̄).

Consider two different randomly reinforced urns. The first urn has initial composition (b, w)

and generates the counting process {(Bn, Wn)} according to the dynamics described in (2.1).
Analogously, the second urn has initial composition (b̄, w̄) and generates the counting process
{(B̄n, W̄n)}. The urns are coupled in the sense that the processes {Mn}, {Un} and {M̄n}, {Ūn}
appearing in (2.1) for the definition of {(Bn, Wn)} and {(B̄n, W̄n)}, respectively, are identical;
i.e. we assume that

P[Mn = M̄n, Un = Ūn for all n] = 1.

Note that b/(b + w) ≤ b̄/(b̄ + w̄); hence U1 ≤ b̄/(b̄ + w̄) if U1 ≤ b/(b + w) and

P[(B1, W1) � (B̄1, W̄1)] = 1.

By induction on n,
P[(Bn, Wn) � (B̄n, W̄n) for all n] = 1

and thus
P[Z∞(b, w) ≤ Z∞(b̄, w̄)] = 1.

Since the support of µ is bounded above by β, it is natural to conjecture that, when the initial
number of balls in the urn is large, the limit proportion Z∞ will be close to its mean value; in
fact, we will prove the conjecture by means of Theorem 3.3. For (b, w) ∈ S, let B(b/β, w/β)

indicate a random variable with distribution Beta(b/β, w/β) on [0, 1].
Lemma 3.1. For every j ≥ 1 and (b, w) ∈ S,

E[Zj∞(b, w)] ≤ E

[
Bj

(
b

β
,
w

β

)]
. (3.1)

Proof. Let j ≥ 1 and N ≥ 1. Given M1 = m1, M2 = m2, . . . , and MN = mn, . . . note
that

E[Zj
N(b, w) | M1 = m1, M2 = m2, . . . ] = E[VN

j ], (3.2)

where the sequence V1, V2, . . . denotes the proportion of black balls in Pemantle’s urn with
initial composition (b, w) and reinforcement directed by F , with F(n) = mn for n ≤ N

and F(n) = 0 for n > N . We now use a trick learned in [6]. If it is not the case that
F(1) ≥ F(2) ≥ F(3) ≥ . . . , let F (1)(n) = F(n) for every n except for two indices k ≥ 1
and k + 1, where F (1)(k) = F(k + 1) > F(k) = F (1)(k + 1), and consider Pemantle’s urn
with initial composition (b, w) and reinforcements directed by F (1). Then Proposition 2 of [6]
proves that

E[h(Vn)] ≤ E[h(V (1)
n )]
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for all n ≥ 1 and for all convex h : [0, 1] → [0, 2], where V
(1)
n indicates the successive

proportions of black balls in the urn directed by F (1); that is, Vn and V
(1)
n are convex ordered.

By repeatedly applying this result and by setting h(x) = xj for x ∈ [0, 1], we obtain

E[V j
N ] ≤ E[(V (2)

N )j ], (3.3)

where, for n = 1, 2, . . . , V
(2)
n are the successive proportions of black balls in Pemantle’s urn

with reinforcements directed by a function F (2) with the same values as F but rearranged in
descending order. Finally, let the sequence V̄1, V̄2, . . . denote the proportions of black balls in
Polya’s urn with initial composition (b, w) and constant reinforcement equal to β; Theorem 2.2
implies that

E[(V (2)
N )j ] ≤ E[V̄ j

N ]. (3.4)

Let M be the sigma-field generated by M1, M2, . . . . Then (3.2), (3.3), and (3.4) prove that,
for N ≥ 1 and (b, w) ∈ S,

E[Zj
N(b, w) | M] ≤ E[V̄ j

N ].
Equation (3.1) now follows by computing the expected values on both sides of the above
inequality and applying the dominated convergence theorem.

Theorem 3.3. For every η > 0 and ε > 0, there exists K = K(η, ε) such that

P

[∣∣∣∣Z∞(b, w) − b

b + w

∣∣∣∣ > η

]
< ε

if b + w > K .

Proof. Let (b, w) ∈ S and η > 0. Then

P

[∣∣∣∣Z∞(b, w) − b

b + w

∣∣∣∣ > η

]
≤ 1

η2 var(Z∞(b, w))

≤ 1

η2

bw

(b + w)2

β

b + w + β

≤ 1

η2

1

4

β

b + w
;

the first inequality is Chebichev’s while the second one follows from (3.1) with j = 2 and the
fact that the expected value of Z∞(b, w) is b/(b + w). The theorem is thus proved by setting
K = β(4η2ε)−1.

Theorem 3.3 has interesting consequences in applications, for instance, when we want to
approximate the distribution of Z∞ by means of a Monte Carlo simulation. In fact, given
ε, η > 0, let

τ(ε, η) = inf{n ≥ 0 : Bn + Wn > K(η, ε)}.
Since µ is not concentrated on 0, τ(ε, η) is finite almost surely; the next corollary states that
little is lost by approximating the distribution of Z∞ with that of Zτ(ε,η). Its proof follows from
Theorem 3.3 and the observation that the process {(Bn, Wn)} is Markov. Hence, the strong
Markov property holds and implies that, given the sigma-field generated by the stopping time
τ(ε, η), the conditional law of the process

((Bτ(ε,η), Wτ(ε,η)), (Bτ(ε,η)+1, Wτ(ε,η)+1), . . . )
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Figure 1: The variance of Z∞(b, w).

is that of the process counting the successive number of balls of color black and white,
respectively, in a randomly reinforced urn with reinforcement distributions equal to µ and
initial composition equal to (Bτ(ε,η), Wτ(ε,η)).

Corollary 3.1. For all (b, w) ∈ S and ε, η > 0,

P[|Z∞(b, w) − Zτ(ε,η)(b, w)| > η] < ε.

Remark 3.1. If µ has support contained in [α, β] with α > 0, then

P

[
τ(ε, η) ≤ β

4αη2ε
+ 1

]
= 1.

Finally, we consider the variance of Z∞(b, w). The next result states that for b + w =
constant, the variance of Z∞(b, w) reaches its maximum value when b = w, and that for
b = (constant)(w), i.e. along the lines from the origin, the variance of Z∞(b, w) decreases
when w increases; see Figure 1.

Theorem 3.4. (i) For every (b, w) ∈ S,

var(Z∞(b, w)) ≤ var

(
Z∞

(
b + w

2
,
b + w

2

))
.

(ii) For every (b, w) ∈ S and t > 1,

var(Z∞(b, w)) ≥ var(Z∞(tb, tw)).

Proof. To prove (i), set 	2Zn+1 = Z2
n+1 − Z2

n for n = 0, 1, . . . ; we claim that, for
(b, w) ∈ S,

E[	2Zn+1(b, w)] ≤ E

[
	2Zn+1

(
b + w

2
,
b + w

2

)]
. (3.5)

Since var(Zn+1) = E[∑n
i=0 	2Zi+1], from (3.5) it follows that

var(Zn+1(b, w)) ≤ var

(
Zn+1

(
b + w

2
,
b + w

2

))

for all n; letting n → ∞ we obtain (i) from the dominated convergence theorem.
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In order to prove (3.5), let M be the sigma-field generated by M1, M2, . . . , and compute

E[Z2
n+1 | M] = E[E[Z2

n+1 | Zn, M] | M]
= E[Z2

n + H 2
n+1Zn − H 2

n+1Z
2
n | M], (3.6)

where

Hn = Hn(b, w) = Mn

b + w + ∑n
i=1 Mi

for n = 1, 2, . . . . Hence,

E[Z2
n+1 − Z2

n | M] = H 2
n+1E[Zn − Z2

n | M]. (3.7)

For n = 0, 1, . . . , set Wn = E[Zn − Z2
n | M]. Theorem 2.1 states that the proportion of black

balls in Pemantle’s time-dependent version of Polya’s urn is a martingale, thus, E[Zn+1 | M] =
E[Zn | M] for n = 0, 1, 2, . . . . Hence, (3.6) implies that, for all n,

Wn+1 = Wn(1 − H 2
n+1)

and then

Wn = W0

n∏
i=1

(1 − H 2
i ).

Hence, (3.7) can be rewritten as

E[Z2
n+1 − Z2

n | M] = H 2
n+1W0

n∏
i=1

(1 − H 2
i ).

Taking expectations, we find that

E[	2Zn+1] = W0E

[
H 2

n+1

n∏
i=1

(1 − H 2
i )

]
. (3.8)

Finally, to obtain (3.5) from (3.8), it is sufficient to note that

Hn(b, w) = Hn

(
b + w

2
,
b + w

2

)

and that

W0(b, w) = b

b + w

(
1 − b

b + w

)

reaches its maximum value when b = w.
To prove (ii), consider two urns in which the first has initial composition (b, w) ∈ S and the

second has initial composition (tb, tw), with t > 1. The urns are coupled in the sense that, as
in the proof of Theorem 3.2, the same sequences {Mn} and {Un} generate the urns successive
compositions by means of (2.1). Note that, for n = 1, 2, . . . ,

Mn

b + w + ∑n−1
i=1 Mi

≥ Mn

t(b + w) + ∑n−1
i=1 Mi

.

By conditioning on M and setting h(x) = (x − b/(b + w))2 for x ∈ [0, 1], it follows, from
Theorem 2.2, that

E[h(Zn(b, w)) | M] ≥ E[h(Zn(tb, tw)) | M].
Now (ii) follows by taking expectations and limits.
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By conditioning on X1 and M1 and computing the expected values, we see that F must
satisfy the following condition: for all (b, w) ∈ S,

F (b, w) = b

b + w

∫
[0,β]

F (b + k, w)µ(dk) + w

b + w

∫
[0,β]

F (b, w + k)µ(dk). (3.9)

We call (3.9) the characteristic equation of a randomly reinforced urn with reinforcement
distributions equal to µ. The following question arises naturally: does (3.9) characterize the
class of distributions for limit proportions of randomly reinforced urns with reinforcement
distributions equal to µ and initial compositions varying in S? In other words, is the function
F introduced in this section the unique map from S to P ([0, 1]) that solves the functional
equation (3.9)? Without further conditions, the answer to this question is no; for instance, any
constant function mapping S into a fixed element of P ([0, 1]) is a solution of (3.9), although,
what we already know about F implies that F is not a constant function. The main result of
this paper states that F is the unique continuous solution of (3.9) satisfying some boundary
conditions. In order to have a precise statement of the theorem, consider S to be a subset of the
space R

2 with the Euclidean metric and endow P ([0, 1]) with the Wasserstein metric defined,
for all F, G ∈ P ([0, 1]), as

dW (F, G) =
∫ 1

0
|F(x) − G(x)| dx. (3.10)

Theorem 3.5. The function F is the unique solution of (3.9) among the continuous functions
G : S → P [0, 1] satisfying the following three conditions:

(a) G(0, w) = δ0 for w > 0;

(b) G(b, 0) = δ1 for b > 0;

(c) for every ε > 0, there exists a K = K(ε) such that

dW (G(b, w), δb/(b+w)) < ε

if b + w > K .

We already know that F satisfies conditions (a) and (b) of the theorem: in the next section
we will prove that F is indeed continuous on S and satisfies condition (c). Then, in Section 5,
through a suitable transformation of the space S and the function F , we will prove that F is
the unique continuous solution of (3.9) satisfying (a)–(c).

Remark 3.2. When modeling our two-color, randomly reinforced urn with reinforcement
distributions equal to µ, we assumed that µ({0}) < 1. For all Borel subsets B of R, define

ν(B) = µ(B ∩ (0, β])
1 − µ({0}) ;

hence, ν is the conditional distribution of M1, given that M1 > 0. Note that, F : S → P ([0, 1])
solves (3.9) if and only if

[1 − µ({0})]F (b, w) = b

b + w

∫
(0,β]

F (b + k, w)µ(dk) + w

b + w

∫
(0,β]

F (b, w + k)µ(dk),
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i.e. if and only if

F (b, w) = b

b + w

∫
(0,β]

F (b + k, w)ν(dk) + w

b + w

∫
(0,β]

F (b, w + k)ν(dk) (3.11)

for all (b, w) ∈ S. In light of Theorem 3.5, we can thus say that F is also the unique solution
of (3.11) among the continuous functions G : S → P ([0, 1]) satisfying conditions (a)–(c) of
the theorem.

4. F is continuous

Before proceeding to prove that F is continuous, we recall that the distance dW , intro-
duced in (3.10), metrizes the weak convergence in P ([0, 1]). Moreover, by the Kantorovich–
Rubinstein theorem,

dW (F, G) = inf{E[|X − Y |] : X ∼ F, Y ∼ G}, (4.1)

where the infimum is taken over all joint distributions for (X, Y ) with marginals equal to F

and G, respectively; see [2] for a review on this and other distances for probability distribution
functions.

Theorem 4.1. F is continuous on S.

Proof. (i) To prove that F is continuous on the axes consider a point (0, w̄) with w̄ > 0 and
note that F (0, w̄) = δ0 by Theorem 3.1(ii). For (b, w) ∈ S,

dW (F (b, w), F (0, w̄)) =
∫ 1

0
(1 − F (b, w)(x)) dx = E[Z∞(b, w)] = b

b + w
.

Hence, lim(b,w)→(0,w̄) dW (F (b, w), F (0, w̄)) = 0. This proves that F is continuous on the
axis b = 0; by symmetry, F is also continuous on the axis w = 0.

(ii) To prove that F is continuous at the inner points of S consider a point (b̄, w̄) ∈ S

with b̄ > 0 and w̄ > 0. For (b, w) ∈ S, compare two randomly reinforced urns with
reinforcement distributions equal to µ and initial compositions (b̄, w̄) and (b, w). As in the
proof of Theorem 3.2, the two urns are coupled in the sense that the same processes {Mn}
and {Un} generate both {(Bn(b, w), Wn(b, w))} and {(Bn(b̄, w̄), Wn(b̄, w̄)) according to the
dynamics described in (2.1); let Z∞(b, w) and Z∞(b̄, w̄) be the limit proportions for the two
urns.

From (4.1) and the triangular inequality, it follows that

dW (F (b, w), F (b̄, w̄)) ≤ E[|Z∞(b, w) − Z∞(b̄, w̄)|]
≤ E[|Z∞(b, w) − ZN(b, w)|] + E[|Z∞(b̄, w̄) − ZN(b̄, w̄)|]

+ E[|ZN(b, w) − ZN(b̄, w̄)|] (4.2)

for all N ≥ 1.
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Next we prove that the two terms of the second line in (4.2) can be taken to be arbitrarily
small for large enough N . In fact, for all (b, w) ∈ S and m ≥ 1,

E[|Z∞(b, w) − Zm(b, w)|]
≤ E1/2[|Z∞(b, w) − Zm(b, w)|2]
= E1/2[E(|Z∞(b, w) − Zm(b, w)|2 | (B1, W1), . . . , (Bm, Wm))]

= E1/2
[

E[Z2∞(Bm, Wn) | (Bm, Wm)] −
(

Bm

Bm + Wm

)2]

≤ E1/2
[

BmWm

(Bm + Wm)2

β

Bm + Wm + β

]
;

the last equality is true because the process {(Bn, Wn)} is Markov and, moreover,

E[Z∞(b, w) | (B1, W1), . . . , (Bm, Wm)] = Bm(Bm + Wm)−1;
the last inequality follows from Lemma 3.1 as in the proof of Theorem 3.3. Since µ({0}) < 1,

P

[
lim

n→∞

n∑
i=1

Mi = ∞
]

= 1.

Therefore, for every ε > 0 and K > 0, there exists an m = m(K, ε) such that

P

[ m∑
i=1

Mi > K

]
≥ 1 − ε2.

For (b, w) ∈ S, let F be the event that is true when

Bm(b, w) + Wm(b, w) + β = β + b + w +
m∑

i=1

Mi > K;

then P(F ) ≥ 1 − ε2. Set K = β/4ε2 and N = m(K, ε). Then, for all (b, w) ∈ S,

E[|Z∞(b, w) − ZN(b, w)|] ≤ E1/2
[

BNWN

(BN + WN)2

β

BN + WN + β

]

=
(

E

[
BNWN

(BN + WN)2

β

BN + WN + β
; F

]

+ E

[
BNWN

(BN + WN)2

β

BN + WN + β
; Fc

])1/2

≤
(

1

4
E

[
β

BN + WN + β
; F

]
+ P(F c)

)1/2

≤ (ε2 P(F ) + P(F c))1/2

≤ ε
√

2, (4.3)

where the c superscript denotes the complimentary of an event.
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Now consider the term E[|ZN(b, w) − ZN(b̄, w̄)|] in (4.2). For i = 1, 2, . . . , N , let

Ai = {Xi(b, w) �= Xi(b̄, w̄)}
and set A = ⋃N

i=1 Ai . Then

P(A1) =
∣∣∣∣ b

b + w
− b̄

b̄ + w̄

∣∣∣∣.
However, for all (b0, w0) and (b1, w1) in S, note that∣∣∣∣ b0

b0 + w0
− b1

b1 + w1

∣∣∣∣
≤

∣∣∣∣ b0

b0 + w0
− b0

b0 + max(w0, w1)

∣∣∣∣
+

∣∣∣∣ b0

b0 + max(w0, w1)
− max(b0, b1)

max(b0, b1) + max(w0, w1)

∣∣∣∣
+

∣∣∣∣ max(b0, b1)

max(b0, b1) + max(w0, w1)
− b1

b1 + max(w0, w1)

∣∣∣∣
+

∣∣∣∣ b1

b1 + max(w0, w1)
− b1

b1 + w1

∣∣∣∣
≤ |w0 − max(w0, w1)|

b0 + w0
+ |b0 − max(b0, b1)|

b0 + max(w0, w1)

+ |b1 − max(b0, b1)|
b1 + max(w0, w1)

+ |w1 − max(w0, w1)|
b1 + w1

≤ |b0 − b1| + |w0 − w1|
min(b0 + w0, b1 + w1)

. (4.4)

Hence,

P(A1) ≤ |b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

.

Analogously, for i = 1, . . . , N − 1,

P

(
Ai+1

∣∣∣∣
( i⋃

j=1

Aj

)c)

≤ E

[
|Zi(b, w) − Zi(b̄, w̄)|

∣∣∣∣
( i⋃

j=1

Aj

)c]

≤ E

[ |Bi(b, w) − Bi(b̄, w̄)| + |Wi(b, w) − Wi(b̄, w̄)|
min(Bi(b, w) + Wi(b, w), Bi(b̄, w̄) + Wi(b̄, w̄))

∣∣∣∣
( i⋃

j=1

Aj

)c]

≤ |b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

,

where the second inequality follows from (4.4) and the third inequality holds because, when
(
⋃i

j=1 Aj)
c is true, |Bi(b, w)−Bi(b̄, w̄)| = |b−b̄| and |Wi(b, w)−Wi(b̄, w̄)| = |w−w̄|, while
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it is always true that min(Bi(b, w) + Wi(b, w), Bi(b̄, w̄) + Wi(b̄, w̄)) ≥ min(b + w, b̄ + w̄).
Thus,

P(A) = P(A1 ∪ A2 ∪ · · · ∪ AN)

= P(A1 ∪ (A2 ∩ A1
c) ∪ · · · ∪ (AN ∩ (A1 ∪ · · · ∪ AN−1)

c))

≤ P(A1) + P(A2 | A1
c) + · · · + P(AN | (A1 ∪ · · · ∪ AN−1)

c)

≤ N
|b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

.

Moreover, when Ac is true it follows, from a final application of (4.4), that

|ZN(b, w) − ZN(b̄, w̄)| ≤ |BN(b, w) − BN(b̄, w̄)| + |WN(b, w) − WN(b̄, w̄)|
min(BN(b, w) + WN(b, w), BN(b̄, w̄) + WN(b̄, w̄))

≤ |b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

.

Therefore,

E[|ZN(b, w) − ZN(b̄, w̄)|]
= E[|ZN(b, w) − ZN(b̄, w̄)|; Ac] + E[|ZN(b, w) − ZN(b̄, w̄)|; A]

≤ (1 + N)
|b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

. (4.5)

To complete the proof, let ε > 0. From (4.2), (4.3), and (4.5) it follows that there exists an
N = N(ε) such that

dW (F (b, w), F (b̄, w̄)) ≤ ε2
√

2 + (1 + N)
|b − b̄| + |w − w̄|
min(b + w, b̄ + w̄)

.

Hence,
lim

(b,w)→(b̄,w̄)
dW (F (b, w), F (b̄, w̄)) ≤ ε2

√
2.

Since ε is arbitrary, this proves that

lim
(b,w)→(b̄,w̄)

dW (F (b, w), F (b̄, w̄)) = 0.

An immediate corollary of Theorem 3.3 is that F is continuous at the points of the projective
line corresponding to the directions b(b + w)−1, if we set F equal to δb/(b+w) in these points.
Figure 2 illustrates the next result.

Corollary 4.1. For every ε > 0 there exists a K = K(ε) such that if b + w > K , then

dW (F (b, w), δb/(b+w)) < ε.

We conclude the section by describing the behavior of F near the origin of R
2. Note

that F cannot be extended with continuity in (0, 0). In fact F (b, w) has constant mean, c,
along the points (b, w) ∈ S such that b(b + w)−1 = c; hence, the weak limit of F (b, w) for
(b, w) → (0, 0) does not exist.
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δ
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Figure 2: Continuity of F on the points of the projective line.

Theorem 4.2. For every ε > 0 there exists a neighborhood Uε of (0, 0) such that

dW

(
F (b, w),

b

b + w
δ1 + w

b + w
δ0

)
< ε

for (b, w) ∈ Uε ∩ S.

Proof. As stated in Remark 3.2, F solves (3.9) if and only if, for all (b, w) ∈ S,

F (b, w) = b

b + w

∫
(0,β]

F (b + k, w)ν(dk) + w

b + w

∫
(0,β]

F (b, w + k)ν(dk),

where ν is the conditional probability distribution of M1, given that M1 > 0. Since the support
of ν is contained in (0, β], for every ε > 0 there exists an α > 0 such that ν((0, α]) < ε/2.
Let b < αε/2 and w < αε/2 and set y = b(b + w)−1. Then

dW (F (b, w), yδ1 + (1 − y)δ0)

=
∫ 1

0
|F (b, w)(x) − (1 − y)| dx

=
∫ 1

0

∣∣∣∣y
∫

F (b + k, w)(x)ν(dk) + (1 − y)

∫
F (b, w + k)(x)ν(dk) − (1 − y)

∣∣∣∣ dx

≤
∫ 1

0
y

∫
F (b + k, w)(x)ν(dk) dx +

∫ 1

0
(1 − y)

∫
(1 − F (b, w + k)(x))ν(dk) dx

= y

∫
w

b + w + k
ν(dk) + (1 − y)

∫
b

b + w + k
ν(dk)

≤ y

(
ε

2
+ w

b + w + α

)
+ (1 − y)

(
ε

2
+ b

b + w + α

)

≤ y

(
ε

2
+ αε/2

α

)
+ (1 − y)

(
ε

2
+ αε/2

α

)

= ε.

Remark 4.1. Theorem 4.2 implies that F can be extended with continuity in the origin (0, 0)

along the lines b(b + w)−1 = constant.
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5. F is the unique solution of the characteristic equation

Given the probability distribution µ, in order to describe the distribution of the next state of
a randomly reinforced urn with reinforcement distributions equal to µ we need to know either
the current number of black and white balls contained in the urn or, equivalently, the current
total number of balls in the urn and the proportion of black balls. This fact and the behavior of
the function F near the origin and at ∞ suggest a transformation of the state space S according
to the map

τ :

⎧⎪⎪⎨
⎪⎪⎩

x = 1

b + w
,

y = b

b + w
.

Let S∗ = [0, ∞) × [0, 1]. For (x, y) ∈ (0, ∞) × [0, 1], define

F ∗(x, y) = F (τ−1(x, y))

and set
F ∗(0, y) = δy

for y ∈ [0, 1].
Theorem 5.1. F ∗ is continuous on S∗.

Proof. Because of Theorem 4.1, we need to prove the continuity of F ∗ only in the states
(0, y) ∈ S∗, with y ∈ [0, 1]. Let ȳ ∈ [0, 1] and consider the state (0, ȳ); the triangular
inequality implies that, for every (x, y) ∈ S∗,

dW (F ∗(x, y), F ∗(0, ȳ)) = dW (F ∗(x, y), δȳ) ≤ dW (F ∗(x, y), δy) + dW (δȳ, δy).

However,

dW (F ∗(x, y), δy) = dW

(
F

(
y

x
,

1 − y

x

)
, δy

)
,

and Corollary 4.1 implies that this quantity converges to 0 when x → 0, whereas

dW (δȳ, δy) =
∫ 1

0
|δȳ(x) − δy(x)| dx = |y − ȳ|

converges to 0 when y → ȳ.

The function F ∗ maps any (x, y) ∈ (0, ∞)×[0, 1] in the distribution F (yx−1, (1−y)x−1)

of the limit proportion Z∞ of a randomly reinforced urn with reinforcement distributions equal
to µ and initial composition equal to (yx−1, (1 − y)x−1). The results of Section 3 allow some
instructive descriptions of the distribution F ∗(x, y). For instance, along the horizontal lines
y = constant, the mean of F ∗(x, y) is constant while the variance increases with x. Along
the vertical lines x = constant, the variance of F ∗(x, y) increases as y moves from 0 to 1

2
and decreases as y moves from 1

2 to 1, reaching its maximum value at y = 1
2 . Moreover, for

(x, y) ∈ S∗,

F ∗(x, 0) = δ0, F ∗(x, 1) = δ1, and F ∗(0, y) = δy;
see Figure 3 for an illustration.
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Figure 3: Boundary values of F ∗ and the variance of F ∗(x, y).

Finally, note that F ∗ satisfies the characteristic equation

F ∗(x, y) = y

∫
F ∗

(
x

1 + kx
,
y + kx

1 + kx

)
µ(dk)

+ (1 − y)

∫
F ∗

(
x

1 + kx
,

y

1 + kx

)
µ(dk). (5.1)

Let C(S∗) be the space of continuous functions G : S∗ → P ([0, 1]) such that, for every
(x, y) ∈ S∗,

G(x, 0) = δ0, G(x, 1) = δ1, and G(0, y) = δy.

For (x, y) ∈ S∗ and G ∈ C(S∗), define

A∗(G)(x, y) = y

∫
G

(
x

1 + kx
,
y + kx

1 + kx

)
µ(dk) + (1 − y)

∫
G

(
x

1 + kx
,

y

1 + kx

)
µ(dk);

then A∗(G)(x, y) ∈ P ([0, 1]). Note that, for every G ∈ C(S∗), the function A∗(G) ∈ C(S∗);
hence we may regard A∗ as an operator mapping C(S∗) into C(S∗).

Theorem 5.2. F ∗ is the unique fixed point of A∗.

Proof. For c ∈ (0, ∞), letS∗
c = [0, c]×[0, 1] and consider the space C(S∗

c )of the continuous
functions G : S∗

c → P ([0, 1]) such that, for every (x, y) ∈ S∗,

G(x, 0) = δ0, G(x, 1) = δ1, and G(0, y) = δy.

Set A∗
c to be the restriction of A∗ to C(S∗

c ); note that A∗
c maps C(S∗

c ) into C(S∗
c ). Let F ∗

c

be the restriction of F ∗ to S∗
c . Note that, for every c > 0, F ∗

c is a fixed point of A∗
c since

F ∗ satisfies (5.1). If F ∗
c is the unique fixed point of A∗

c , then the theorem is proved because
S∗ = ⋃

c>0 S∗
c .

By way of contradiction, assume that, for c > 0, there exists a G∗ ∈ C(S∗
c ) that is a fixed

point of A∗
c different from F ∗

c . Then we claim there exists an (x̄, ȳ) ∈ S∗
c such that

dW (F ∗
c (x̄, ȳ), G∗(x̄, ȳ)) > dW (A∗

c (F
∗
c )(x̄, ȳ), A∗

c (G
∗)(x̄, ȳ)), (5.2)

which contradicts the assumption that both F ∗
c and G∗ are fixed points of A∗

c .
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To prove (5.2), for (x, y) ∈ S∗
c , define


F ∗
c ,G∗(x, y) = dW (F ∗

c (x, y), G∗(x, y)).

Observe that 
F ∗
c ,G∗ is a continuous function defined on the compact set S∗

c . Moreover,

F ∗

c ,G∗ ≥ 0 and, for (x, y) ∈ S∗
c ,


F ∗
c ,G∗(x, 0) = 
F ∗

c ,G∗(x, 1) = 
F ∗
c ,G∗(0, y) = 0.

However, 
F ∗
c ,G∗ �≡ 0 since, by assumption, G∗ �= F ∗

c . Let

M = max{
F ∗
c ,G∗(x, y) : (x, y) ∈ S∗

c }.
Then 
−1

F ∗
c ,G∗(M) is a closed subset of (0, c]×(0, 1). Indicate with �1 : R

2 → R the projection

on the first coordinate defined by setting �1(z, w) = z for (z, w) ∈ R
2. Since �1 is an open

map, �1(

−1
F ∗

c ,G∗(M)) is a closed subset of (0, c]. Let

x̄ = min{x : x ∈ �1(

−1
F ∗

c ,G∗(M))}
and ȳ ∈ [0, 1] such that 
F ∗

c ,G∗(x̄, ȳ) = M . The point (x̄, ȳ) makes (5.2) true. In fact, firstly
note that, for (x, y) ∈ S∗

c with x < x̄, 
F ∗
c ,G∗(x, y) < M . Then compute

dW (A∗
c (F

∗
c )(x̄, ȳ), A∗

c (G
∗)(x̄, ȳ))

=
∫ 1

0
|A∗

c (F
∗
c )(x̄, ȳ)(t) − A∗

c (G
∗)(x̄, ȳ)(t)| dt

=
∫ 1

0

∣∣∣∣ȳ
∫

F ∗
c

(
x̄

1 + kx̄
,
ȳ + kx̄

1 + kx̄

)
(t)µ(dk) + (1 − ȳ)

∫
F ∗

c

(
x̄

1 + kx̄
,

ȳ

1 + kx̄

)
(t)µ(dk)

− ȳ

∫
G∗

(
x̄

1 + kx̄
,
ȳ + kx̄

1 + kx̄

)
(t)µ(dk)

− (1 − ȳ)

∫
G∗

(
x̄

1 + kx̄
,

ȳ

1 + kx̄

)
(t)µ(dk)

∣∣∣∣ dt

≤ ȳ

∫

F ∗

c ,G∗
(

x̄

1 + kx̄
,
ȳ + kx̄

1 + kx̄

)
µ(dk) + (1 − ȳ)

∫

F ∗

c ,G∗
(

x̄

1 + kx̄
,

ȳ

1 + kx̄

)
µ(dk)

< ȳM + (1 − ȳ)M

= 
F ∗
c ,G∗(x̄, ȳ)

= dW (F ∗
c (x̄, ȳ), G∗(x̄, ȳ)).

This proves (5.2) and shows that F ∗
c is the unique fixed point of A∗

c .

Theorem 3.5 is now easy to obtain.

Proof of Theorem 3.5. Theorem 4.1 proves that F is continuous, while F satisfies con-
ditions (a)–(c) because of Theorem 3.1(i), Theorem 3.1(ii), and Corollary 4.1. Assume that
G : S → P ([0, 1]) is another continuous solution of (3.9) for which (a)–(c) are true; then, as in
Theorem 5.1, show that G∗ : S∗ → P ([0, 1]) defined by setting G∗(x, y) = G(τ−1(x, y)) for
(x, y) ∈ (0, ∞) × [0, 1], and G∗(0, y) = δy for y ∈ [0, 1], is continuous on S∗ and satisfies
(a)–(c). Verify, moreover, that A∗(G∗) = G∗, i.e. that G∗ solves (5.1). Hence, Theorem 5.2
proves that G∗ = F ∗ and thus G = F .

https://doi.org/10.1239/aap/1189518634 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1189518634


Limit proportion of a randomly reinforced urn 707

6. An example

When µ = δβ , the point mass at a given β > 0, our two-color, randomly reinforced urn with
reinforcement distributions equal to µ becomes Polya’s urn and the unique continuous solution
of (3.9) satisfying conditions (a)–(c) of Theorem 3.5 is

F (b, w) = Beta

(
b

β
,
w

β

)

for (b, w) ∈ S, where, for c, d > 0, Beta(c, d) is the Beta distribution on [0, 1] whereas we
define Beta(c, 0) = δ1 and Beta(0, d) = δ0.

Now let µ = pδ0 + (1 − p)δβ with p ∈ (0, 1) and β > 0. Then, by Remark 3.2,
Beta(b/β, w/β) is again the unique continuous solution of (3.9) satisfying conditions (a)–(c)
of Theorem 3.5.

The next step is to assume that µ = pδα +(1−p)δβ with 0 < α < β integers and p ∈ (0, 1).
Let M = pα + (1 − p)β be the mean of µ. A result of [1] implies that the solution F (b, w)

of (3.9) determined by Theorem 3.5 cannot be equal to Beta(b/M, w/M) for (b, w) ∈ S. A
tentative guess could be

F (b, w) = p Beta

(
b

α
,
w

α

)
+ (1 − p) Beta

(
b

β
,
w

β

)
(6.1)

for (b, w) ∈ S. This F does not solve (3.9). In fact, for (b, w) ∈ S, the second moment of
F (b, w), defined as in (6.1), coincides with the second moment of the right member of (3.9) if
and only if

bwp(1 − p)(β − α)2

(b + w)(b + w + α)(b + w + β)(b + w + α + β)
= 0

for all (b, w) ∈ S; but this cannot happen since 0 < α < β and p ∈ (0, 1). Hence, in this case
the analytical expression of F (b, w) is still unknown, although interesting approximations for
it can be found by simulations, as in [3].
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