
JFP 18 (5& 6): 649–706, 2008. c© 2008 Cambridge University Press

doi:10.1017/S0956796808006916 Printed in the United Kingdom

649

Transactional events1

KEVIN DONNELLY

Boston University, Boston, MA 02215, US

(e-mail: kevind@cs.bu.edu)

MATTHEW FLUET2

Toyota Technological Institute at Chicago, Chicago, IL 60637, US

(e-mail: fluet@tti-c.org)

Abstract

Concurrent programs require high-level abstractions in order to manage complexity and

enable compositional reasoning. In this paper, we introduce a novel concurrency abstraction,

dubbed transactional events, which combines first-class synchronous message passing events

with all-or-nothing transactions. This combination enables simple solutions to interesting

problems in concurrent programming. For example, guarded synchronous receive can be

implemented as an abstract transactional event, whereas in other languages it requires

a non-abstract, non-modular protocol. As another example, three-way rendezvous can be

implemented as an abstract transactional event, which is impossible using first-class events

alone. Both solutions are easy to code and easy to reason about.

The expressive power of transactional events arises from a sequencing combinator whose

semantics enforces an all-or-nothing transactional property – either both of the constituent

events synchronize in sequence or neither of them synchronizes. This sequencing combinator,

along with a non-deterministic choice combinator, gives transactional events the compositional

structure of a monad-with-plus. We provide a formal semantics for transactional events and

give a detailed account of an implementation.

1 Introduction

Programming with concurrency can be an extremely difficult task. A concurrent

program’s inherent non-determinism makes it difficult to reason about and even

harder to debug. However, concurrency has proven to be a useful tool for structuring

programs, as well as an important means of improving performance. Concurrency

is indispensable when implementing interactive systems that must quickly react to

unpredictable and asynchronous occurrences, like user input or network activity.

Concurrent execution of multiple threads also allows programs to take advantage

of the increasingly common presence of multiple cores or processors on a single

machine.

1 This is a revised and extended version of the paper that appeared in the Eleventh ACM SIGPLAN
International Conference on Functional Programming (ICFP’06) (Donnelly & Fluet, 2006).

2 Portions of this work were completed while the author was affiliated with Cornell University, Ithaca,
NY 14853, US.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

650 K. Donnelly and M. Fluet

Given the usefulness of concurrent programs, it is important to provide program-

mers with abstraction mechanisms that help manage the complexity of reasoning

about such programs. One means of managing this complexity, exemplified by

both software transactional memory (STM) Haskell (Harris et al., 2005b) and

Concurrent ML (CML) (Reppy, 1999), is to introduce first-class, composable

operations that encapsulate a particular concurrent programming paradigm: shared-

memory transactions in STM Haskell and synchronous message passing in CML.

Such first-class, composable operations allow complex thread interactions to be

abstractly packaged and exported, which increase modularity and ease reasoning.

STM Haskell uses monadic computations as a means of structuring shared-

memory transactions, which ensures that isolated sequences of shared-memory

operations are performed atomically. STM computations can be naturally composed

in sequence or as alternatives, giving rise to flexible concurrency abstractions. The

atomicity and isolation guarantees of STM transactions ease reasoning about

the interactions of concurrent threads. However, the same isolation guarantees

preclude the use of STM transactions for some thread interactions, like synchronous

message passing.

Concurrent ML uses first-class events as means of structuring synchronous

message passing. Like an STM computation, a CML event is an abstractly packaged

group of actions. However, the act of synchronizing on an event is not an isolated

operation, because events may include synchronous message passing. Events can

be naturally composed as alternatives, but sequential composition of events can

be difficult to reason about. Because synchronous message passing is strictly more

powerful than asynchronous message passing, there are abstractions, such as swap

channels, that may be implemented as CML events but have no implementation

as STM transactions. However, the ‘all-or-nothing’ (atomic) semantics of STM

computations can allow certain compositions to be more easily expressed and can

lead to greater modularity.

In this work, we explore a novel abstraction mechanism for concurrent program-

ming that combines first-class synchronous events with all-or-nothing transactions.

This combination allows programmers to simultaneously take advantage of the

power of synchronous message passing and the modularity and composability of

transactions. It also leads to abstractions that are more expressive than either CML

events or STM computations. This paper makes the following contributions:

• We introduce the notion of transactional events. These synchronous message

passing abstractions overcome some limitations of CML events and allow for

greater modularity in concurrent programming. The increased modularity and

all-or-nothing nature of transactional events ease reasoning and make these

events better suited to composition.

• We give a formal semantics for a language, TE Haskell, which draws inspiration

from both Concurrent ML and Concurrent Haskell. The language includes

transactional events, concurrent threads, monadic input/output (I/O) and

exceptions.

• We show the expressive power of TE Haskell with respect to other concurrency

primitives by giving implementations of modular guarded receive, CML events,

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 651

transactional shared memory and three-way synchronous rendezvous. We also

consider the computational complexity of any implementation of transactional

events by giving encodings of the Boolean satisfiability problem as concurrent

programs using transactional events.

• We give a detailed description of a prototype implementation of transactional

events as a library for Haskell, built using the STM Haskell extensions available

in the Glasgow Haskell Compiler (GHC).

The remainder of the paper is structured as follows. Section 2 briefly reviews CML

and Concurrent Haskell. Section 3 discusses the informal semantics of transactional

events and gives some simple examples, before turning to the formal semantics of TE

Haskell in Section 4. Next, we explore the expressive power of transactional events

with more complex examples, including encodings of CML events and transactional

shared memory. Section 6 describes our implementation of transactional events,

while Section 7 discusses related work. We conclude with some directions for future

work.

2 Background

2.1 Concurrent ML

Concurrent ML is a high-level language, formulated as an extension of Standard

ML, that provides threads and synchronous message passing. In its implementation

as a library for Standard ML, the CML Library (Appendix A of Reppy 1999)

provides types for thread identifiers (thread id), synchronous events (a event)

and synchronous channels (a chan), as well as the following operations:

val spawn : (unit -> unit) -> thread_id

val channel : unit -> a chan

val sendEvt : a chan * a -> unit event

val recvEvt : a chan -> a event

val sync : a event -> a

val choose : a event list -> a event

val wrap : a event * (a -> b) -> b event

val guard : (unit -> a event) -> a event

val withNack : (unit event -> a event) -> a event

val alwaysEvt : a -> a event

val never : a event

A value of type a event is an abstract synchronous operation that returns a

value of type a when it is synchronized upon. An event value represents potential

communication and synchronous actions, and is itself quiescent; its latent action is

only performed when a thread synchronizes on it. The strength of first-class events

is that they overcome the tension between abstraction and selective communication.

Events are abstract like functions, but can participate in selection. This combination

achieves a level of abstraction and modularity not found in previous concurrent

languages.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

652 K. Donnelly and M. Fluet

We briefly describe the CML operations below:

spawn f creates a new thread to evaluate the function f and returns the thread

identifier of the newly created thread.

channel () creates a new synchronous channel.

sendEvt (ch, m) creates an event which sends message m on channel ch. This event

becomes enabled (i.e., can be selected for synchronization) when communication

can proceed without blocking (i.e., when there is a matching receiver), and

yields ().

recvEvt ch creates an event which receives a message on channel ch. This event

becomes enabled when communication can proceed without blocking (i.e., when

there is a matching sender), and yields the received message.

sync ev synchronizes on the event ev. This operation blocks until some constituent

primitive event becomes enabled. This operation returns the synchronization result

of the enabled event.

choose [ev1,..., evn] creates the event which, when synchronized on, non-

deterministically chooses some enabled evi.

wrap (ev, f) creates an event which, if ev is enabled and selected for synchro-

nization yielding the value v, evaluates and yields f v.

guard f creates an event which, at synchronization time, evaluates f () to an

event ev, and then acts as ev.

withNack f creates an event which, at synchronization time, evaluates f nack to

an event ev, and then acts as ev. The argument nack is an event that becomes

enabled only if an event other than ev is enabled and selected for synchronization.

alwaysEvt a creates an event which is always enabled, and yields a.

never creates an event which is never enabled.

2.1.1 Examples

As a simple example, we consider the implementations of an event value that

represents communication between a client thread and two server threads. If a client

wishes to send requests to both servers and interact with whichever server accepts

the request first, then the client constructs the following event:

choose [

wrap (sendEvt (req1, serverCh1),

fn () => sync (recvEvt (replyCh1))),

wrap (sendEvt (req2, serverCh2),

fn () => sync (recvEvt (replyCh2)))]

In this example, the choice is between the communications sendEvt (req1,

serverCh1) and sendEvt (req2, serverCh2); when synchronizing on this event,

the client will send a request to exactly one server, after which the client will block

waiting to receive a reply.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 653

If, on the other hand, the client wishes to send requests to both servers and

interact with whichever server replies to the request first, then the client constructs

the following event:

choose [

guard (fn () => (sync (sendEvt (req1, serverCh1))

; recvEvt (replyCh1))),

guard (fn () => (sync (sendEvt (req2, serverCh2))

; recvEvt (replyCh2)))]

In this example, the choice is between the communications recvEvt (replyCh1)

and recvEvt (replyCh2); when synchronizing on this event, the client will send

requests to both servers (blocking until both servers receive the requests), after which

the client will receive a reply from exactly one server.

Of course, there is no requirement that the client make use of the same commu-

nication pattern with both servers:

choose [

guard (fn () => (sync (sendEvt (req1, serverCh1))

; recvEvt (replyCh1))),

wrap (sendEvt (req2, serverCh2),

fn () => sync (recvEvt (replyCh2)))]

Here, the choice is between the communications recvEvt (replyCh1) and

sendEvt (req2, serverCh2); when synchronizing on this event, the client will

send a request to the first server (blocking until the first server receives the request),

after which the client will either receive a reply from the first server or will send a

request to the second server and block waiting to receive a reply from the second

server.

The first-class nature of event values enables these communication patterns to be

exported abstractly by the server interfaces (say, as protocol1 and protocol2); in

this case the client will construct the following event:

choose [protocol1 req1, protocol2 req2]

In general, one often wants to implement a protocol consisting of a sequence of

communications c1; c2; . . . ; cn. To use such a protocol in CML, one of the ci must be

designated as the commit point, the communication by which this protocol is chosen

over others in a choose. The entire protocol may be packaged as an event value by

using guard to prefix the communications c1; . . . ; ci−1 and using wrap to postfix the

communications ci+1; . . . ; cn. Note all of the pre-synchronous communications must

terminate in order for guard to yield the commit point communication; likewise, all

of the post-synchronous communications must terminate in order for wrap to yield

the synchronization result. One must be careful to maintain program invariants after

pre-synchronous actions, since the corresponding commit point communication and

post-synchronous action may not be chosen. This motivates the need for withNack,

as a mean to signal compensating actions in non-chosen protocols.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

654 K. Donnelly and M. Fluet

2.2 Limitations of CML events

Having a single communication commit point limits the expressive power of CML

events. In CML, given the operations for two-way synchronization (i.e., sendEvt

and recvEvt), there is no way to implement three-way synchronization as an event

abstraction (Panangaden & Reppy, 1997; Reppy, 1999). As shown in Section 5.4,

TE Haskell allows for an abstract implementation of such three-way synchronous

operations.

The fact that all CML events must have a single commit point also places a limit

on the modularity achievable with these events. Consider the example of trying to

program guarded (or conditional) receive in CML. Given a channel ch : a chan

and a guard g : a -> bool, we would like an event, grecvEvt g ch : a event,

that will receive a message m from ch, but only if g m evaluates to true. Because

message passing is synchronous, we cannot just receive from the channel and test

the result, because the sender will complete its synchronization after the send. In TE

Haskell, guarded receive can be given a transparently correct implementation with

just a few lines of code (see Section 5.1).

Guarded receive can be implemented in CML, but not as a modular, composable

event abstraction. It requires a fairly complicated protocol in which the sender and

the receiver cooperate and the use of a special guarded-receive channel abstraction.

To see that the guarded-receive communication protocol cannot be implemented

as a composable event abstraction that can participate in non-deterministic choice,

suppose there is a sender S , which wishes to send a value m : a and a receiver

R, which wishes to receive with a guard g : a -> bool. Either S and R must

interact directly in order to decide whether the event commits or there needs to be

an intermediate server. Suppose an intermediate server is used. At some point in the

protocol, the server would have to simultaneously commit to notifying S that its send

was accepted and to sending m to R (or to notifying R that its previous receipt of

m can be committed). However, this requires three-way synchronization, which itself

is not expressible as an event abstraction. Therefore, S and R must interact directly

to decide whether to commit to a communication. Clearly the first communication

between S and R cannot be the commit point, because there is no way to evaluate

g m before the first communication. So the protocol must start with an unconditional

communication between S and R. But this means that if there is a sender with no

receiver or a receiver with no sender then this unconditional communication will

block. Consequently, synchronizing on a choose event that includes a guarded send

or guarded receive will block, even if another event included in the choose is enabled

and could be chosen for synchronization. This destroys the composability of the

implementation.

Requiring a protocol to implement guarded receive also leads to a lack of

modularity. If we decide that we want to perform a guarded receive on some

existing channel, then we need to alter all of the code that sends and receives on

this channel to use the guarded-receive channel abstraction, although we may have

required a guarded receive for only one receiver. In TE Haskell, the implementation

of guarded receive is local to the receiver.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 655

2.3 Concurrent Haskell

Concurrent Haskell (Peyton Jones et al., 1996) is an extension of Haskell with

concurrency primitives. Following the Haskell tradition, Concurrent Haskell isolates

the side-effect producing concurrency primitives in the I/O monad (Peyton Jones &

Wadler, 1993; Peyton Jones, 2001). We assume that the reader is familiar with the

style of monadic I/O employed by Haskell, as well as with the do-notation used for

monadic actions. In examples, we will make use of I/O actions that read and write

a character, getChar and putChar, which have the following types:

getChar :: IO Char

putChar :: Char -> IO ()

Concurrent Haskell supports multiple threads running I/O actions concurrently.

I/O actions are turned into threads using the function forkIO:

forkIO :: IO a -> IO ThreadId

forkIO a spawns a new thread to perform the I/O action specified by a and returns

the identifier of the newly spawned thread to the caller. A thread may also query its

own identifier:

myThreadId :: IO ThreadId

As in Haskell, the execution of a Concurrent Haskell program performs the I/O

action denoted by main, which may include creating new threads to perform their

own actions; a Concurrent Haskell program continues to perform the I/O actions

of any concurrently spawned thread. For example, here is a program (using the

do-notation) that spawns one thread to write the character A and another to

write the character B :

main :: IO ()

main = do { forkIO (putChar A)

; forkIO (putChar B)

; return () }

Note that A and B are output in a non-deterministic order, due to the non-

deterministic scheduling of concurrent threads.

3 Transactional events

By introducing transactional events, we overcome the limitations of CML’s single

communication commit point requirement. In essence, we allow an event synchro-

nization to take place in a transaction that has no observable effect until all of the

required events are enabled and successfully complete. Transactions, an idea origi-

nally from the world of databases, have recently found use as a powerful technique

to ensure atomicity in concurrent programming (Herlihy & Moss, 1993; Harris &

Fraser, 2003; Welc et al., 2004; Harris et al., 2005b). We adapt transactions to the set-

ting of synchronous message passing, yielding gains in modularity and expressiveness.

A transaction groups tentative actions made during a computation, which can

be committed if the actions complete successfully and can be aborted otherwise. In

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

656 K. Donnelly and M. Fluet

databases, the actions are a single client’s database queries; in transactional memory,

the actions are a single thread’s reads of and writes to shared memory; in both cases,

success is a serializable schedule. Tentative actions are not observable by the rest of

the system or program until the entire transaction commits, so transactions provide

an all-or-nothing semantics. To put it another way, all of the actions of a committed

transactions are observed by the rest of the system or program to have been taken

as a single atomic action.

Due to this all-or-nothing semantics, transactions provide a straightforward way of

overcoming the limitation of single communication commit points in CML. We view

event synchronization as a transaction where multiple synchronous message passing

communications may be grouped as tentative actions. Since message passing is

synchronous (every send must be matched by a receive), communication between

threads has the effect of merging their event synchronization transactions (so

that they either commit or abort together). This makes it possible to construct

sophisticated abstract synchronous operations that cannot be constructed in previous

concurrent languages.

In the rest of this section, we informally describe transactional events in the

context of an extension of Concurrent Haskell. Haskell provides an ideal setting for

programming with transactional events because the use of monadic I/O makes it

easy to keep irrevocable side-effects out of transactional events, which may otherwise

need to be aborted. Monads also turn out to be the right notion for describing the

compositional structure of transactional events. We dub our extension ‘TE Haskell’.

The basic interface for transactional events is given in Figure 1. An Evt a is a

transactional event: an abstract synchronous operation that yields a result of type

a when synchronized upon. An SChan a is a synchronous channel used for message

passing, where a is the type of messages. The sync operation takes a transactional

event to an I/O action that performs the synchronization. Note that synchronization

is not a pure function, but rather depends on the state of concurrently synchronizing

threads. Hence, sync yields an I/O action, although it does not itself perform any

observable I/O.

New channels are created with newSChan, which is given an event type so that

we may create local channels inside transactional event synchronizations.3 The

basic events sendEvt ch m and recvEvt ch correspond to the event that sends

m over ch and the event that receives on ch. Message passing is synchronous, so

every send must be matched by a receive; a transactional event synchronization

may not successfully complete unless all of the communications are matched by

complementary communications in other transactional event synchronizations that

may also successfully complete. For example, the following program creates a

channel, spawns a thread, receives a character on the channel from the spawned

thread and finally prints the character:

main = do { ch <- sync newSChan

; forkIO (sync (sendEvt ch A))

; c <- sync (recvEvt ch)

; putChar c }

3 This enables the useful idiom of creating reply channels that are local to a synchronization.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 657

-- The Evt monad

data Evt a

-- Synchronization

sync :: Evt a -> IO a

-- Synchronous channels

data SChan a

newSChan :: Evt (SChan a)

sendEvt :: SChan a -> a -> Evt ()

recvEvt :: SChan a -> Evt a

-- Monadic event combinators

thenEvt :: Evt a -> (a -> Evt b) -> Evt b

alwaysEvt :: a -> Evt a

chooseEvt :: Evt a -> Evt a -> Evt a

neverEvt :: Evt a

instance Monad Evt where

(>>=) = thenEvt

return = alwaysEvt

instance MonadPlus Evt where

mplus = chooseEvt

mzero = neverEvt

-- Thread identity

myThreadIdEvt :: Evt ThreadId

-- Exceptions

throwEvt :: Exception -> Evt a

catchEvt :: Evt a -> (Exception -> Evt a) -> Evt a

Fig. 1. The TxEvent interface.

Events can be composed in sequence using the thenEvt combinator, which is also

available as the monadic bind (>>=) and may be used implicitly via Haskell’s do-

notation. The event evt `thenEvt` f is the event which tentatively synchronizes on

the event evt, yielding the result r, and then synchronizes on the event f r. If these

events cannot successfully complete in sequence, then the composed event cannot

successfully complete. For example, the event which sends 0 and 1, in sequence, over

the channel ch is

evt1 = do { sendEvt ch 0 ; sendEvt ch 1 }

This event may only successfully complete synchronization if both sends are success-

fully received. For example, it may synchronize if another thread is synchronizing

on the following event:

evt2 = do { a <- recvEvt ch ; b <- recvEvt ch }

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

658 K. Donnelly and M. Fluet

It may also synchronize if two other threads are synchronizing on the event

recvEvt ch.

The event alwaysEvt e is an event that immediately yields e when synchronized

upon. Note that alwaysEvt is a left and right unit of thenEvt; hence, Evt a forms

a monad (Wadler, 1995), with alwaysEvt as the monadic unit (return).

Events may also be composed as non-deterministic alternatives using the

chooseEvt combinator. The event evt1 `chooseEvt` evt2 synchronizes as either

evt1 or evt2, but only commits to a choice that can successfully complete. Until

such a choice can be determined, the composed event cannot successfully complete.

For example, the event which chooses between sending 0 and 1 over the channel ch

or receiving an integer once on the same channel is

evt3 = (do { sendEvt ch 0 ; sendEvt ch 1 })

`chooseEvt`

(do { a <- recvEvt ch ; alwaysEvt () })

Note that this event cannot be implemented in CML, because the first alternative

completes only if two communications successfully complete; there is no single

communication to serve as the commit point in CML. However, in TE Haskell, this

event may synchronize either with a thread synchronizing on evt2 or with a thread

synchronizing on the following event:

evt4 = sendEvt ch 2

Note, however, that if there are threads synchronizing on both evt2 and evt4, then

the event with which evt3 synchronizes is non-deterministic; hence, chooseEvt is a

commutative combinator.

The event neverEvt is an event which never successfully completes when syn-

chronized upon. This is analogous to an explicit abort action in a transaction; it can

be used to indicate that the sequence of actions that led to the neverEvt should

not be taken as a synchronization. For example, the event which receives two equal

integers on the same channel is

evt5 = do { a <- recvEvt ch ; b <- recvEvt ch

; if a == b then alwaysEvt () else neverEvt }

Note that this event cannot synchronize with a thread synchronizing on evt1, but

can synchonize with two threads synchronizing on evt4.

Since neverEvt never successfully completes, it may never be chosen by

chooseEvt; hence, neverEvt is a left and right unit for chooseEvt. Likewise,

neverEvt is a left and right zero for thenEvt. Hence, Evt a forms a monad-with-

plus (Wadler, 1995; Hinze, 2000; Kiselyov et al., 2005; MonadPlus, 2005), with

chooseEvt as monadic plus (mplus) and neverEvt as monadic zero (mzero).

The event myThreadIdEvt is an event which immediately yields the thread

identifier of the synchronizing thread. It is useful to replicate the myThreadId

operation with an event type in order to create synchronous event abstractions that

implement protocols that are sensitive to the identities of the participating threads;

see Section 5.3 for an example.

The semantics of transactional events requires that a synchronization commits

to a particular alternative in a chooseEvt only if all of the constituent events

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 659

in that alternative can successfully complete. The semantics also requires that a

synchronization commits to a communication partner in a sendEvt or recvEvt

only if the communication leads to both partners successfully completing their

transactional event synchronizations. Hence, we may view a synchronization as a

transaction that commits when a collection of choice alternatives and communication

partners may successfully complete; tentative synchronization actions are aborted

when such a collection may not successfully complete. A thread performing a

synchronization blocks until a collection of choice alternatives and communication

partners that may successfully complete can be found.

Because synchronous message passing involves other transactional event synchro-

nizations, a synchronization can only successfully complete if all of the synchroniza-

tions with which it has communicated can also successfully complete. This allows

transactional events to achieve n-way synchronization, which is impossible as an

event abstraction in CML or as an STM computation in STM Haskell.

We discuss issues of implementation in more detail in Section 6. For now, though,

we note that the most important property we will desire of an implementation is a

progress guarantee with respect to synchronizations, namely, if a collection of choice

alternatives and communication partners that successfully complete exists for some

groups of threads blocked performing synchronizations, then the implementation

must eventually find some such collection, effect the choices and communications,

successfully complete the synchronizations and unblock the threads. Note that

this progress guarantee does not imply that every thread blocked performing a

synchronization will eventually be unblocked, nor does it imply that every group of

threads blocked performing synchronizations will eventually have some sub-group

unblocked; for example, a program with a single thread that synchronizes on a

sendEvt will never be unblocked (since, there being only one thread in the program,

there will never be another thread synchronizing on a matching recvEvt).

On the other hand, this progress guarantee does imply that an implementation

should have properties akin to deadlock-freedom and livelock-freedom with respect

to synchronizing events. For example, consider two threads synchronizing on the

following events:

evtA = (sendEvt ch1 ()) `chooseEvt` (recvEvt ch2)

evtB = (sendEvt ch2 ()) `chooseEvt` (recvEvt ch1)

Synchronizations on these two events may successfully complete together, either

with evtA choosing to send and evtB choosing to receive or vice-versa. Hence,

an implementation should neither have both events choose to send and then wait

indefinitely for the other to choose to receive (i.e., deadlock), nor loop indefinitely

with both events choosing to send and then both events choosing to receive (i.e.,

livelock).

3.1 Exceptions in transactional events

Thus far, the features of transactional events have straightforwardly followed

the intuition of extending CML event synchronization to be an all-or-nothing

transaction. Because Haskell allows exceptions to be thrown from pure code, it

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

660 K. Donnelly and M. Fluet

is necessary to specify the semantics of exceptions in transactional events and in

synchronizations. The treatment of exceptions in TE Haskell is somewhat subtle.

While the issues regarding the use of exceptions in shared-memory transactions

are well known, the fact that multiple threads may interact through synchronous

message passing during event synchronization makes the issue deserving of further

consideration. Indeed, it is precisely the fact that an exception may be thrown as a

consequence of the receipt of a synchronous message (a situation that may never

arise in shared-memory transactions) that adds new dimensions to the issue.

Asynchronous exceptions (Marlow et al., 2001) have a straightforward treatment.

If a thread that is synchronizing on a transactional event receives an asynchronous

exception, it makes sense for the synchronization to be entirely aborted and the

exception raised as if it had been thrown just before the start of the synchronization.

Because event synchronization is intended to be an all-or-nothing transaction, an

asynchronous exception should always be seen as arriving before or after the

synchronization step, never during. Asynchronous exceptions cannot be caught

within a transactional event.

For synchronous exceptions that are thrown while synchronizing on an event,

there are several possible design choices. Uncaught exceptions could cause an

event synchronization to abort without committing, continuing to propagate the

exception from the sync evt expression. However, because transactional events

include synchronous communication between threads, this semantics would break

the intuition that uncommitted events have no observable effects. Consider the

following thread synchronizations:

t1 = sync (do { i <- recvEvt c

; if i == 0 then throw Foo

else return i })

t2 = sync (do { sendEvt ch 0 ; neverEvt })

If the synchronization in t1 aborts with the exception Foo (caused by the tentative

send of 0 on the channel ch), then this behavior would be caused by an uncommitted

(and, in fact, uncommittable) synchronization in t2. This not only breaks the basic

intuition of transactions, but can lead to some truly strange behavior. For example,

consider the following threads:

t3 = sync ((do { i <- recvEvt ch

; if i == 0 then throw Foo

else return i })

`chooseEvt` (sendEvt ch 0))

t4 = sync ((do { i <- recvEvt ch

; if i == 0 then throw Foo

else return i })

`chooseEvt` (sendEvt ch 0))

Under the immediate abort semantics, the tentative communications in these syn-

chronizations could cause each other to abort. In this case, each aborted synchro-

nization actually has an effect: the effect of causing the other to abort.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 661

One possible solution to these problems would be to require uncaught exceptions

to commit a synchronization (including the synchronizations of all communication

partners) and consider the propagated exception to be the value produced by the

event synchronization. In the first example given above, t1 would not be able to

successfully commit since its communication partner cannot commit. In the second

example, only one of the synchronizations could commit to an exception, since

the other would have to commit to the send that causes the exception. However,

this semantics has the disadvantage of complicating common-knowledge reasoning

about cooperating transactional-event synchronizations. Consider the case of these

three synchronizing threads:

t5 = sync (sendEvt ch1 0)

t6 = sync (do { x <- recvEvt ch1

; if f x then sendEvt ch2 T

else neverEvt })

t7 = sync (recvEvt ch2)

At first glance, it would seem that if t5 completes its synchronization, then it

should know that t7 has completed its synchronization, because for t5 to commit

to its send on ch1, t6 must commit to its receive on ch1 and its send on ch2;

hence, t7 must commit to its receive on ch2. However, if f 0 throws an exception,

then t6 need only commit to its receive on ch1, and t5 and t6 may complete

their synchronizations (with t6 raising an exception) without t7 completing its

synchronization. Allowing exceptions that propagate to the top level of an event

synchronization to be treated as a synchronization that successfully completes means

that programmers must carefully consider every place that an uncaught exception

might be thrown as a possible commitment point for the event synchronization. We

believe that this goes against the spirit of exceptions in Haskell, since exceptions are

by nature rare and programmers are unlikely to account for all possible origins of

exceptions. With these considerations in mind, we have chosen to make uncaught

exceptions that reach the top level of an event synchronization act as an event which

never successfully completes, much like neverEvt. Hence, under our semantics, the

threads t3 and t4 block indefinitely, as do the threads t5, t6 and t7 when f 0

throws an exception. The choice of whether or not an uncaught exception may

commit its synchronization is a free design decision; our choice was guided by the

example given above, where we felt it better for the program to do nothing (block)

than to behave in a non-intuitive fashion (commit t5 and t6 without t7).

Nonetheless, there are times when an event must be robust against exceptions.

Therefore, despite the potential to complicate reasoning, we do provide the means to

throw and catch exceptions in transactional events. The event throwEvt ex throws

the exception ex when it is synchronized upon, while the event catchEvt evt h is

the event that acts as evt, unless synchronizing on evt throws an exception ex, in

which case it synchronizes on h ex. Exceptions thrown from pure code may also be

caught by catchEvt. Programmers making use of catchEvt have the responsibility

to consider all possible origins of the exceptions handled, making sure that the

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

662 K. Donnelly and M. Fluet

non-local control flow they are introducing does not destroy any important mutual

commitment properties.

As an aside, in Haskell, a language with lazy evaluation and imprecise excep-

tions (Peyton Jones et al., 1999), one must be aware that catchEvt only catches

exceptions that are raised when evaluating expressions to event values during

synchronization. In particular, it does not catch exceptions that are thrown by un-

evaluated expressions returned as a synchronization result. For example, consider

the following synchronizing thread:

t8 = sync (catchEvt (alwaysEvt (throw (AssertionFailed "foo")))

(_ -> alwaysEvt 3))

This thread will synchronize, returning a lazy computation that will raise an

exception if evaluated. As another example, consider the following synchronizing

thread:

t9 = sync (catchEvt (do { i <- recvEvt ch

; if i < 10

then throw (AssertionFailed "foo")

else alwaysEvt i })

(_ -> alwaysEvt 10))

This thread will synchronize (assuming a matching sender on the channel ch),

always returning a value greater than or equal to 10, since the exception is thrown

when evaluating the if ... expression to an event value. Indeed, thread t9 will

synchronize with the following thread:

t10 = sync (sendEvt ch (throw (AssertionFailed "bar")))

which sends a lazy computation that raises an exception when evaluated by the

i < 10 expression in t9.

4 Semantics

In this section, we provide a formal, operational semantics for transactional events.

TE Haskell draws inspiration from both Concurrent ML and Concurrent Haskell.

Like CML, it includes first-class synchronous events and event combinators, but

extended with sequential composition. Like Concurrent Haskell, it includes first-

class I/O actions and I/O combinators.

4.1 Syntax

Figure 2 gives the syntax of TE Haskell. Values and expressions in the language

naturally divide into four categories: constants (characters c, thread identifiers θ

and channel names κ), event combinators, I/O combinators and standard functional

language terms (e.g., λ-abstractions and applications), which we omit.

The event combinators should be familiar from the description in the previous

section. Likewise, most of the I/O combinators should be familiar from the

description of Concurrent Haskell. In order to clarify the behavior of monadic

sequencing and exception handling in the Evt and IO monads, we equip the IO

monad with distinguished combinators: unitIO, bindIO, throwIO and catchIO.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 663

Values

v ::= c characters

| θ thread identifiers

| κ channel names

| alwaysEvt e | thenEvt e′ ef
| neverEvt | chooseEvt el er
| throwEvt e | catchEvt e′ eh
| newSChan | recvEvt κ | sendEvt κ e′
| myThreadIdEvt

| unitIO e | bindIO e′ ef
| throwIO e | catchIO e′ eh
| getChar | putChar c

| myThreadId | forkIO e | sync e

| \x->e | . . . functional language values

Expressions

e ::= x variables

| v values

| e1 e2 | . . . functional language expressions

Fig. 2. TE Haskell: Syntax.

4.2 Dynamic semantics

The essence of the dynamics is to interpret sequential terms, Evt terms and IO terms

as separate sorts of computations. This is expressed by three levels of evaluation:

pure evaluation of sequential terms, synchronous evaluation of transactional events

and concurrent evaluation of concurrent threads. The bridge between the Evt and IO

computations is synchronization, which moves threads from concurrent evaluation

to synchronous evaluation and back to concurrent evaluation.

4.2.1 Sequential evaluation (e ↪→ e′)

The ‘lowest’ level of evaluation is the sequential evaluation of pure functional lan-

guage terms. Unsurprisingly, our sequential evaluation relation is entirely standard

and thus omitted. We have in mind the call-by-need evaluation strategy employed

by Haskell. However, order of evaluation for pure terms (whether call-by-value,

call-by-name or call-by-need) has no real impact on the behavior of transactional

events.

Although, we do not do so in this presentation, it would be straightforward to

incorporate a sequential evaluation relation that indicates exceptions raised by the

evaluation of functional language terms. Again, the exact nature of the evaluation

(whether raised exceptions are precise or imprecise (Moran et al., 1999)), has no real

impact on the behavior of transactional events.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

664 K. Donnelly and M. Fluet

Synchronous Evaluation Contexts

MEvt ::= [] | thenEvt MEvt ef | catchEvt MEvt eh

EvtEval

e ↪→ e′

S � {〈θ,MEvt[e]〉} � S � {〈θ,MEvt[e′]〉}
EvtThenAlways

S � {〈θ,MEvt[thenEvt (alwaysEvt e′) ef]〉} � S � {〈θ,MEvt[ef e′]〉}
EvtThenThrow

S � {〈θ,MEvt[thenEvt (throwEvt e′) ef]〉} � S � {〈θ,MEvt[throwEvt e′]〉}
EvtChooseLeft

S � {〈θ,MEvt[chooseEvt el er]〉} � S � {〈θ,MEvt[el]〉}
EvtChooseRight

S � {〈θ,MEvt[chooseEvt el er]〉} � S � {〈θ,MEvt[er]〉}
EvtCatchAlways

S � {〈θ,MEvt[catchEvt (alwaysEvt e′) eh]〉} � S � {〈θ,MEvt[alwaysEvt e′]〉}
EvtCatchThrow

S � {〈θ,MEvt[catchEvt (throwEvt e′) eh]〉} � S � {〈θ,MEvt[eh e′]〉}
EvtNewSChan

κ′ fresh

S � {〈θ,MEvt[newSChan]〉} � S � {〈θ,MEvt[alwaysEvt κ′]〉}
EvtSendRecv

S � {〈θs,MEvt
s [sendEvt κ e′]〉, 〈θr,MEvt

r [recvEvt κ]〉}
� S � {〈θs,MEvt

s [alwaysEvt ()]〉, 〈θr,MEvt
r [alwaysEvt e′]〉}

EvtMyThreadId

S � {〈θ,MEvt[myThreadIdEvt]〉} � S � {〈θ,MEvt[alwaysEvt θ]〉}

Fig. 3. TE Haskell: Dynamic semantics – Synchronous evaluation.

4.2.2 Synchronous evaluation (S � S ′)

The ‘middle’ level of evaluation is synchronous evaluation of transactional events.

We organize a group of synchronizing events as a set of pairs of thread identifiers

and Evt expressions:

Synchronizing Event S ::= 〈θ, e〉
Synchronization Groups S ::= {S, . . .}

The synchronous evaluation relation is closely related to the event matching relation

in the semantics of Concurrent ML (Appendix B of Reppy 1999). Intuitively, the

relation

{〈θ1, e1〉, . . . , 〈θk, ek〉} � {〈θ1, e
′
1〉, . . . , 〈θk, e′

k〉}
means that the events e1,. . .,ek make one step towards synchronization by reducing

into the events e′
1,. . .,e

′
k . The complete set of rules is given in Figure 3. All of

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 665

the rules include non-deterministically choosing one or more events for a step of

evaluation.

The rule EvtEval implements the sequential evaluation of an expression in the

active position.

The rule EvtThenAlways implements sequential composition in the Evt monad.

The rules EvtChooseLeft and EvtChooseRight implement a non-deterministic

choice between events. The rules EvtThenThrow, EvtCatchAlways and Evt-

CatchThrow propagate exceptions in the standard way.

The rule EvtNewSChan allocates a new channel name; note that the freshness of

κ′ is with respect to the entire program state.4 The rule EvtSendRecv implements

the two-way rendezvous of communication along a channel; note that the transition

replaces the sendEvt and recvEvt events with alwaysEvt events. Finally, the rule

EvtMyThreadId simply returns the thread identifier of the synchronizing event.

It is worth considering the possible terminal configurations for a set of events under

the synchronous evaluation relation. A ‘good’ terminal configuration is one in which

all events are reduced to always events: {〈θ1, alwaysEvt e′
1〉, . . . , 〈θk, alwaysEvt e′

k〉}.
The ‘bad’ terminal configurations are one with never events, or with uncaught

exceptions or with unmatched send/receive events.

4.2.3 Concurrent evaluation (T a−→ T ′)

The ‘highest’ level of evaluation is concurrent evaluation of threads. We organize the

group of concurrent threads as a set of pairs of thread identifiers and IO expressions:

Concurrent Threads T ::= 〈θ, e〉
Thread Soups T ::= {T , . . .}

To model the I/O behavior of the program, transitions are labelled with an

action:

Actions a ::= ?c | !c | ε
The actions allow reading a character c from standard input (?c) or writing a

character c to standard output (!c). The silent action ε indicates no observable I/O

behavior. In a real language, there would be many other observable I/O actions.

The complete set of rules is given in Figure 4. All of the rules include non-

deterministically choosing one or more threads for a step of evaluation. Most of the

rules are entirely standard for a dynamics of Haskell or Concurrent Haskell (Peyton

Jones, 2001); we include them simply for completeness.

The rule IOEval implements the sequential evaluation of an expression in the

active position. The rule IOBindUnit implements sequential composition in the IO

monad, while the rules IOBindThrow, IOCatchUnit and IOCatchThrow propa-

gate exceptions in the standard way. The two rules IOGetChar and IOPutChar

4 This freshness condition could be formalized by a synchronous evaluation relation of the form
K;S � K′;S ′, where K is a set of allocated channel names.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

666 K. Donnelly and M. Fluet

Concurrent Evaluation Contexts

MIO ::= [] | bindIO MIO ef | catchIO MIO eh

IOEval

e ↪→ e′

T � {〈θ,MIO[e]〉} ε−→ T � {〈θ,MIO[e′]〉}
IOBindUnit

T � {〈θ,MIO[bindIO (unitIO e′) ef]〉} ε−→ T � {〈θ,MIO[ef e′]〉}
IOBindThrow

T � {〈θ,MIO[bindIO (throwIO e′) ef]〉} ε−→ T � {〈θ,MIO[throwIO e′]〉}
IOCatchUnit

T � {〈θ,MIO[catchIO (unitIO e′) eh]〉} ε−→ T � {〈θ,MIO[unitIO e′]〉}
IOCatchThrow

T � {〈θ,MIO[catchIO (throwIO e′) eh]〉} ε−→ T � {〈θ,MIO[eh e′]〉}
IOGetChar

T � {〈θ,MIO[getChar]〉} ?c−→ T � {〈θ,MIO[unitIO c]〉}
IOPutChar

T � {〈θ,MIO[putChar c]〉} !c−→ T � {〈θ,MIO[unitIO ()]〉}
IOMyThreadId

T � {〈θ,MIO[myThreadId]〉} ε−→ T � {〈θ,MIO[unitIO θ]〉}
IOFork

θ′ fresh

T � {〈θ,MIO[forkIO e]〉} ε−→ T � {〈θ,MIO[unitIO θ′]〉, 〈θ′, e〉}
IOSync

{〈θ1, e1〉, . . . , 〈θk, ek〉} �∗ {〈θ1, alwaysEvt e′
1〉, . . . , 〈θk, alwaysEvt e′

k〉}
T � {〈θ1,M

IO
1 [sync e1]〉, . . . , 〈θk,MIO

k [sync ek]〉}
ε−→ T � {〈θ1,M

IO
1 [unitIO e′

1]〉, . . . , 〈θk,MIO
k [unitIO e′

k]〉}

Fig. 4. TE Haskell: Dynamic semantics – Concurrent evaluation.

perform the appropriately labelled transition, yielding an observable action. The

IOMyThreadId rule returns the thread identifier of the active thread.

The rule IOFork creates a new thread by selecting a fresh thread identifier, which

is returned to the parent thread, and adding a new term to the thread soup.5

The most interesting rule is IOSync. The rule selects some collection of threads

that are prepared to synchronize on transactional events. This set of event values

5 This freshness condition, along with the freshness condition in the EvtNewSChan rule of the
synchronous evaluation relation, could be formalized by a concurrent evaluation relation of the

form Θ;K;T a−→ Θ′;K′;T ′, where Θ is a set of allocated thread identifiers and K is a set of allocated
channel names.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 667

is passed to the synchronous evaluation relation, which takes multiple transitions to

yield a terminal configuration in which all events are reduced to alwaysEvt events.

That is, the set of events successfully synchronizes to final results. The results of

synchronization are moved from the Evt computation back to the IO computation.

There are two interesting facets of the IOSync rule. The first is that the concurrent

transition has a silent action. Hence, synchronization itself is not observable, though

it may unblock a thread so that subsequent I/O actions are observed. Likewise,

individual synchronous evaluation transitions do not yield observable actions.

The second is the fact that multiple synchronous evaluation steps correspond to

a single concurrent evaluation step. Transitions from different threads may be inter-

leaved, but IOSync prevents transitions from different sets of synchronizing events

from being interleaved. Hence, synchronization executes ‘atomically’, although the

synchronization of a single event is not ‘isolated’ from the synchronizations of other

events. (Indeed, it is imperative that multiple events synchronize simultaneously in

order to enable synchronous communication along channels.) Note that the IOSync

rule conveys an all-or-nothing property on transactional event synchronization.

4.3 Discussion

As noted before, we may interpret the synchronous evaluation of events as an

abortable transaction. That is, the synchronization of events must happen atomically

with respect to other synchronizations and I/O actions. Furthermore, the transaction

aborts (with no observable effects) at synchronization failures.

We may also interpret the synchronous evaluation of events as a non-deterministic

search with backtracking. That is, the synchronous evaluation of events is searching

for a successful synchronization. Furthermore, the search must backtrack at synchro-

nization failures (e.g, never events, uncaught exceptions and unmatched send/receive

events).

Both of these interpretations clarify the nature of the all-or-nothing property of

the Evt monad-with-plus. Note that the silence of synchronous evaluation steps

means that we may tentatively evaluate synchronizations, while retaining the ability

to freely abandon the evaluation. We have used the IO monad to ensure that truly

irrevocable (i.e., observable) actions cannot take place during the evaluation of a

synchronization.

4.3.1 Monad laws

It should be clear that the IO type constructor of TE Haskell forms a monad and

the Evt type constructor of TE Haskell forms a monad-with-plus.

The former follows directly from the fact that the IOBindUnit rule captures the

fact that unitIO is a left identity for bindIO and the evaluation context MIO .

Likewise, the fact that the Evt type constructor forms a monad follows from

the EvtBindAlways rule and the evaluation context MEvt. In order to see that

Evt forms a monad-with-plus, we note that the commutativity and associativity of

chooseEvt follows from the rules EvtChoose1 and EvtChoose2.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

668 K. Donnelly and M. Fluet

The monad laws relating to neverEvt all follow from the absence of any rules for

reducing an event with neverEvt, which in turn prohibits any observable IO actions

from following the synchronization on a neverEvt event. From this, we may see

that neverEvt is a left and a right identity for chooseEvt and that neverEvt is a

left and a right zero for thenEvt.

The distribution laws also follow from the all-or-nothing property of event

synchronization. This ensures that the relative ordering of event sequence and

event choice does not affect the outcome of the event synchronization.

4.3.2 Spirit of Concurrent ML

We may also see that TE Haskell preserves the ‘spirit’ of Concurrent ML. Recall from

Section 2.1 that we often want to implement a protocol consisting of a sequence of

communications: c1;c2;. . .;cn. The thenEvt combinator of TE Haskell obviates the

need to distinguish one communication ci as the commit point (and the complication

of a protocol that must be robust against failures in the communications c1;. . .;ci−1

and ci+1;. . .;cn).6

Instead, we may implement the protocol as a sequence of communications using

the thenEvt combinator to ensure that all of the communications synchronize or

none of them synchronize. When this protocol participates in selective communica-

tion, it will be chosen only if all of the communications are able to synchronize with

corresponding communications in other synchronizing threads.

4.3.3 Sophisticated transactional concepts

We may also compare TE Haskell’s treatment of event synchronization as a

transaction to more sophisticated transactional concepts in the literature. One such

concept is that of nested transactions (Moss, 1985): a top-level transaction is divided

into a number of child transactions; child transactions must commit before their

parent transaction, but child transactions that abort need not abort their parent

transaction. Effects of parent transactions are visible to their child transactions, but

effects of child transactions are visible to their parent transaction only after the child

commits. Transactional events naturally express nested transactions via the thenEvt

and chooseEvt combinators: these events only synchronize if the appropriate

constituent events synchronize; furthermore, the inability of one alternative in a

chooseEvt to synchronize does not make the chooseEvt unable to synchronize – it

may synchronize via the other alternative.

Another such concept is that of multi-threaded transactions: a top-level transac-

tion may spawn threads within the transaction; all spawned threads must complete

(and commit) before the top-level transaction may commit. The semantics of TE

Haskell given in this section does not allow any I/O actions to take place during an

event synchronization; in particular, it is not possible to fork new threads as part of

6 Nonetheless, one may still implement a sequence of communications with a dedicated commit point;
see Section 5.2.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 669

an event synchronization. Hence, as formulated, TE Haskell prohibits the expression

of this sort of multi-threaded transaction.7

The separation of I/O actions from event synchronization is motivated by a

desire to ensure that truly irrevocable (i.e., observable) actions cannot take place

during event synchronization. Forking a thread only has an observable effect when

the forked thread takes an observable action; recall that the IOFork rule has a

silent action. Hence, it should suffice to ensure that threads spawned within an

event synchronization cannot take observable actions until the synchronization can

successfully complete. At the same time, spawned threads should interact in a non-

trivial manner with the event synchronization, else there is little reason to spawn

them within an event synchronization.

We believe that the following proposal could form the basis of a coherent account

of multi-threaded transactions in the context of transactional events. We extend the

set of transactional event combinators with a combinator to spawn a thread as a

synchronization action:

forkEvt :: Evt a -> (a -> IO ()) -> Evt ThreadId

The idea is that forkEvt evt f spawns a thread to synchronize on evt, and, upon

successful synchronization with result r, the spawned thread goes on to act as f r.

The spawnee is required to synchronize in the same synchronization group as the

spawner; that is, the spawnee is only allowed to persist if the spawner successfully

synchronizes. We may think of this as the spawner and the spawnee having an

implicit communication dependency, which ensures that the two synchronizations

commit or abort together. The expression forkEvt evt (\() -> return ()) cor-

responds to the special case when the spawned thread immediately terminates after

synchronization, which is closer to the account of multi-threaded transactions given

earlier. We hope to formalize and elaborate on this proposal in future work.

5 Expressiveness

In this section, we explore the expressiveness of TE Haskell by demonstrating

how a number of powerful concurrency abstractions may be encoded. We begin

by discussing an implementation of the guarded-receive abstraction (Section 5.1).

It should come at no surprise that we may easily encode CML (Section 5.2).

Interestingly, we may also easily encode transactional shared memory (Section 5.3).

Next, we demonstrate that TE Haskell is strictly more powerful than CML by

encoding an abstract three-way rendezvous operation (Section 5.4). Finally, we show

that scheduling of transactional events is NP-hard by encoding boolean satisfiability

(Section 5.5).

Throughout this section, we will make extensive use of Haskell’s do-notation for

monadic computations.

7 On the other hand, a different sort of multi-threaded transaction is required: multiple threads must
synchronize simultaneously in order to enable synchronous message passing along channels.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

670 K. Donnelly and M. Fluet

5.1 Guarded receive

The transactional nature of events in TE Haskell admits the implementation of

useful synchronous operations and abstractions that cannot be constructed in CML.

One example of a synchronization operation that is enabled by transactional events

is guarded (or conditional) receive: the receipt of a message on a channel only

if the message satisfies a boolean guard. Several message passing languages and

formalisms, including Erlang (Armstrong et al., 1996) and CSP (Hoare, 1978),

support some form of guarded receive.

In TE Haskell we can add guarded receive to channel communications by modi-

fying only the receiver’s code. This can be done neither in CML nor for synchronous

communication in STM Haskell. This section shows that the use of transactional

events can result in simpler and more modular implementations of synchronous abs-

tractions, like guarded receive, than can be achieved with CML’s primitives alone.

In TE Haskell, it is a simple matter to write a function that creates an event to

perform a guarded receive:

grecvEvt :: (a -> Bool) -> SChan a -> Evt a

grecvEvt g ch = do { x <- recvEvt ch

; if g x then return x

else neverEvt }

This new synchronous operation can now be freely composed, either sequentially

(with thenEvt) or alternatively (with chooseEvt), with other synchronous opera-

tions. For example, the event that chooses between receiving a tuple whose first

element is 0 and one whose first element is 1 can be written as follows:

(grecvEvt (\(x,y) -> x = 0) ch)

`chooseEvt`

(grecvEvt (\(x,y) -> x = 1) ch)

This synchronous abstraction cannot be implemented in CML because as soon

as a receive is performed, the sending thread completes its synchronization and

becomes unblocked. There is no way for the receive to be undone and the sending

thread reblocked. It is possible to implement guarded communication using a special

guarded-receive channel abstraction and guarded send and receive operations, having

the following signature:

signature GUARD_CHAN = sig

type a gchan

val gchan : unit -> a gchan

val gsend : (a gchan * a) -> unit

val grecv : (a -> bool) * a gchan -> a

end

This approach is much less modular because guarded receive can only be performed

with the cooperation of the sender. Also, as discussed in Section 2.2, the guarded

send and receive operations cannot be implemented as well-behaved CML events

that compose with non-deterministic choice; note that the result type of gsend and

grecv are unit and a, rather than unit event and a event.

Unlike the CML version, the TE Haskell implementation of guarded receive is

also kill-safe (Flatt & Findler, 2004): if the reading thread is killed and the event

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 671

synchronization is aborted, then the program state is kept consistent. In addition,

threads performing a guarded receive can condition the receipt on arbitrary, possibly

non-terminating, predicates without interfering with other threads that may wish to

read on the channel. Achieving these properties with a CML implementation, while

possible, requires an additional layer of complexity in the implementation.

5.2 Encoding Concurrent ML

5.2.1 Simple CML

We first consider a simple CML encoding, making two relatively minor changes

to the semantics. First, we only consider a binary choose combinator. Second, we

omit the withNack combinator. (Since we will shortly show that withNack may be

implemented as a stylized use of the other CML combinators, there is no loss of

expressive power.)

Recall that functions in Standard ML and Concurrent ML may have arbitrary

side-effects, including synchronization and I/O. One way to interpret this fact is to

consider that Standard ML functions evaluate in a ‘built-in’ I/O monad. While a

general translation from a language with imperative I/O to a language with monadic

I/O is beyond the scope of this paper (but is a well-understood problem (Moggi,

1991)), we note that the general idea is to translate a function with side-effects of

the type τ1 -> τ2 to a function of the type τ1 -> IO τ2.

Recall that the guard and wrap primitives of CML add arbitrary pre- and post-

synchronization actions to an event. We may encode this by interpreting a CML

event as a pre-synchronization IO action that yields an Evt value that in turn yields

a post-synchronous IO action:

type CMLEvt a = IO (Evt (IO a))

There is a trivial lifting from Evt values to CMLEvt values8:

lift :: Evt a -> CMLEvt a

lift evt = return (fmap return evt)

The encodings of the CML combinators are given in Figure 5. We use lift to

coerce the simple event combinators into the CMLEvt type. Note the manner in which

syncCML performs the ‘outer’ IO action, then performs the synchronization of the

Evt value, then performs the ‘inner’ IO action.

5.2.2 Acknowledgement variables

Before giving an encoding for CML with the withNack combinator, we present a

simple acknowledgement variable abstraction (see Figure 6). An acknowledgement

8 In the lifting function and the encodings, we make use of the fmap and join operations, which may
be defined as follows, for any monad:

fmap :: Monad m => (a -> b) -> m a -> m b
fmap f m = do { x <- m ; return (f x) }

join :: Monad m => m (m a) -> m a
join mm = do { m <- mm ; x <- m ; return x }

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

672 K. Donnelly and M. Fluet

alwaysCMLEvt :: a -> CMLEvt a

alwaysCMLEvt x = lift (alwaysEvt x)

wrapCMLEvt :: CMLEvt a -> (a -> IO b) -> CMLEvt b

wrapCMLEvt io_evt_io f = fmap (fmap (>>= f)) io_evt_io

guardCMLEvt :: IO (CMLEvt a) -> CMLEvt a

guardCMLEvt io_io_evt_io = join io_io_evt_io

neverCMLEvt :: CMLEvt a

neverCMLEvt = lift (neverEvt)

chooseCMLEvt :: CMLEvt a -> CMLEvt a -> CMLEvt a

chooseCMLEvt io_evt_io1 io_evt_io2 =

do { evt_io1 <- io_evt_io1

; evt_io2 <- io_evt_io2

; return (evt_io1 `chooseEvt` evt_io2) }

recvCMLEvt :: SChan a -> CMLEvt a

recvCMLEvt ch = lift (recvEvt ch)

sendCMLEvt :: SChan a -> a -> CMLEvt ()

sendCMLEvt ch x = lift (sendEvt ch x)

syncCML :: CMLEvt a -> IO a

syncCML io_evt_io =

do { evt_io <- io_evt_io

; io <- sync evt_io

; io }

Fig. 5. Simple CML encoding.

variable is a variable that may be asynchronously enabled and that may be

synchronously queried, blocking synchronizations until the variable is enabled. Since

an acknowledgement variable may not be disabled, note that there is no harm in

enabling an acknowledgement variable multiple times.

The abstraction is quite simple to implement. An acknowledgement variable is

simply a channel carrying (). Creating a new acknowledgement variable amounts to

creating a new channel. Enabling an acknowledgement variable requires spawning a

thread that repeatedly sends () along the channel. The event value for synchronizing

on an acknowledgement variable is the receive event.

5.2.3 Full CML

To encode the withNack combinator of CML, we simply augment the ‘outer’ IO

action with a list of the acknowledgement variables created for constituent withNack

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 673

type AckVar = SChan ()

newAckVar :: IO AckVar

newAckVar = sync newSChan

setAckVar :: AckVar -> IO ()

setAckVar a =

let loopIO = do { sync (sendEvt a ()) ; loopIO } in

do { forkIO loopIO ; return () }

getAckVarEvt :: AckVar -> Evt ()

getAckVarEvt a = recvEvt a

Fig. 6. Acknowledgement variable implementation.

events and augment the Evt action with a list of the acknowledgement variables to

enable:

type CMLEvt a = IO ([AckVar], Evt ([AckVar], IO a))

As before, there is a lifting from Evt values to CMLEvt values:

lift :: Evt a -> CMLEvt a

lift evt = return ([], fmap (x -> ([], return x)) evt)

which may be used to encode alwaysCMLEvt, neverCMLEvt, recvCMLEvt and

sendCMLEvt. Similarly, the encoding of wrapCMLEvt simply augments the post-

synchronous action, without changing the acknowledgement variables:

wrapCMLEvt :: CMLEvt a -> (a -> IO b) -> CMLEvt b

wrapCMLEvt io_evt_io f =

fmap (\(acks, evt_io) -> (acks, fmap (\(acks, io) -> (acks, io >>= f))

evt_io))

io_evt_io

More interesting is the encoding of withNackCMLEvt:

withNackCMLEvt :: (CMLEvt () -> IO (CMLEvt a)) -> CMLEvt a

withNackCMLEvt f =

do { ack <- newAckVar

; let io_io_evt_io = f (lift (getAckVarEvt ack))

; (acks, evt_io) <- join io_io_evt_io

; return (ack:acks, evt_io) }

A new acknowledgement variable is created and provided to the function f, which

(after performing arbitrary side effects) returns an IO action yielding a list of

acknowledgement variables and an event value. The new acknowledgement variable

is added to the list of acknowledgement variables and the event value is returned

unmodified.

The chooseCMLEvt combinator must combine the created acknowledgement

variables of each event and also add the created acknowledgement variables from

one event to the to-be-enabled acknowledgement variables of the other event, and

vice versa:

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

674 K. Donnelly and M. Fluet

chooseCMLEvt :: CMLEvt a -> CMLEvt a -> CMLEvt a

chooseCMLEvt iei1 iei2 =

do { (acks1, ei1) <- iei1 ; (acks2, ei2) <- iei2

; (fmap (\(acks, i) -> (acks2 ++ acks, i)) ei1)

`chooseEvt`

(fmap (\(acks, i) -> (acks1 ++ acks, i)) ei2) }

The encoding of syncCML performs the ‘outer’ IO action, discards the created

acknowledgement variables, performs the event synchronization, enables the appro-

priate acknowledgement variables and finally performs the ‘inner’ IO action:

syncCML :: CMLEvt a -> IO a

syncCML io_evt_io =

do { (_, evt_io) <- io_evt_io

; (acks, io) <- sync evt_io

; loopAckVar acks

; io }

where loopAckVar [] = return ()

loopAckVar (ack:acks) = do { setAckVar ack

; loopAckVar acks }

Note that the sequencing in the IO monad ensures that the ‘inner’ IO action of the

event encoding is performed after all of the acknowledgement variables have been

enabled.

5.2.4 Discussion

There is an interesting consequence of this encoding of Full CML. Note that the

encoding only makes use of thenEvt through the fmap operation. Furthermore,

note that when fmap (in the Evt monad) is applied to a pure, terminating function

(as it is in all of the functions defined earlier), then CML’s wrap combinator provides

essentially the same functionality. This suggests that neither withNack nor guard

need be taken as primitive operations in CML; rather they may be expressed as a

stylized use of the other primitive CML operations. This simplifies both the meta-

theory of CML and the implementation of CML, without changing the expressive

power of CML.

This ‘reverse encoding’ requires recognizing that the above use of Haskell’s IO

monad for pre- and post-synchronization actions may be approximated by thunks

in Standard ML. It is straightforward to apply this idea to give an implementation

of the complete set of CML combinators (i.e., including withNack and guard) using

only a primitive set of CML combinators (i.e., excluding withNack and guard).

In future, we hope to experiment with an implementation of CML following this

approach and measure the performance. While the extra closure creation may incur

a performance penalty, the implementation of the primitive combinators will be

simpler and possibly faster. We also note that since the primtive wrap combinator is

only applied to pure, terminating functions, then one need not be pessimistic about

their behavior; in particular, it is not strictly necessary to run the post-synchronous

functions passed to the primitive wrap combinator outside of critical regions.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 675

5.3 Encoding transactional shared memory

It is well known that synchronous message passing may be used to implement

shared memory. For instance, there are canonical encodings of mutable variables in

CML (Sections 3.2.3 and 3.2.7 of Reppy, 1999). Since transactional events extend

CML synchronizations with an all-or-nothing transactional property, an interesting

question is whether or not we may encode shared memory transactions in TE

Haskell. This section demonstrates such an encoding.

We take as our starting point the software transactional memory (STM) extension

of Concurrent Haskell (Harris et al., 2005b). STM Haskell provides a monadic type

(STM a) that denotes an atomic memory transaction and a type (TVar a) that

denotes a transactional variable, along with the following interface:

newTVar :: a -> STM (TVar a)

readTVar :: TVar a -> STM a

writeTVar :: TVar a -> a -> STM ()

atomic :: STM a -> IO a

unitSTM :: a -> STM a

bindSTM :: STM a -> (a -> STM b) -> STM b

retrySTM :: STM a

orElseSTM :: STM a -> STM a -> STM a

The STM a type represents computations that access transactional variables. An

STM a computation may be passed to atomic, which returns an IO a action

that, when performed, runs the transaction atomically with respect to all other

memory transactions. The retrySTM operation aborts a transaction and the orElse

operation selects (with left bias) between transactions. Hence, STM a forms a (non-

commutative) monad-with-plus.

There are obvious connections between STM Haskell and TE Haskell. Both use an

‘outer’ IO monad to sequence observable, irrevocable effects and both use an ‘inner’

monad to encapsulate thread interactions in a manner that ensures that the effect of

those interactions is not visible until the interaction executes with a consistent view.

Our encoding of the STM monad-with-plus makes three relatively minor changes to

the semantics. First, in order that orElse may be more easily encoded by chooseEvt,

we eliminate the left bias. Second, our encoding is in the spirit of previous encodings

of mutable variables, whereby a server thread maintains the state of the variable and

services requests to get or set the variable’s contents. Hence, creating a new mutable

variable requires spawning a new thread. Therefore, in our implementation, we give

newTVar the type a -> IO (TVar a), which is a consequence of the fact that forking

a thread must occur in the IO monad.9 Finally, the semantics of uncaught exceptions

are slightly different. Nonetheless, we feel that this encoding is well within the spirit

of transactional memory and demonstrates the expressibility of TE Haskell.

Figure 7 gives the encoding, which we discuss in some detail. The high-level

view of the encoding is quite simple. Recall that each transactional variable will

9 Using the forkEvt combinator proposed in Section 4.3.3, we could avoid making this change and give
newTVar the type a -> STM (TVar a).

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

676 K. Donnelly and M. Fluet

type STM a = Evt a

atomic = sync

unitSTM = alwaysEvt

bindSTM = thenEvt

retrySTM = neverEvt

orElseSTM = chooseEvt

type TVar a = (SChan ThreadId, SChan a, SChan a)

readTVar (tch, rch, wch) =

do { tid <- myThreadIdEvt

; sendEvt tch tid

; readEvt rch }

writeTVar (tch, rch, wch) x =

do { tid <- myThreadIdEvt

; sendEvt tch tid

; sendEvt wch x }

newTVar :: a -> IO (TVar a)

newTVar x =

do { tch <- sync newSChan

; rch <- sync newSChan

; wch <- sync newSChan

; let serve x =

do { tid <- recvEvt tch

; x’ <- (do { sendEvt wch x

; alwaysEvt x })

`chooseEvt`

(recvEvt rch)

; return (tid , x) }

; let loopEvt tid x =

(do { (tid , x) <- serve x

; if tid /= tid

then neverEvt

else loopEvt tid x })

`chooseEvt`

(alwaysEvt x)

; let loopIO x =

do { x <- sync (do { (tid , x) <- serve x

; loopEvt tid x })

; loopIO x }

; forkIO (loopIO x)

; return (tch, rch, wch) }

Fig. 7. Transactional shared memory encoding.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 677

be represented by a server thread. A thread wishing to read or write transactional

variables sends its thread identifier to the server thread. If a server thread receives the

thread identifier of a second thread while the first thread’s transaction is incomplete,

it aborts the transaction (by synchronizing on neverEvt). Hence, a thread completes

its atomic transaction if and only if it is the only thread to communicate with those

transactional variables accessed during the transaction.

From the description given earlier, it is clear that we may take the encoding of the

STM a type to be the Evt a type. From this definition, the encoding of the simple

monadic operations follows directly. However, we must also provide the thread

identifier at each read or write of a transactional variable, which may be obtained

using myThreadIdEvt.

A transactional variable is represented as a tuple of three channels: a thread

identifier channel (tch), a read channel (rch) and a write channel (wch). When a

thread in an atomic transaction wishes to read from a transactional variable, it sends

its thread identifier along tch and then receives from rch. Similarly, when a thread

wishes to write to a transactional variable, it sends its thread identifier along tch

and then sends the new value along wch.

All of the interesting action happens in the thread that services a transactional

variable, which is spawned when a transactional variable is created. The server

thread is comprised of two nested loops: loopIO and loopEvt. The loopIO is an

IO computation that carries the state of the variable between atomic transactions.

The loopEvt is an Evt action that carries the state of the variable through a single

atomic transaction. The serve function is an Evt computation that services a single

read or write of the variable, returning the new value of the variable and the thread

identifier of the thread that it serviced. The synchronization within loopIO first

services a single read or write, which establishes the identifier of a thread that wishes

to atomically access this variable, and then enters the loopEvt. The synchronization

described by loopEvt chooses between servicing another request and completing

the synchronization by returning the final value of the variable. If the loopEvt

services another request, it further verifies that the serviced thread is the same as

the thread that first accessed the variable. If the serviced thread differs, then the

loopEvt transitions to a neverEvt. Since neverEvt may never appear in a ‘good’

terminal configuration for the synchronization of a set of events, such a transition

will never be taken during a successful synchronization. Hence, only a single thread

will access the variable during a transaction.

Note that when a thread performs atomic, all of the server threads for the

variables it accesses are required to synchronize. Furthermore, the encoding has a

progress guarantee: if there are two STM computations which could each commit in

isolation given the current state of shared TVars, then at least one will successfully

commit if they are run concurrently. This property follows from the fact that the

semantics of TE Haskell requires a successful synchronization to be found if one

exists – and such a synchronization does exist, namely, the one where each server

thread communicates with same STM computation.

Finally, we note that this encoding simulates the high-level operational behavior

of transactional shared memory, but not the low-level run-time artifacts commonly

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

678 K. Donnelly and M. Fluet

found in implementations. For example, there is no explicit transaction log and

there are no explicit abort or commit operations. Rather, validation of a serializble

transaction is distributed throughout the synchronization, via the comparison of

thread identifiers by the server threads. Aborts are implicit in the transition of

a server thread to a neverEvt (indicative of non-serializable accesses by different

threads), which prevents a successful synchronization. Similarly, commits are implicit

in a successful synchronization.

5.4 Encoding three-way rendezvous

The previous sections have demonstrated that TE Haskell is as expressive as CML

and transactional shared memory. A second question is whether TE Haskell is more

expressive than CML.

One of the fundamental results about the expressivity of CML is the following

theorem:

Theorem 1 (CML expressivity)

Given the standard CML event combinators and an n-way rendezvous base-event

constructor, one cannot implement an (n + 1)-way rendezvous operation abstractly

(i.e., as an event value). (Section 6.4 of Reppy 1999).

For CML, which provides two-way rendezvous primitives (sendEvt and recvEvt),

this means that it is impossible to construct an event-valued implementation of

three-way rendezvous.

TE Haskell is strictly more expressive than CML.

Theorem 2 (TE Haskell expressivity)

Given the standard transactional event combinators and an n-way rendezvous base-

event constructor (with n > 1), one can implement an (n + 1)-way rendezvous

operation abstractly.

We demonstrate this theorem (for the case n = 2, though the theorem holds in

general) by providing an implementation of three-way rendezvous, using the two-

way rendezvous primitives sendEvt and recvEvt (see Figure 8).

Our three-way rendezvous example is the triple-swap channel. This type of channel

allows three threads to swap values when they synchronize; each thread offers a

value and each thread accepts the two values offered by the other two threads. Note

that we require each thread to be matched with precisely two other threads; if more

than three threads attempt to swap on the same triple-swap channel at roughly the

same time, it should not be the case that values are swapped amongst more than

three threads.

A value of type TriSChan a is implemented as a channel carrying pairs of a value

(of type a) and a reply channel (of type SChan (a,a)). Hence, the newTriSChan

action simply creates a new channel.

More interesting is the implementation of the swapEvt action. A thread that

swaps on a channel non-deterministically chooses between acting as a client or as a

leader in the exchange protocol. A client thread creates a new reply channel, sends

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 679

type TriSChan a = SChan (a, SChan (a, a))

newTriSChan :: Evt (TriSChan a)

newTriSChan = newSChan

swapEvt :: TriSChan a -> a -> Evt (a, a)

swapEvt ch x1 = client `chooseEvt` leader

where client = do { replyCh <- newSChan

; sendEvt ch (x1, replyCh)

; recvEvt replyCh }

leader = do { (x2, replyCh2) <- recvEvt ch

; (x3, replyCh3) <- recvEvt ch

; sendEvt replyCh2 (x3, x1)

; sendEvt replyCh3 (x1, x2)

; alwaysEvt (x2, x3) }

Fig. 8. The TriSChan abstraction.

its value and reply channel along the triple-swap channel and then receives the

two other values along the reply channel. A leader thread receives the values and

reply channels from two client threads, sends the appropriate pairs of values along

the reply channels and returns the appropriate pair of values as the result of the

synchronization.

It is worth noting the reason that the above implementation does not suffice for

CML. The fundamental difficulty is that (from the client’s point of view) the protocol

requires two communications to accomplish the exchange. However, in CML, one of

these communications must be chosen as the commit point for the protocol. Taking

the first communication as the commit point does not suffice, as the client thread

may rendezvous with the leader (successfully synchronizing on the commit point),

but then block waiting for another thread to complete the swap. Taking the last

communication as the commit point does not suffice when the event is in a choose

combinator, as the client may perform the first communication (thereby enabling a

leader thread and another client thread to swap) but then fail to rendezvous at the

second communication, by taking another alternative in the choose. This breaks

the abstraction, because the other two threads cannot know that the thread received

their swap values.

This implementation may be easily extended to arbitrary n-way synchronization,

for any fixed or dynamic n. For the dynamic case, we have the following interface:

type NWaySChan a

newNWaySChan :: Int -> Evt (NWaySChan a)

swapEvt :: NWaySChan a -> a -> [a]

where newNWaySChan n yields a synchronous channel for swapping among n threads.

With this interface, we may easily encode first-class synchronization barriers (Turbak,

1996).

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

680 K. Donnelly and M. Fluet

5.5 Boolean satisfiability

In this section, we show that the problem of deciding whether the IOSync rule can be

applied to a given set of synchronizing events is NP-hard by encoding the boolean

satisfiability problem. Boolean satisfiability (SAT) is the problem of determining

whether there exists a satisfying assignment to a classical propositional formula in

n variables and is NP-complete. Encoding of SAT using chooseEvt is completely

straightforward. However, the problem is NP-hard for the case of three or more

transactions even if we exclude the use of chooseEvt.

To show this, we give two encodings of boolean satisfiability. The first encoding

uses three transactional events, none of which use the chooseEvt combinator,

and is exponential in the number of possible communications over a particular

channel. The second encoding requires only one transactional event, which does

not use the communication combinators, and is exponential in the number of

chooseEvt combinators. These encodings show that implementing transactional

events inherently requires combinatorial search, and that there are at least two

sources of such behavior: determining which branch of a chooseEvt to take, and

determining how to match senders and receivers on a channel.

We assume an abstract data type Formula of boolean formulas in n variables

numbered 0 through n − 1 and a function

evalFormula :: [Bool] -> Formula -> Bool

which, given a list of booleans of length n and a formula of at most n variables,

decides the truth of the formula where the ith variable is replaced by the ith boolean

in the list. Each encoding of SAT is given as a function

sat :: Int -> Formula -> IO ()

that takes an integer n and a formula in at most n variables; the function prints

‘Satisfiable’ if there exists a satisfying assignment and prints nothing otherwise. The

first encoding is given by

sat n formula =

do { c <- sync newSChan

; forkIO (sync (mapM_ (_ -> sendEvt c True) [1..n]))

; forkIO (sync (mapM_ (_ -> sendEvt c False) [1..n]))

; sync (do { input <- mapM (_ -> recvEvt c) [1..n]

; mapM_ (_ -> recvEvt c) [1..n]

; let success = evalFormula input formula

; if success then alwaysEvt () else neverEvt })

; putStrLn "Satisfiable" }

The encoding works by creating a channel c, and spawning two threads running

transactional events. One of these events sends n messages with value True over c,

and the other sends n messages with value False over c. The main thread then reads

n messages from c, saving the values in the list input and then reads and discards

n more messages. The manner in which communications are matched determines

the assignment of booleans to elements of the list input, and every assignment is

possible. This encoding shows the following theorem.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 681

Theorem 3 (Communication matching is NP-hard)

Given three synchronizing events S = {〈θ1, e1〉, 〈θ2, e2〉, 〈θ3, e3〉} such that e1, e2

and e3 share a common channel and e1, e2 and e3 do not use the chooseEvt

combinator, the problem of finding a sequence of synchronous evaluation steps

S �∗ {〈θ1, alwaysEvt e′
1〉, 〈θ2, alwaysEvt e′

2〉, 〈θ3, alwaysEvt e′
3〉} is NP-hard.

When we allow uses of chooseEvt, the problem becomes NP-hard even for just

a single thread that makes no communications. In this case, we can encode boolean

satisfiability with

sat n formula =

do { sync (do { input <- mapM (_ -> (alwaysEvt False)

`chooseEvt`

(alwaysEvt True)) [1..n]

; let success = evalFormula input formula

; if success then alwaysEvt () else neverEvt })

; putStrLn "Satisfiable" }

This program uses chooseEvt to non-deterministically construct a list of booleans,

and checks if the list corresponds to a satisfying assignment. This encoding implies

the following, fairly unsurprising, theorem.

Theorem 4 (Non-deterministic choice is NP-hard)

Given a synchronizing event S = {〈θ, e〉} such that e uses no communication

combinators, the problem of finding a sequence of synchronous evaluation steps

S �∗ {〈θ, alwaysEvt e′〉} is NP-hard.

These results show that the expressiveness of transactional events comes at a high

cost; any implementation of transactional events must be able to solve NP-hard

problems. On the other hand, not every event synchronization requires a search

through a space of exponential size. While CML-like (i.e., single communication)

transactional events can be synchronized efficiently, we cannot hope to have an

implementation that efficiently synchronizes a large number of relatively long trans-

actional events that communicate on a relatively large set of channels. Therefore,

programmers ought to keep this in mind and, as much as possible, keep their

transactions short and communicating on disjoint channels. Furthermore, many

useful transactional-event idioms (e.g., guarded receive, triple-swap channels) seem

to have these properties.

6 Implementation

In this section, we describe an implementation of transactional events.10 While

we make no claims that this implementation is optimal, we believe that it has

a number of attractive properties. First, the entire implementation is written in

Haskell, using the STM extensions of Concurrent Haskell (Harris et al., 2005b)

available in GHC (Glasgow Haskell Compiler, 2006).11 Hence, the implementation

10 The implementation may be obtained at http://journals.cambridge.org/issue Journalof
functionalprogramming/Vol18No5-6.

11 Note, however, that the implementation of transactional events using STM is significantly more
involved than the encoding of transactional shared memory using transactional events given in
Section 5.3.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

682 K. Donnelly and M. Fluet

required no changes to the Haskell compiler or run-time system. Furthermore, the

implementation may take advantage of recent developments that have extended

GHC to execute Haskell (with STM) on shared-memory multiprocessors (Harris

et al., 2005a). Second, we may see from the implementation (and from knowledge of

the underlying implementation of STM) that transactional events do not require a

global lock to coordinate the synchronization of communicating threads. Hence,

the synchronization of threads will not (unduly) impact the progress of non-

synchronizing threads; similarly, the synchronization of one group of threads will

not impact the progress towards the synchronization of another independent group

of threads.

It should come as no surprise that the major stumbling block in implementing

TE Haskell is how to effectively implement the IOSync rule of Figure 4. A näıve

interpretation of this rule requires an implementation to omnisciently choose, up

front, a set of synchronizing threads and a sequence of synchronous evaluation

transitions, which may be arbitrarily long. A semantics that is more readily seen

to have a viable implementation is one where the choice of threads and evaluation

transitions in a synchronization may be delayed.

6.1 Unsuitable implementation strategies

Before describing our implementation, it is instructive to understand why some

seemingly natural implementation strategies are unsuitable for transactional events.

We have motivated the semantics of transactional events by suggesting that an

event synchronization takes place in a transaction that can be aborted if it does

not successfully complete; such a view aligns well with the idea of delaying the

choice of threads and evaluation transitions in a synchronization. Hence, one

might consider directly applying techniques for implementing transactional shared

memory (Grossman, 2006) to the problem of implementing transactional events.

One approach to implementing transactional shared memory is to control the

thread scheduler so that the atomicity and isolation of a transaction is ensured

(Manson et al., 2005; Ringenburg & Grossman, 2005). A block of code to be executed

as a transaction runs without locking and accumulates a thread-local log that records

every memory write. The log is used to revoke the effects of an uncompleted trans-

action that is interrupted by thread pre-emption; the transaction is retried when the

thread is rescheduled. This approach makes the optimistic assumption that transac-

tions will rarely be pre-empted, because transactions generally execute quickly.

Another popular approach to implementing transactional shared memory is to

have each transaction compute using a private version of memory and then reflect

changes back to shared memory using an optimistic synchronization protocol (Shavit

& Touitou, 1997; Harris & Fraser, 2003; Harris et al., 2005b). A block of code

to be executed as a transaction runs without locking and accumulates a thread-

local log that records every memory read and write. When the block completes,

it attempts to validate the log. If the log is consistent with the current state of

shared memory, the block (atomically) commits the logged changes to memory; if

the log is inconsistent with the current state of shared memory (because another

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 683

thread has committed changes to memory read from or written to by this block),

then the log is discarded and the transaction is re-executed. This approach makes

the optimistic assumption that transactions will rarely have an inconsistent view of

memory, because transactions generally access disjoint memory.

Yet another approach to implementing transactional shared memory is to have

each transaction access shared memory using locks and to use a rollback mechanism

to avoid deadlock (Adl-Tabatabai et al., 2006; Harris et al., 2006; Hindman &

Grossman, 2006). A block of code to be executed as a transaction runs with locking

for memory writes and accumulate a thread-local log that records the original value

at every memory write. The log is used to revoke the effects of an aborted transaction.

Locking for memory reads leads to eager conflict detection, while validating memory

reads when the block completes leads to lazy conflict detection. As with the previous

approach, this approach makes the optimistic assumption that transactions will

rarely block trying to acquire a lock, because transactions generally access disjoint

memory.

Under all of these approaches, one might imagine that a channel could be

implemented as a mutable reference, so that channel sends and receives are logged

(in an appropriate manner). A transactional event that sends and receives values

from multiple channels would simply ensure that the reads and writes occur within

the same transaction. Unfortunately, such an implementation does not suffice, since

a (traditional) transaction does not encompass the execution of multiple threads,

which is required to handle the synchronous nature of communication.

One might also imagine extending these approaches in the following manner.

Upon executing a synchronization, a thread enters a transaction and accumulates a

thread-local transaction log that records every memory read and write. When two

synchronizing threads communicate via message passing, each of the threads must

be in a transaction and the communication entails the ‘merging’ of their transaction

logs; the two synchronizing threads now commit or abort together. Since a thread

may communicate with more than one other thread during a transactional event

synchronization, a single synchronization transaction log may be the result of

‘merging’ the transaction logs of many synchronizing threads; this single transaction

log governs the entire set of synchronizing threads, so that they commit or abort

together. A set of synchronizing threads commits if they all evaluate to alwaysEvt e′
events with a consistent log, while they abort if one (or more) evaluate to a neverEvt

event, an uncaught exception, or an unmatched communication event, or if the log

is determined to be inconsistent.

While the implementation described below will share some passing resemblance

to this scheme, using a single transaction log for a set of synchronizing threads does

not satisfactorily suggest a means of handling the non-determinism in transactional

event synchronization. Non-determinism arises from uses of chooseEvt and from

uses of communication events, whereby a sender is non-deterministically matched

with a receiver.

As was noted earlier, techniques for implementing transactional shared memory

take advantage of optimistic assumptions about the nature of shared memory

transactions to run without locking, eagerly reading from shared memory, and to

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

684 K. Donnelly and M. Fluet

rarely re-execute transactions. One might be tempted to apply a similar optimistic

assumption about the nature of transactional events. For example, one might resolve

non-determinism in transactional event synchronization by randomly selecting an

alternative at uses of chooseEvt and by eagerly matching senders with receivers.

Unfortunately, it is by no means clear that transactional events support this

optimistic assumption. Consider, for example, the triple-swap channel and the

swapEvt from Section 5.4. Recall that each thread that swaps on a channel

non-deterministically chooses between acting as a client or as a leader in the

exchange protocol. In order for three threads to synchronize with a swapEvt on

the same triple-swap channel, exactly two threads must act as clients and exactly

one thread must act as a leader. Hence, an implementation that resolves non-

determinism at uses of chooseEvt by randomly choosing an alternative has only

a 3/8 chance of finding a successful synchronization (without even considering

possible matchings of senders and receivers). Things only get worse if more than

three threads simultaneously attempt to swap on the same channel. Furthermore,

an implementation must determine when to abort a synchronization due to an

unmatched communication and when to allow the synchronization to remain active

waiting for a matching communication.

All of these considerations suggest that we investigate an implementation that

is more systematic in the exploration of chooseEvt alternatives and matchings

of senders and receivers. While an exhaustive search may be necessary in some

instances, we strive to avoid both redundant configurations and configurations

that may never successfully synchronize. In particular, we formulate a necessary

and sufficient condition for a search configuration to correspond to a successful

synchronization; this criterion may be used to prune the search of configurations

that may never successfully synchronize.

Since there is a large gap between the semantics of Section 4 and our implementa-

tion of TE Haskell, we proceed in stages. First, we close the gap by giving a refined

semantics that eliminates the most glaring impediment to implementation. Then, we

discuss how the remaining impediments in the refined semantics are eliminated in

our implementation.

6.2 Refined semantics

In our refined semantics, we distinguish between the concurrent threads of Sec-

tion 4.2.3 and two additional kinds of threads, namely suspended threads and

search threads:

Concurrent Threads T ::= 〈θ, e〉
Suspended and Search Threads S ::= 〈θ,MIO, e〉 | 〈θ, e, ρ〉
Thread Soups P ::= {T , . . . , S , . . .}

Concurrent threads continue to execute according to the rules given in Figure 4,

except that we will shortly revise the IOSync rule. A suspended thread represents a

concurrent thread waiting for the result of synchronizing on a transactional event.

A suspended thread includes the thread identifier, the IO evaluation context and

the transactional event of the original concurrent thread. A search thread represents

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 685

incremental progress towards synchronizing on a transactional event. A search

thread includes the thread identifier of the thread on whose behalf it is searching

for a synchronization, a transactional event to be evaluated and a path recording

the non-deterministic actions of the search thread. A completed search thread is

one where the transactional event has the form alwaysEvt e′. Note that, within a

thread soup, concurrent and suspended threads have unique thread identifiers, but

multiple search threads may share the same thread identifier and each search thread

will share the same thread identifier with a suspended thread.

A path records the non-deterministic actions made during the evaluation of a

transactional event; in particular, it records the alternative taken at chooseEvt and

the communication partner at sendEvt and recvEvt. A trail, written 〈θ, ρ〉, simply

pairs a thread identifier with a path:

Path Element η ::= Left | Right | Send(〈θr, ρr〉) | Recv(〈θs, ρs〉)
Path ρ ::= • | η:ρ

The path element Left indicates that the first alternative in a chooseEvt was taken,

while the path element Right indicates that the second alternative was taken. The

path element Send(〈θr, ρr〉) indicates that a synchronous message was sent to a

search thread with thread identifier θr and path ρr (θr is the receiver). Similarly, the

path element Recv(〈θs, ρs〉) indicates that a synchronous message was received from

a search thread with thread identifier θs and path ρs (θs is the sender). (Note that

neither the channel nor the message is included in the path element.)

There is a natural partial order on paths.

Definition 1 (Extends)

The path ρa extends the path ρb, written ρa 	 ρb, if ρa is an extension of ρb
(alternatively, if ρb is a suffix of ρa). Formally,

ρa 	 ρb ≡ ∃η1. · · · ∃ηn. ρa = ηn: · · · :η1:ρb

Since the path elements Send(〈θr, ρr〉) and Recv(〈θs, ρs〉) include paths, a single

trail 〈θ, ρ〉 may be seen to represent not only the non-deterministic actions of one

search thread, but also the non-deterministic actions of all search threads that it

communicated with, either directly or indirectly. Thus, a single trail implies a set of

trails upon which it depends.

Definition 2 (Dependencies)

The dependencies of a trail 〈θ, ρ〉, written Dep(〈θ, ρ〉), is the set of trails implied by

the trail. Formally,

Dep(〈θ, •〉) = 〈θ, •〉
Dep(〈θ, Left:ρ〉) = 〈θ, Left:ρ〉 ∪ Dep(〈θ, ρ〉)

Dep(〈θ,Right:ρ〉) = 〈θ,Right:ρ〉 ∪ Dep(〈θ, ρ〉)
Dep(〈θ,Send(〈θr, ρr〉):ρ〉) = 〈θ,Send(〈θr, ρr〉):ρ〉 ∪ {〈θr,Recv(〈θ, ρ):ρr〉}

∪ Dep(〈θ, ρ〉) ∪ Dep(〈θr, ρr〉)
Dep(〈θ,Recv(〈θs, ρs〉):ρ〉) = 〈θ,Recv(〈θs, ρs〉):ρ〉 ∪ {〈θs,Send(〈θ, ρ):ρs〉}

∪ Dep(〈θ, ρ〉) ∪ Dep(〈θs, ρs〉)

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

686 K. Donnelly and M. Fluet

The dependencies at a path element denoting a communication adds a trail in

which the communication partner’s path includes the matching communication.

That is, a search thread θ with path Send(〈θr, ρr〉):ρ indicates that a synchronous

message was sent to a search thread with thread identifier θr and path ρr . Since the

communication is synchronous, then it must be the case that a search thread θr with

path ρr received a synchronous message (from the search thread θ with the path ρ);

hence, there must be a search thread θr with the path Recv(〈θ, ρ〉):ρr .
Note that the dependencies of a trail may include multiple trails with the same

thread identifier. Such dependencies may arise when one synchronizing thread

communicates multiple times with another synchronizing thread, or when one

synchronizing thread communicates with two synchronizing threads which have

themselves communicated with each other. Since the dependencies of a trail represent

a view of the history of a set of search threads, it is reasonable to be interested in

trails that have a consistent view of history.

Definition 3 (Consistent)

The trail 〈θ, ρ〉 is consistent if no thread identifier in the dependencies of 〈θ, ρ〉 is

paired with incomparable paths. Formally,

Consistent(〈θ, ρ〉) ≡ ∀〈θ1, ρ1〉 ∈ Dep(〈θ, ρ〉). ∀〈θ2, ρ2〉 ∈ Dep(〈θ, ρ〉) .
θ1 = θ2 ⇒ (ρ1 	 ρ2 ∨ ρ2 	 ρ1)

An inconsistent trail has a view of history where the same search thread was required

to have performed different sequences of non-deterministic actions. Note that the

definition of a consistent trail is equivalent to the following:

Consistent(〈θ, ρ〉) ⇔ ∀〈θ1, 〉 ∈ Dep(〈θ, ρ〉). ∃ρ1.

〈θ1, ρ1〉 ∈ Dep(〈θ, ρ〉)
∧ ∀〈θ2, ρ2〉 ∈ Dep(〈θ, ρ〉). θ1 = θ2 ⇒ ρ1 	 ρ2

which asserts that for every thead identifier θ1 in the dependencies of a trail there

exists a path ρ1 that extends every path of θ1. The path ρ1 is maximal for θ1, in

the sense that ρ1 extends every path of θ1 in the dependencies. This formulation

of consistency means that the dependencies of a consistent trail may be efficiently

represented by a finite map from thread identifiers to their maximal paths.

In order for a completed search thread to commit, all of its dependencies must

be willing to commit. We formalize this intuition in the definition of a committable

set of trails.

Definition 4 (Committable)

A set of trails {〈θ1, ρ1〉, . . . , 〈θk, ρk〉} is committable if each θi is unique and all

dependencies of each trail are satisfied by the set. Formally,

Committable({〈θ1, ρ1〉, . . . , 〈θk, ρk〉}) ≡
∀i ∈ {1, . . . , k}. ∀j ∈ {1, . . . , k}. i �= j ⇒ θi �= θj
∧ ∀i ∈ {1, . . . , k}. ∀〈θ, ρ〉 ∈ Dep(〈θi, ρi〉).

∃j ∈ {1, . . . , k}. θj = θ ∧ ρj 	 ρ

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 687

Note that a necessary, but not sufficient, condition for a set of trails to be committable

is for each trail to be consistent:

Lemma 5

If a set of trails {〈θ1, ρ1〉, . . . , 〈θk, ρk〉} is committable,

then each trail 〈θi, ρi〉 is consistent.

Hence, we may avoid configurations that may never evolve to a committable

set of search threads by never generating a search thread with an inconsistent

trail.

Figure 9 revises the dynamic semantics of Section 4 to evaluate suspended

and search threads. The single IOSync rule has been replaced by the SyncInit

and SyncCommit rules, while the synchronous evaluation rules dealing with event

expressions have been replaced by rules dealing with search threads.

The SyncInit rule transitions a concurrent thread at a sync e to a suspended

thread and a search thread. The suspended thread records the IO evaluation context

of the concurrent thread and the transactional event. The search thread is initialized

with the transactional event and an empty path.

The SyncCommit rule transitions a set of committable suspended and search

threads to concurrent threads, while also removing all other search threads that

were searching on behalf of the now synchronized concurrent threads. (The notation

P\Θ removes all search threads with a thread identifier in Θ from the thread

soup P .) The concurrent threads are formed out of the IO evaluation context

from the suspended threads and the synchronization results from the search

threads.

The remaining rules deal with the evaluation of search threads, making incremental

progress towards synchronizing on a transactional event. There are straightforward

adaptations of the rules for sequential evaluation of pure terms in a search

thread (EvtEval), propagation of alwaysEvt and throwEvt (EvtThenAlways,

EvtThenThrow, EvtCatchAlways, EvtCatchThrow), channel allocation

(EvtNewSChan) and thread identity (EvtMyThreadId). The EvtChoose rule

transitions a single search thread evaluating a chooseEvt to two search threads

evaluating each of the choice alternatives; note that the paths of the search

threads are extended to record the non-deterministic choice. The EvtNever rule

terminates a search thread attempting to synchronize on a neverEvt. Similarly,

the EvtThrow rule terminates a search thread that evaluates to an uncaught

exception.

The EvtSendRecv rule implements synchronous message passing along a channel.

Note that the search threads corresponding to the sender and receiver remain in

the thread soup to participate in other communications, as there is no guarantee

that this tentative communication will lead to synchronization. While it would be

acceptable to spawn new search threads for any sender/receiver pair on the same

channel, there are some communications for which the resulting search threads may

never commit together. Hence, we only allow communication between coherent

search threads.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

688 K. Donnelly and M. Fluet

[
IOEval, IOBindUnit, IOBindThrow, IOCatchUnit, IOCatchThrow,
IOGetChar, IOPutChar, IOFork, and IOMyThreadId as in Figure 4,
replacing the thread soup T with the thread soup P .

]

SyncInit

P � {〈θ,MIO[sync e]〉} ε−→ P � {〈θ,MIO, e〉, 〈θ, e, •〉}
SyncCommit

Committable({〈θ1, ρ1〉, . . . , 〈θk, ρk〉})
P � {〈θ1,M

IO
1 , e1〉, 〈θ1, alwaysEvt e′

1, ρ1〉, . . . , 〈θk,MIO
k , ek〉, 〈θk, alwaysEvt e′

k, ρk〉}
ε−→ P\{θ1 ,...,θk} � {〈θ1,M

IO
1 [unitIO e′

1]〉, . . . , 〈θk,MIO
k [unitIO e′

k]〉}
EvtEval

e ↪→ e′

P � {〈θ,MEvt[e], ρ〉} ε−→ P � {〈θ,MEvt[e′], ρ〉}
EvtThenAlways

P � {〈θ,MEvt[thenEvt (alwaysEvt e′) ef], ρ〉} ε−→ P � {〈θ,MEvt[ef e′], ρ〉}
EvtThenThrow

P � {〈θ,MEvt[thenEvt (throwEvt e′) ef], ρ〉} ε−→ P � {〈θ,MEvt[throwEvt e′], ρ〉}
EvtNever

P � {〈θ,MEvt[neverEvt], ρ〉} ε−→ P

EvtChoose

P � {〈θ,MEvt[chooseEvt el er], ρ〉} ε−→ P � {〈θ,MEvt[el], Left:ρ〉, 〈θ,MEvt[er],Right:ρ〉}
EvtThrow

P � {〈θ, throwEvt e′, ρ〉} ε−→ P

EvtCatchAlways

P � {〈θ,MEvt[catchEvt (alwaysEvt e′) eh], ρ〉} ε−→ P � {〈θ,MEvt[alwaysEvt e′], ρ〉}
EvtCatchThrow

P � {〈θ,MEvt[catchEvt (throwEvt e′) eh], ρ〉} ε−→ P � {〈θ,MEvt[eh e′], ρ〉}
EvtNewSChan

κ′ fresh

P � {〈θ,MEvt[newSChan], ρ〉} ε−→ P � {〈θ,MEvt[alwaysEvt κ′], ρ〉}
EvtSendRecv

Coherent(〈θs, ρs〉, 〈θr, ρr〉)
P � {〈θs,MEvt

s [sendEvt κ e], ρs〉, 〈θr,MEvt
r [recvEvt κ], ρr〉}

ε−→ P � {〈θs,MEvt
s [sendEvt κ e], ρs〉, 〈θr,MEvt

r [recvEvt κ], ρr〉,
〈θs,MEvt

s [alwaysEvt ()],Send(〈θr, ρr〉):ρs〉,
〈θr,MEvt

r [alwaysEvt e],Recv(〈θs, ρs)〉:ρr〉}
EvtMyThreadId

P � {〈θ,MEvt[myThreadIdEvt], ρ〉} ε−→ P � {〈θ,MEvt[alwaysEvt θ], ρ〉}

Fig. 9. TE Haskell: Dynamic semantics – Refined.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 689

Definition 5 (Coherent)

The trails 〈θs, ρs〉 and 〈θr, ρr〉 are coherent if the trails are an acceptable sender/

receiver pair. Formally,

Coherent(〈θs, ρs〉, 〈θr, ρr〉) ≡
θs �= θr
∧ ∀〈θ, ρ〉 ∈ Dep(〈θr, ρr〉). θs = θ ⇒ ρs 	 ρ

∧ ∀〈θ, ρ〉 ∈ Dep(〈θs, ρs〉). θr = θ ⇒ ρr 	 ρ

∧ ∀〈θ1, ρ1〉 ∈ Dep(〈θs, ρs〉). ∀〈θ2, ρ2〉 ∈ Dep(〈θr, ρr〉).
θ1 = θ2 ⇒ (ρ1 	 ρ2 ∨ ρ2 	 ρ1)

Synchronizing threads may not directly communicate with themselves; hence, we

require that θs �= θr . If the θr search thread communicated (directly or indirectly)

with some θs search thread in the past, then it must have been in the history of

this θr search thread with path ρr , and vice versa. Finally, if there is a common

depended-upon search thread, then the path in one dependency must be an extension

of the path in the other dependency; that is, the search threads θs and θr must have

a consistent view of the common depended-upon thread’s history.

Although coherency is used in the dynamic semantics to limit communication,

any two trails may be judged coherent or incoherent. Indeed, a necessary, but not

sufficient, condition for a set of trails to be committable is for each pair of distinct

trails to be coherent:

Lemma 6

If a set of trails {〈θ1, ρ1〉, . . . , 〈θk, ρk〉} is committable,

then each pair of distinct trails 〈θs, ρs〉 and 〈θr, ρr〉 is coherent.

Another important property of coherent communication is that it preserves the

consistency and coherency of trails:

Lemma 7

If the trails 〈θs, ρs〉 and 〈θr, ρr〉 are consistent and coherent,

then the trails 〈θs,Send(〈θr, ρr〉):ρs〉 and 〈θr,Recv(〈θs, ρs〉):ρr〉 are consistent and

coherent.

As an immediate corollary, we have the property that evaluation under the refined

semantics preserves the consistency of search threads:

Lemma 8

Suppose P a−→ P ′ according to the semantics of Figure 9.

If, for each search thread 〈θ, e, ρ〉 ∈ P , the trail 〈θ, ρ〉 is consistent,

then, for each search thread 〈θ′, e′, ρ′〉 ∈ P ′, the trail 〈θ′, ρ′〉 is consistent.

The fact that the refined semantics never gives rise to inconsistent search threads

shows that the semantics does not explore configurations that may never evolve to

a committable set of search threads.

Figure 10 shows a small number of search threads that arise during the evaluation

of three concurrent threads exchanging values on a triple-swap channel from

Section 5.4. Figure 10(a) shows the initial configuration, where each search thread

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

690 K. Donnelly and M. Fluet

Fig. 10. See caption on next page.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 691

Fig. 10. Search threads for a committable triple-swap synchronization.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

692 K. Donnelly and M. Fluet

is evaluating a transactional event of the form swapEvt ch xi with an empty path.

Figure 10(b) shows a subsequent configuration, where a search thread for thread

θ1 has non-deterministically chosen to act as a leader and a search thread for

thread θ2 has non-deterministically chosen to act as a client and a send of a reply

channel by the second search thread has been non-deterministically matched with

a receive of a reply channel by the first search thread. Figure 10(d) shows a final

configuration, where each search thread has evaluated to a transactional event of

the form alwaysEvt (xi+1 mod 3,xi+2 mod 3) with a consistent path; furthermore, the

set of search threads forms a committable set. Note that the paths reachable from

any search thread are included in the committable set.

6.2.1 Equivalence of the original and refined semantics

Finally, we wish to state that the refined semantics given in this section is equivalent

to the semantics given in Section 4, in the sense that programs evaluated under the

two semantics have the same observable behavior.

In one direction, we require that every observable behavior admitted by the

semantics of Section 4 is also admitted by the semantics of this section:

Theorem 9

If T a1;··· ;an−−−−→∗ T ′ according to the semantics of Figures 3 and 4,

then T
a′

1;··· ;a′
m−−−−→∗ T ′ according to the semantics of Figure 9,

where a1; · · · ; an equals a′
1; · · · ; a′

m modulo the insertion of ε actions.

In the other direction, we require that every behavior admitted by the semantics

of this section is also admitted by the semantics of Section 4. In order to state

this fact precisely, we introduce a simple translation from the thread soups of this

section to the thread soups of Section 4:

|{}| = {}
|P � {〈θ, e〉}| = |P | � {〈θ, e〉}

|P � {〈θ,MIO, e〉}| = |P | � {〈θ,MIO[sync e]〉}
|P � {〈θ, e, ρ〉}| = |P |

Note that this translation simply erases any search thread and translates a suspended

thread to a synchronizing concurrent thread.

Theorem 10

If T a1;··· ;an−−−−→∗ P ′ according to the semantics of Figure 9,

then T
a′

1;··· ;a′
m−−−−→∗ |P ′| according to the semantics of Figures 3 and 4,

where a1; · · · ; an equals a′
1; · · · ; a′

m modulo the deletion of ε actions.

The non-determinism in both the original semantics and the refined semantics

means that these theorems assert the existence, but not uniqueness, of a sequence

of transitions in the corresponding semantics. Proofs of both theorems require

supporting lemmas that relate the synchronous evaluation relation of Section 4.2.2

and the evaluation of committable search threads.12

12 A technical appendix with a detailed proof of the equivalence of the original and refined semantics may
be obtained at http://journals.cambridge.org/issue Journaloffunctionalprogramming/
Vol18No5-6.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 693

6.2.2 Discussion

It should be clear that the refined semantics given in this section has removed a

major impediment to implementing TE Haskell. By interleaving the evaluation of

many search threads with the evaluation of concurrent threads, an implementation

based on the refined semantics does not need to omniciently choose a set of

synchronizing threads and a sequence of synchronous evaluation transitions, which

may be arbitrarily long. Although there remain a number of impediments to an

efficient implementation, before we address them, it is worth noting that the refined

semantics may be seen as starting point for a wide variety of implementations.

To see this, we must recognize three important aspects of the refined semantics,

all related to the nature of search threads. First, the collection of search threads in

the thread soup of a program state represents a frontier in the exploration of the

space of possible synchronous evaluations. Second, the refined semantics places no

restrictions on the strategy used to choose search threads for evaluation; different

strategies correspond to different methods of extending the frontier represented by

search threads. Finally, the refined semantics places few restrictions on how search

threads are represented in an implementation; in particular, search threads need

not be represented by threads at all (although they are in our implementation).

Different design choices made regarding these aspects of the refined semantics will

impact the practical behavior (time and space overhead, completeness of the search

for synchronizations, etc.) of a TE Haskell program.

Perhaps the most obvious design choice (and the one adopted by our imple-

mentation) is to represent each search thread by a Concurrent Haskell thread

(which maintains the search thread’s identifier, event and path as part of the

concurrent thread’s evaluation); this design choice implicitly adopts the (preemptive

and fair) concurrent thread scheduler as the strategy used to choose search threads

for evaluation. The EvtChoose and EvtSendRecv transition rules correspond to

thread creation; the EvtNever and EvtThrow transition rules correspond to thread

termination; the remaining Evt transition rules correspond to sequential thread

evaluation. The preemptive and fair nature of the concurrent thread scheduler

ensures that the frontier in the space of possible synchronous evaluations represented

by search threads will be extended on all fronts, yielding a complete exploration

of the space that will find a synchronization if one exists. However, the non-

deterministic nature of the concurrent thread scheduler means that the frontier will

be extended in an unpredictable manner. Furthermore, a large number of choice

and communication events may result in a long frontier made up of a large number

of threads. Although Concurrent Haskell threads are lightweight, a significant

number of search threads represented by concurrent threads could place a non-trivial

burden on the run-time system; in particular, the space overhead of these threads

could lead to more garbage collections and the time spent evaluating these search

threads could leave less computational resources for non-synchronizing concurrent

threads.

Another design choice is to represent each search thread as a simple data structure

(which contains the search thread’s identifier, event and path) and maintain a

global set of these search thread structures; a single Concurrent Haskell thread

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

694 K. Donnelly and M. Fluet

is dedicated to evaluating search threads, by removing a search thread from the

set, taking an evaluation step appropriate for the search thread and inserting some

number of search threads into the set. EvtChoose and EvtSendRecv transition rules

correspond to inserting multiple new search threads; the EvtNever and EvtThrow

transition rules correspond to inserting no search threads; the remaining Evt

transitions rules correspond to inserting one updated search thread. Implementing

the set of search threads using a LIFO stack roughly corresponds to a depth-

first search through the space of possible synchronous evaluations, while using a

FIFO queue roughly corresponds to a breadth-first search. The existence of infinite

sequences of synchronous evaluation steps (arising from recursive events13 and

divergent sequential terms) makes the LIFO stack implementation an incomplete

search; on the other hand, the FIFO queue implementation yields a complete

exploration of the space that will find a synchronization if one exists. Representing

a search thread as a simple data structure is likely to be more space efficient than

representing a search thread by a Concurrent Haskell thread; similarly, the time

required to construct a new data structure is likely to be significantly less than the

time required to fork a new thread. Nonetheless, a large number of choice and

communication events from independent synchronizations may result in a large set

of search threads; dedicating a single Concurrent Haskell thread to the evaluation

of search threads means that a ‘short’ synchronization by one group of theads may

be slowed down by a ‘long’ synchronization by an independent group of threads.

An attractive design choice is to mix the above implementations: represent each

search thread as a simple data structure, but maintain multiple sets of search threads;

each Concurrent Haskell thread that synchronizes on a transactional event dedicates

its computational resources to the evaluation of its own search threads. This design

combines the space efficient representation of search threads with the concurrent

evaluation of independent synchronizations. It also has the nice property that the

computational resources dedicated to search for synchronizations is proportional to

the number of concurrent threads blocked at synchronizations. While we have not

yet had the opportunity to explore this design, we believe that it is likely to yield a

well-balanced implementation.

Finally, all of these designs make use of the concepts introduced in the refined

semantics (i.e., paths, dependencies, consistency, coherency and committability) to

avoid exploring portions of the space of possible synchronizations that may never

evolve to a committable set of search threads. Similarly, the Evt transition rules of

the refined semantics serve to enumerate the space of possible synchronizations.

6.3 Representing channels and scanning for committable sets

While the refined semantics in Section 6.2 interleaves the evaluation of many

search threads with the evaluation of concurrent threads, the EvtSendRecv and

13 For example,

loopEvt x = ((alwaysEvt x) `thenEvt` (\ y -> loopEvt y))
`chooseEvt` (alwaysEvt x)

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 695

SyncCommit and EvtSendRecv rules remain difficult to implement in a direct

manner.

6.3.1 Representing channels

Recall the EvtSendRecv rule from Figure 9. A direct interpretation of this rule

raises two issues. First, it requires matching two search threads in the thread soup

that are attempting to communicate on the same channel. Second, since the search

threads corresponding to the sender and the receiver remain in the thread soup,

evaluation may repeatedly spawn redundant search threads. Both of these issues

may be dealt with by representing a channel as a mutable reference containing two

sets, one set of willing senders and one set of willing receivers:

Senders Sends ::= {〈θ,MEvt, ρ, e〉, . . .}
Receivers Recvs ::= {〈θ,MEvt, ρ〉, . . .}
Channel Store � ::= {κ �→ 〈Sends ,Recvs〉, . . .}

A channel name serves as an index into a channel store, where it maps to the pair

of senders and receivers. A sender represents a search thread (with thread identifier

θ and path ρ) willing to send the message e along a channel and continue executing

according to MEvt. Similarly, a receiver represents a search thread (with thread

identifier θ and path ρ) willing to receive a message along a channel and continue

executing according to MEvt. The single EvtSendRecv rule may be replaced by

separate EvtSend and EvtRecv rules14:

EvtSend

�(κ) = 〈Sends ,Recvs〉

P ′ =
⋃ ⎧⎨

⎩
{〈θs,MEvt

s [alwaysEvt ()],Send(〈θr, ρr〉):ρs〉,
〈θr,MEvt

r [alwaysEvt e],Recv(〈θs, ρs〉):ρr〉}
| 〈θr,MEvt

r , ρr〉 ∈ Recvs ∧ Coherent(〈θs, ρs〉, 〈θr, ρr〉)

⎫⎬
⎭

�;P � {〈θs,MEvt
s [sendEvt κ e], ρs〉}

ε−→ �[κ �→ 〈Sends ∪ {〈θs,MEvt
s , ρs, e〉},Recvs〉];P � P ′

EvtRecv

�(κ) = 〈Sends ,Recvs〉

P ′ =
⋃ ⎧⎨

⎩
{〈θr,MEvt

r [alwaysEvt e],Recv(〈θs, ρs〉):ρr〉,
〈θs,MEvt

s [alwaysEvt ()],Send(〈θr, ρr〉):ρs〉}
| 〈θs,MEvt

s , ρs, e〉 ∈ Sends ∧ Coherent(〈θs, ρs〉, 〈θr, ρr〉)

⎫⎬
⎭

�;P � {〈θr,MEvt[recvEvt κ], ρr〉}
ε−→ �[κ �→ 〈Sends ,Recvs ∪ {〈θr,MEvt

r , ρr〉}〉];P � P ′

Consider the EvtSend rule. A search thread that wishes to send a message along a

channel spawns a pair of search threads for every coherent suspended receiver in the

14 Most of the other rules may be simply extended with the channel store �, which is otherwise ignored.
The two exceptions are the EvtNewSChan rule, which must extend the channel store with a fresh
channel mapped to empty sets of senders and receivers, and the SyncCommit rule, which must remove
all senders and receivers corresponding to the synchronized threads from the sets in the channel store.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

696 K. Donnelly and M. Fluet

channel store; the spawned search threads evaluate according to the event contexts

of the sender and the receiver and have appropriately extended paths. Furthermore,

the sender is added to the channel store. Note that by manipulating the channel

store in this manner, the EvtSend rule guarantees that a sending search thread will

send to all receivers already in the set of receivers and be in the set of senders for

all future receivers.

6.3.2 Scanning for committable sets

Recall the SyncCommit rule from Figure 9. A direct interpretation of this rule raises

a number of issues. First, it requires finding a committable set of completed search

threads in the thread soup. Second, it requires finding the suspended threads in

the thread soup that correspond to the completed search threads. Third, it requires

removing from the thread soup all other search threads that were searching on

behalf of the now synchronized concurrent threads.

We discuss the latter two issues in the next section. At the present time, we focus

on a technique for finding a committable set of completed search threads in the

thread soup.

Note that a search thread that transitions to a completed search thread may

determine a minimal set of thread identifiers and paths required for commitment by

consulting its dependencies. For example, in Figure 10(c), a search thread for thread

θ2 has transitioned to a completed search thread. Hence, from its dependencies, the

completed search thread for thread θ2 may determine that any committable set in

which it participates must include some completed search thread for thread θ1 with

a path that extends

Send(〈θ2,Send(〈θ1,Right:•〉):Left:•〉)
:Recv(〈θ3, Left:•〉):Recv(〈θ2, Left:•〉):Right:•

and some completed search thread for thread θ3 with a path that extends

Send(〈θ1, Left:•〉):Left:•
However, as currently structured, the completed search thread for thread θ2 may

not determine if any such completed search threads exist.

We deal with this issue by introducing completion references, mutable references

that maintain sets of completed search threads:

Completed Search Threads C = 〈θ, alwaysEvt e′, ρ〉
Completion Store � ::= {c �→ {C, . . .}, . . .}

Two completion references are allocated at each communication and are stored in

the Send and Recv path elements of the search threads that are spawned at a

communication:

Path Element η ::= Left | Right

| Send(〈θr, ρr〉, cr, cs) | Recv(〈θs, ρs〉, cs, cr)

In the trail 〈θs,Send(〈θr, ρr〉, cr, cs):ρs〉, the completion reference cr maintains sets of

completed search threads that extend the path ρr of the receiver, and the completion

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 697

Fig. 11. See caption on next page.

reference cs maintains sets of completed search threads that extend the path ρ of

the sender. Note that the matching trail of the receiver, 〈θr,Recv(〈θs, ρs〉, cs, cr):ρr〉,
includes the same completion references, but in the reversed order.

When a search thread transitions to a completed search thread, it adds itself

to the appropriate sets of completed search threads on its path, thereby making

itself available for commitment to all of the search threads with which it has

communicated. Finally, a completed search thread performs one scan of the sets

of completed search threads of its communication partners, attempting to find a

committable set of completed search threads. If such a set exists, then the search

thread may commit the synchronization, on behalf of the entire committable set of

completed search threads. If no such set exists, then the completed search thread

halts and remains in the sets of completed search threads, awaiting commitment to

be initiated by another completed search thread.

Figure 11 illustrates this strategy. Like Figure 10, Figure 11 shows a small

number of search threads that arise during the evaluation of three concurrent

threads exchanging values on a triple-swap channel from Section 5.4. Figure 11(a)

replicates the configuration from Figure 10(b), where a send of a reply channel by

the second search thread has been non-deterministically matched with a receive of

a reply channel by the first search thread. Note that two completion references,

initialized with the empty set {}, have been allocated for the communication; both

references are reachable through the paths of both the sender and the receiver.

Figure 11(b) shows a subsequent configuration, where additional communications

have occurred and a search thread for thread θ2 has completed. Note that the

completed search thread has been added to the sets of completed search threads

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

698 K. Donnelly and M. Fluet

Fig. 11. Search threads with completion references.

on its path. However, the completed search thread may not reach a committable

set of completed search threads, since no search threads for threads θ1 and θ3

have completed. Figure 11(c) shows a final configuration, where search threads for

threads θ1 and θ3 have completed. By adding those completed search threads to the

sets of completed search threads, now any completed search thread may reach a

committable set of completed search threads.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 699

Space precludes us from giving a complete formalization of this technique, but

we remark on a few of the key details. An implementation that makes use of

this strategy will require two functions, AddComplete and CommitScan. The first

function updates the completion store by adding a completed search thread to the

appropriate sets on its path. The second function uses the completion store to scan

for committable sets of completed search threads. At any given time, there may be

more than one committable set of completed search threads, so CommitScan returns

a set of committable sets. (The next section will demonstrate how these functions

are used in our implementation.) Finally, an important characteristic of this strategy

is that any completed search thread needs only perform one scan for committable

sets of completed search threads via CommitScan; if no such set exists at the time

that a search thread transitions to a completed search thread, then it suffices for the

completed search thread to halt and await commitment to be initiated by another

search thread.

As a final note, it should be clear that both of the techniques discussed in this

section (representing channels and scanning for committable sets) may be employed

by each of the implementation designs discussed in Section 6.2.2.

6.4 Implementation details

We conclude this section with a number of additional details about our implemen-

tation of transactional events in Haskell.

At the beginning of this section, we noted that our implementation is writ-

ten in Haskell, using the STM extensions of Concurrent Haskell available in

GHC. As might be expected, the (global and mutable) channel and comple-

tion stores introduced in Section 6.3 are amenable to implementation via STM.

Operations that manipulate the stores may be implemented as atomic sections

that read and write transactional variables. A channel reference is implemented

as a (TVar [Sender a], TVar [Recver a]) (where a is the type of messages

passed on the channel), and a completion reference is implemented as a

TVar [CompletedSearchThread].

We may also use transactional variables to address the remaining issues with the

SyncCommit rule. Recall that the SyncCommit rule requires finding the suspended

threads in the thread soup that correspond to the completed search threads

and it requires removing from the thread soup all other search threads that

were searching on behalf of the now synchronized concurrent threads. In our

implementation, we ensure that all search threads arising from the same synchro-

nization share a boolean reference implemented as a TVar Bool, and share a result

reference implemented as a TVar (Maybe a) (where a is the type of the synchro-

nization result). The boolean reference is allocated with the value True and

the result reference is allocated with the value Nothing at the initialization of

thread synchronization. When a set of search threads commit, all of their boolean

references are set to False and all of their result references are set to Just ei,

where ei is the synchronization result. Hence, our implementation does not re-

quire finding suspended search threads in the thread soup; rather, a blocked

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

700 K. Donnelly and M. Fluet

concurrent thread resumes concurrent evaluation with the synchronization result

when it discovers that the result reference has been set to Just ei. Similarly,

our implementation does not require removing search threads from the thread

soup; rather, a search thread terminates (without evaluating to a completed search

thread) when it discovers that its boolean reference has been set to False. As an

optimization, a search thread also terminates if the boolean reference of one of its

past communication partners has been set to False (since, once a communication

partner has committed to a different synchronization, the search thread may never

commit).

Additionally, a synchronization’s boolean reference is used to periodically filter

the lists of senders and receivers on a channel; doing so prevents space leaks

and limits the number of potential partners that need to be considered at each

communication. Similarly, a synchronization’s boolean reference is used to determine

when a completed search thread is available to participate in a committable

set.

As was noted in Section 6.2.2, our implementation evaluates each search thread

by a separate Concurrent Haskell thread. In Sections 6.2 and 6.3, we used explicit

evaluation contexts (e.g., in the transition rules and in the sets of senders and receivers

in the channel store). In the Haskell implementation, we use a CPS-like encoding

of the Evt monad in order to fork new search threads during the evaluation of a

transactional event, to propagate exceptions to an appropriate catchEvt handler,

and to represent the context of senders and receivers.

The most interesting components of the implementation are the functions that

initiate and commit an event synchronization. Initiation is handled by sync:

sync :: Evt a -> IO a

sync evt =

do { tid <- myThreadId

; b <- atomically (newTVar True)

; r <- atomically (newTVar Nothing)

; forkIO (initSearchThread tid b r evt)

; atomically (do { mx <- readTVar r

; case mx of

Nothing -> retry

Just x -> return x }) }

A concurrent thread that executes sync evt allocates two transactional variables (a

boolean reference b and a result reference r) and then forks an initial search thread

to evaluate the event. The concurrent thread then reads the contents of the result

reference and retries until it sees a value other than Nothing; the implementation of

STM in GHC ensures that the concurrent thread blocks until the result reference is

written to by another thread, which signals that the synchronization has successfully

completed.

Commitment of an event synchronization is handled by finiCompletedSearch

Thread, which is invoked when a search thread transitions to a completed search

thread.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 701

finiCompletedSearchThread :: CompletedSearchThread -> IO ()

finiCompletedSearchThread thrd =

do { atomically (addComplete thrd)

; z <- atomically (do { zs <- commitScan thrd

; case zs of

z:_ -> do { mapM_ setBoolRefInCompleted z

; return z }

_ -> return [] })

; atomically (mapM_ setResultRefInCompleted z)

; return () }

We use separate atomic sections to shorten the length of the transactions and to

reduce the contention on transactional variables. The first atomic section adds the

completed search thread to the appropriate sets on its path. The second atomic

section performs a commit scan, and, upon finding a set of committable search

threads, commits to the synchronization (by setting all of the boolean references

in the completed search threads to False). The final atomic section sets all of the

result references, unblocking the synchronizing threads.

Our implementation also takes advantage of the observation made in Section 6.2

that the dependencies of a consistent trail may be efficiently represented by a finite

map from thread identifiers to trails with maximal paths. This improves the efficiency

of the implementation (e.g., in the implementation of the Coherent predicate and

the commitScan computation).

Although we have not written significant applications to benchmark our imple-

mentation, it has proven satisfactory for experimentation. Indeed, the implementation

gracefully supports hundreds of threads simultaneously executing a triple-swap

synchronization on the same triple-swap channel. As our implementation is written as

a Haskell library, requiring no changes to the compiler or run-time system, we make

few assumptions about the execution environment. Indeed, our only requirement is

that the Concurrent Haskell thread scheduler is a preemptive and fair scheduler;

this ensures that the implementation will (eventually) find a synchronization if

one exists. Although we do require the STM extensions of Concurrent Haskell,

we do not use all of the features provided by the STM extensions; in particular,

we never make use of the orElse or catchSTM combinators. We do not employ

any sophisticated garbage-collector features (e.g., weak pointers or finalizers), nor

do we require specific garbage-collector options. We support, but do not require,

execution on multiprocessors, thereby exploiting the high degree of parallelism in

the evaluation of search threads.

For additional details, we encourage the interested reader to consult and experi-

ment with the implementation.

7 Related work

The UniForM Workbench (Karlsen, 1997; Russell, 2001) is a Concurrent Haskell

extension that provides a library of abstract data types for shared memory and

message passing communication. The message passing model is very similar to

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

702 K. Donnelly and M. Fluet

that of CML. Russell (2001) describes an implementation of events in Concurrent

Haskell. The implementation provides events with the following interface:

data Event a

sync :: Event a -> IO a

(>>>=) :: Event a -> (a -> IO b) -> Event b

computeEvent :: IO (Event a) -> Event a

(+>) :: Event a -> Event a -> Event a

never :: Event a

always :: IO a -> Event a

instance Monad Event where

(>>=) event1 getEvent2 =

event1 >>>= (val -> sync (getEvent2 val))

return val = always (return val)

A significant difference with respect to CML is the fact that the choice operator

+> is asymmetric; it is biased towards the first event. Although the interface makes

Event an instance of the Monad typeclass, the author points out that events do not

strictly form a monad, since return is not a left identity.

We may see that the interface given above is closely related to the encoding

of CML given in Section 5.2. The computeEvent operator is equivalent to the

guardCMLEvt operator, providing pre-synchronous actions. The >>>= operator

is equivalent to the wrapCMLEvt operator, providing post-synchronous actions.

The always operator turns a post-synchronous action into an event; hence, the

implementation of return in the instantiation of Event as a Monad requires a

return in the IO monad.

Panangaden and Reppy (1997) discuss the algebraic structure of first-class events

and the extent to which they form a monad. Their conclusion is that events very

nearly form a monad, but the monad laws do not hold under the observability

of deadlock. A closer examination of their analysis reveals that the difficulty lies

with the neverEvt of CML failing to be a right zero of their derived monadic

bind operation. As noted in Section 3, neverEvt is a right zero of thenEvt in TE

Haskell, and Evt forms both a monad and a monad-with-plus.

Jeffrey (1995a, b) has given a denotational semantics of CML using (variants) of

the ideas from Moggi’s computational monad program (Moggi, 1989, 1991). Further

comparison with the work of Jeffrey is required, but a distinguishing characteristic

appears to be the use of a single computation type. In contrast, TE Haskell has two

types that denote latent computations.

The STM extension of Concurrent Haskell (Harris et al., 2005b), as well as the

AtomCaml extension of OCaml (Ringenburg & Grossman, 2005), provide similar

atomic transactions, but do not allow for synchronous message passing. A significant

advantage of STM is that it has a more efficient implementation, based on the

optimistic assumption that concurrently running transactions will seldom access the

same memory. We showed in Section 5.3 that software transactions similar, but not

identical, to those of STM Haskell can be encoded as transactional events.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 703

The stabilizers extension of CML (Ziarek et al., 2006) is perhaps the most closely

related work. Stabilizers provide programmer-inserted checkpoints to which a con-

current program can roll back if a fault occurs. Each thread has its own checkpoints,

and when a rollback occurs and synchronous communications are undone, both sides

of the communication must roll back to consistent checkpoints. This is similar to

the conceptual ‘merging’ of transactional event synchronizations of communicating

threads in TE Haskell. The stabilizers implementation is designed primarily for

correcting transient faults, and as such makes no attempt to systematically search

for mutually consistent choices among threads as TE Haskell does.

8 Conclusion

We have introduced transactional events, a novel concurrency abstraction that com-

bines first-class synchronous operations (events) with all-or-nothing transactional

semantics. The benefit of this combination is that it admits greater compositionality

and modularity in concurrent programming than is available in CML. Similarly, by

adapting transactional semantics to the context of synchronous message passing, we

admit simple implementations of abstractions (such as the TriSChan abstraction)

that are not directly expressible using transactional shared memory.

We believe that there are many directions for future work. On the practical side,

we hope to investigate the degree to which transactional events may improve the

modularity of and ease the reasoning about applications that naturally fit with

synchronous message passing (e.g., graphical user interfaces (Pike, 1989; Gasner &

Reppy, 1993; Russell, 2001)). Clearly, more powerful abstractions may be designed

and implemented with transactional events. Also, we believe that the transactional

property of event synchronization obviates the need for the withNack combinator

in many communication protocols.

On the implementation side, we are interested in ways that compiler and run-

time support may improve the efficiency of an implementation of TE Haskell.

As discussed in Section 6, there are limits to what can be accomplished without

modifying the compiler and/or run-time system. Exploring a native implementation

of transactional events may yield new opportunities to optimize the implementation.

Finally, on the theoretical side, there are interesting questions about the relation-

ship between transactional events and other concurrency calculi (e.g., CSP (Hoare,

1978), π-calculus (Sangiorgi & Walker, 2001)), about the right notions of behavioral

equivalence, and about progress and fairness in an implementation.

Acknowledgments

We would like to thank Norman Ramsey for teaching the excellent course on

Programming with Concurrency (Harvard University CS257, Fall 2005) that was

the genesis of this work, as well as for helpful feedback on earlier versions. In

addition we would like to thank Greg Morrisett, Avi Shinnar, Riccardo Pucella,

John Reppy, the anonymous reviewers of ICFP’06 (one of whom pointed out the

ease of encoding boolean satisfiability with transactional events), and the anonymous

reviewers of JFP for their constructive and insightful comments.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

704 K. Donnelly and M. Fluet

References

Adl-Tabatabai, Ali-Reza, Lewis, Brian T., Menon, Vijay, Murphy, Brian R., Saha, Bratin

& Shpeisman, Tatiana. (2006) Compiler and runtime support for efficient software

transactional memory. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’06). New York: ACM Press, pp. 26–37.

Armstrong, Joe, Virding, Robert, Wikström, Claes & Williams, Mike. (1996) Concurrent

Programming in Erlang, 2nd ed. Hertfordshire, UK: Prentice Hall International (UK) Ltd.

Donnelly, Kevin & Fluet, Matthew. (2006) Transactional events. In Proceedings of the

Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP’06).

New York: ACM Press, pp. 124–135.

Flatt, Matthew & Findler, Robert Bruce. (2004) Kill-safe synchronization abstractions.

In Proceedings of the ACM SIGPLAN Conference on Programming Language Design and

Implementation (PLDI’04). New York: ACM Press, pp. 47–58.

Gasner, Emden R. & Reppy, John H. (1993) A multi-threaded high-order user interface

toolkit. In User Interface Software, Bass, Len & Dewan, Prasun (eds). Software Trends,

Vol. 1. New York: John Wiley & Sons, Chap. 4, pp. 61–80.

Glasgow Haskell Compiler (version 6.6). (2006) http://www.haskell.org/ghc.

Grossman, Dan. (April 2006) Software Transactions are to Concurrency as Garbage Collection

is to Memory Management. Tech. Rept. 2006-04-01. University of Washington, Department

of Computer Science & Engineering.

Harris, Tim & Fraser, Keir. (2003) Language support for lightweight transactions. In

Proceedings of the 18th Annual ACM SIGPLAN Conference on Object-Oriented Programing,

Systems, Languages, and Applications (OOPSLA’03). New York: ACM Press, pp. 388–402.

Harris, Tim, Marlow, Simon & Peyton Jones, Simon. (2005a) Haskell on a shared-memory

multiprocessor. In Proceedings of the ACM SIGPLAN Workshop on Haskell. New York:

ACM Press, pp. 49–61.

Harris, Tim, Marlow, Simon, Peyton Jones, Simon & Herlihy, Maurice. (2005b) Composable

memory transactions. In Proceedings of the Tenth ACM SIGPLAN Symposium on Principles

and Practice of Parallel Programming (PPoPP’05). New York: ACM Press, pp. 48–60.

Harris, Tim, Plesko, Mark, Shinnar, Avraham & Tarditi, David. (2006) Optimizing memory

transactions. In Proceedings of the ACM SIGPLAN Conference on Programming Language

Design and Implementation (PLDI’06). New York: ACM Press, pp. 14–25.

Herlihy, Maurice & Moss, J. Eliot B. (1993) Transactional memory: Architectural support

for lock-free data structures. In Proceedings of the 20th Annual International Symposium on

Computer Architecture (ISCA’93). New York: ACM Press, pp. 289–300.

Hindman, Benjamin & Grossman, Dan. (2006) Atomicity via source-to-source translation. In

Proceedings of the Workshop on Memory System Performance and Correctness (MSPC’06).

New York: ACM Press, pp. 82–91.

Hinze, Ralf. (2000) Deriving backtracking monad transformers (functional pearl).

In Proceedings of the Fifth ACM SIGPLAN International Conference on Functional

Programming (ICFP’00). New York: ACM Press, pp. 186–197.

Hoare, C. A. R. (1978) Communicating sequential processes. Commun. ACM 21(8), 666–677.

Jeffrey, Alan. (1995a) A fully abstract semantics for a concurrent functional language with

monadic types. In Proceedings of the Tenth Annual IEEE Symposium on Logic in Computer

Science (LICS’95). Los Alamitos, CA: IEEE Computer Society Press, pp. 255–265.

Jeffrey, Alan. (1995b) A fully abstract semantics for a nondeterministic functional language

with monadic types. In Proceedings of the Eleventh Conference on the Mathematical

Foundations of Programming Semantics (MFPS XI). Electronic Notes in Theoretical

Computer Science, Vol. 1. New York: Elsevier.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

Transactional Events 705

Karlsen, Einar. (1997) The UniForM Concurrency ToolKit and its extensions to Concurrent

Haskell. In The Glasgow Functional Programming Workshop (GFPW).

Kiselyov, Oleg, Shan, Chung-chieh, Friedman, Daniel & Sabry, Amr. (2005) Backtracking,

interleaving, and terminating monad transformers (functional pearl). In Proceedings of the

Tenth ACM SIGPLAN International Conference on Functional Programming (ICFP’05).

New York: ACM Press, pp. 192–203.

Manson, Jeremy, Baker, Jason, Cunei, Antonio, Jagannathan, Suresh, Prochazka, Marek, Xin,

Bin & Vitek, Jan. (2005) Preemptible atomic regions for real-time Java. In Proceedings of

the 26th IEEE International Real-Time Systems Symposium (RTSS’05). Los Alamitos, CA:

IEEE Computer Society, pp. 62–71.

Marlow, Simon, Peyton Jones, Simon, Moran, Andrew & Reppy, John. (2001) Asynchronous

exceptions in Haskell. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’01). New York: ACM Press, pp. 274–285.

Moggi, Eugino. (1989) Computational lambda calculus and monads. In Proceedings of the

Fifth Annual IEEE Symposium on Logic in Computer Science (LICS’89). Los Alamitos, CA:

IEEE Computer Society Press, pp. 14–23.

Moggi, Eugino. (1991) Notions of computation and monads. Info. Comput. 93(1), 55–92.

MonadPlus. (2005) http://www.haskell.org/hawiki/MonadPlus.

Moran, Andrew, Lassen, Soren B. & Peyton Jones, Simon. (1999) Imprecise exceptions, co-

inductively. In Proceedings of the Third International Workshop on Higher Order Operational

Techniques in Semantics (HOOTS’99). Electronic Notes in Theoretical Computer Science,

Vol. 26. New York: Elsevier, pp. 122–141.

Moss, J. Eliot B. (1985) Nested Transactions: An Approach to Reliable Distributed Computing.

Cambridge, MA: MIT Press.

Panangaden, Prakash & Reppy, John. (1997) The essence of Concurrent ML. In ML with

Concurrency: Design, Analysis, Implementation, and Application, Nielson, Flemming (ed).

Monographs in Computer Science. New York: Springer-Verlag, Chap. 2, pp. 5–30.

Peyton Jones, Simon. (2001) Tackling the awkward squad: Monadic input/output,

concurrency, exceptions, and foreign-language calls in Haskell. In Engineering Theories

of Software Construction, Hoare, Tony, Broy, Manfred & Steinbrüggen, Ralf (eds). NATO

Science Series: Computer & Systems Sciences, Vol. 180. Amsterdam, The Netherlands: IOS

Press, pp. 47–96.

Peyton Jones, Simon, Gordon, Andrew & Finne, Sigbjorn. (1996) Concurrent Haskell. In

Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’96). New York: ACM Press, pp. 295–308.

Peyton Jones, Simon, Reid, Alastair, Henderson, Fergus, Hoare, Tony & Marlow, Simon.

(1999) A semantics for imprecise exceptions. In Proceedings of the ACM SIGPLAN

Conference on Programming Language Design and Implementation (PLDI’99). New York:

ACM Press, pp. 25–36.

Peyton Jones, Simon, & Wadler, Philip. (1993) Imperative functional programming. In

Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL’93). New York: ACM Press, pp. 71–84.

Pike, Rob. (1989) A concurrent window system. Comput. Syst. 2(2), 133–153.

Reppy, John. (1999) Concurrent Programming in ML. Cambridge, UK: Cambridge University

Press.

Ringenburg, Michael F. & Grossman, Dan. (2005) AtomCaml: First-class atomicity

via rollback. In Proceedings of the Tenth ACM SIGPLAN International Conference on

Functional Programming (ICFP’05). New York: ACM Press, pp. 92–104.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

706 K. Donnelly and M. Fluet

Russell, George. (2001) Events in Haskell, and how to implement them. In Proceedings of

the Sixth ACM SIGPLAN International Conference on Functional Programming (ICFP’01).

New York: ACM Press, pp. 157–168.

Sangiorgi, David & Walker, David. (2001) The π-Calculus: A Theory of Mobile Processes.

Cambridge, UK: Cambridge University Press.

Shavit, Nir & Touitou, Dan. (1997) Software transactional memory. Distribut. Comput. 10(2),

99–116.

Turbak, Franklyn. (1996) First-class synchronization barriers. In Proceedings of the First ACM

SIGPLAN International Conference on Functional Programming (ICFP’96). New York:

ACM Press, pp. 157–168.

Wadler, Philip. (1995) Monads for functional programming. In Advanced Functional

Programming, Jeuring, Johan & Meijer, Erik (eds). Lecture Notes in Computer Science,

Vol. 925. New York: Springer-Verlag.

Welc, Adam, Jagannathan, Suresh & Hosking, Antony L. (2004) Transactional monitors

for concurrent objects. In Proceedings of the Eighteenth European Conference on Object-

Oriented Programming (ECOOP’04). Lecture Notes in Computer Science, Vol. 3086. New

York: Springer-Verlag, pp. 519–542.

Ziarek, Lukasz, Schatz, Philip & Jagannathan, Suresh. (2006) Stabilizers: A modular

checkpointing abstraction for concurrent functional programs. In Proceedings of the

Eleventh ACM SIGPLAN International Conference on Functional Programming (ICFP’06).

New York: ACM Press, pp. 136–147.

https://doi.org/10.1017/S0956796808006916 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796808006916

