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A NOTE ON BAIRE SPACES AND
CONTINUOUS LATTICES

KARL H. HOFMANN

We prove a Baire category theorem for continuous lattices and

derive category theorems for non-Hausdorff spaces which imply a

category theorem of Isbel I 's and have applications to the

spectral theory of C*-algebras. The same lattice theoretical

methods yield a proof of de Groot's category theorem for regular

subc ompac t spac e s.

1. Background and main results

A topological space is a Baire space if any countable intersection of

dense open sets is dense. The classical result on such spaces is the

category theorem of Baire.

THEOREM A (Baire). A space is a Baire space if it is locally

compact Hausdorff or completely metrizable.

This theorem is eminently useful in analysis and topological algebra;

one need only recall the open mapping theorems for topological groups and

topological vector spaces (see, for example, [7], p. 120) or of theorems in

which joint continuity of a two variable function is deduced from separate

continuity (see, for example, [7], p. 121, [73], [74], [75]). Basic

properties of Baire spaces and their applications are developed in standard

texts such as Bourbaki's [7]. The Baire category theorem is in reality two

theorems in one; it was de Groot who succeeded in finding a common

generalisation of the two. He formulated the following condition [7].
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266 Karl H. Hofmann

DEFINITION B (de Groot). A space is called subcompaet if there is a

basis 8 for the topology such that every filterbasis F on 8 has a

non-empty intersection provided it is regular, that is satisfies the

condition that V € F implies the existence of a U € F with U c V .

He then proves:

THEOREM C (de Groot). Every subaompact regular space is a Baire

space.

All locally compact Hausdorff spaces are subcompaet (take for B the

set of all relatively compact open sets) and all completely metrizable

spaces are subcompaet (take for 3 the set of open balls of radius 1/w

with n = 1, 2, ... ). Thus de Groot's theorem unifies Baire1 s.

In fact, de Groot establishes more general category theorems in which

higher cardinals replace countability [7]; a gap in his proof was only

recently closed by Fleischer [4]. In the paper before us higher cardinals

will not be the issue.

Another category theorem arising in functional analysis is perhaps

less known; it is due to Choquet and is published in [3].

THEOREM D (Choquet). The space of extreme points of a compact

convex set in a locally convex toipological vector space is a Baire space.

If one now considers the dual of a C*-algebra A with the weak

topology and therein the set P{A) of pure states, then Choquet's theorem

shows that P{A) is a Baire space. One knows that there is a continuous

and open map from P(A) onto the primitive ideal spectrum Prim A of A

(see C3], p. 68), and so one obtains

THEOREM E (Dixmier). The primitive ideal space Prim A of a C*-

algebra A is a Baire space.

Here we encounter spaces which are no longer Hausdorff. Spectra of

rings and algebras satisfy the axiom T , but generally no other

separation axiom. It is therefore important to understand category

theorems of the Baire type for 2\.-spaces. It is true that the primitive

ideal space of a C*-algebra is locally quasicompact; but one should not

believe that locally quasicompact spaces are Baire spaces in the absence of

Hausdorff separation. Some very simple examples will illustrate this
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point. First recall, that a space is locally quasicompact, if every point

has a neighborhood basis of quasicompact neighborhoods.

EXAMPLE 1.1. Let X be a well-ordered set. Then the collection of

all U = {y € X : x 2 y} together with X and 0 forms a topology.
%c

Every open set is the smallest neighborhood of its minimum (or else is

empty), hence is quasicompact. Further, every non-empty open set is dense.

Special cases:

(1) Let X = M be the set of natural numbers in their natural order.

Then X is a locally quasicompact T -space which is not a Baire space,

since the intersection of the dense open sets U , n (. IN , is empty.

(2) Let X = ft be the set of all countable ordinals in their natural

order. Then X is a locally quasicompact T Baire space.

Before we further discuss non-separated spaces we need to introduce a

property, which arises very naturally in algebraic geometry and in the

spectral theory of rings and algebras and which partially makes up for the

loss of separation. Firstly, a closed subset A of a space X is called

irreducible , if it is not the union of two closed proper subsets. If X

is the space of Example 1.1 (l), then A = X is irreducible. Any

singleton closure is irreducible. Secondly, a space is called sober, if

each nonvoid closed irreducible subset has a unique dense point. Notice

that neither Example 1.1 (l) nor Example 1.1 (2) is a sober space, since X

has no maximum, hence no dense point. Because of the uniqueness

requirement in the definition of a sober space all sober spaces are

T.-spaces.

I am not sure whether it is well-known that one has a Baire category

theorem for locally quasicompact sober spaces. In any case one finds such

a result in a paper of IsbelI's [72].

THEOREM F (IsbelI). Every locally quasicompact sober space is a

Baire space.

The key is lattice theoretical. It has been recognized several times

that it is useful to consider the lattice theoretical background of the

Baire category theorem (see, for example, Fleischer and Reyes [5]). IsbelI

obtained his category theorem pursuing "pointless topology"; that is,
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the study of complete lattices satisfying the infinite distributive law

x A sup X = sup(x A X) for any subset X and any element x of the

lattice. The lattice of open sets of any space is of this type. These

lattices have been given many different names£\such as complete Brouwerien

lattices, local lattices, locales, frames, complete Heyting algebras. •

IsbelI makes the point that in general one does not expect a Baire category

theorem for complete Heyting algebras ([?2J, p. 33^). We concentrate here

on a different type of complete lattice which in general need not even be

distributive. Indeed, much attention has been given recently to continuous

lattices, so called by Scott in his construction of set theoretical models

of the lambda calculus [7 6] and in his mathematical foundation of

computation. In topology and topological algebra, continuous lattices

occur frequently as I pointed out in my survey article [9]; a general

treatment of continuous lattices is about to become available [6].

Among the numerous characterisations of continuous lattices, the one

using an auxiliary relation is still the most convenient and straight-

forward for the definition:

DEFINITION 1.2. (l) Let L be a complete lattice. Then we write

x « y for two elements whenever for any directed set D with y - sup D

we find a d € D with x 5 d .

(2) A continuous lattice is a complete lattice in which every element

y satisfies the relation y = sup{x : x « y} ([6], 1-1.1 and 1-1.7). D

We read the relation x « y as "x is way below y" . This

relation is readily seen to be transitive and stronger than the relation

2 ; in general it is not reflexive. Because of Definition 1.2 (2), the

way below relation holds fairly often in a continuous lattice. For more

technical information turn to [6], Chapter I, Section 1. We note that for

a topological space X the lattice 0(X) of open sets is a complete

lattice (and indeed a complete Heyting algebra). If U, V (. 0(X) and Q

is a quasicompact set with U c Q c y t then U « V . Conversely, if X

is locally quasicompact, then U « V implies the existence of a quasi-

compact set Q with U c Q c V , and condition (2) of Definition 1.2 is

satisfied. Thus 0(X) is a continuous lattice whenever X is a locally

quasicompact space. Lawson and I showed in [//], that for sober spaces this

condition is also sufficient. We also proved that there are second
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countable Tn-spaces X for which 0(X) is a continuous l a t t i ce , but in

which every quasicompact set has empty interior. Nevertheless, spaces for

which 0{X) is a continuous l a t t i ce behave in many respects l ike locally

compact spaces. This just if ies the following definition [77].

DEFINITION 1.3 (Ward). A space X is quasi-locally compact if

0{X) is a continuous l a t t i ce . Q

Hecall: a locally quasicompact space is quasi-locally compact but not

conversely. For sober spaces, the two concepts agree. Quasi-locally

compact spaces have also been called semi-locally bounded (Isbel l) , core

compact (Hofmann and Lawson), CL-spaces (Hofmann). For equivalent

characterisations of these spaces see, for example, [7 7].

An element p in a la t t ice is called irreducible, if the relation

p = xy implies p = x or p = y . The set of irreducible elements p < 1

in a la t t ice L will be denoted IRR L . The irreducible closed sets in a

space X have now a clear-cut la t t ice theoretical meaning: a closed

subset A of X is irreducible if and only if X\A € IRR 0(X) . If X

is sober, then the function x i—»• X\{x] : X •*• IRR 0(X) is a bijection.

Under these circumstances, if P = X\(x} € IRR 0{X) and U € 0(X) we have

x i U if and only if V <£ P ; the point is that the second relation is

formulated entirely within the la t t ice 0(X) . This allows us to interpret

in an arbitrary la t t i ce L the irreducibles as "points" and to interpret

the relation u ^ p between an arbitrary element u € L and an

irredicuble p as "the point p is an element of u " . With this in mind

we begin to formulate the Baire property in la t t ice theoretical terms. Of

course, we also need to express in la t t ice theoretical terms what i t means

that an open set is dense in a space. This is easy.

DEFINITION 1.4. An element d in a la t t ice L with zero is dense,

if the relation 0 # x in L always implies x A d t 0 for a l l x (cf.

[5]). Q

We are now ready for the principal definition.

MAIN DEFINITION 1.5. A complete la t t ice L is called a Baire

lattice, if for every countable collection Nc L of dense elements and

for each non-zero element u € L there is an irreducible element p such
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that d A u $ p for a l l d € N . •

Notice that if L = 0(X) for a sober space X , this says precisely
that X is a Baire space.

Now we are ready for the main theorem.

MAIN THEOREM 1.6. Every continuous lattice is a Baire lattice.

Before we proceed to the proof and a discussion we derive the relevant

topological corollary. An immediate translation yields

B A I R E CATEGORY THEOREM FOR QUASI -LOCALLY COMPACT SPACES 1 . 7 . Let X

be a quasi-locally compact space. Then for each countable family D ,

n € IN of dense open subsets and for each non-empty open set U there is
an irreducible closed set A in X such that A n U n D / 0 for all

n € IN .

This applies in particular to locally quasicompact spaces. Isbell's

category theorem (Theorem F) is an immediate corollary of Theorem 1.7. For

an illustration of Theorem 1.7 one might wish to consider Example 1.1 (l).

Notice that Theorem 1.6 is more general than Theorem 1.7 since it does not

require distributivity of the lattice. We will in fact provide a lattice

theoretical theorem which will both imply our main theorem and de Groot's

Theorem C. It should be interesting to observe how regularity intercedes

in the latter.

We saw that for quasi-locally compact spaces, sobriety implies the

Baire space property. Example 1.1 (2) shows that the converse fails. How

closely are the two concepts related? Before we give some answers, we

recall the following facts. For any topological space X there is an open

continuous map s^ : X •*• X into a sober space such that

!/i—>- s~ (U) : 0(X) -»• 0{X) is a lattice isomorphism. The map is natural

and universal (that is, every continuous function X -*• Y into a sober

space factors through s y ) • It X is a 2\.-space, then s,, is an

embedding (see [S], ['/]). The space X is called the sobrification of

X . For the following proposition recall that not every closed subspace of

a Baire space is in general a Baire space.

PROPOSITION 1. . Let X be a quasi-locally compact T -space such
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that its sobrification X is first countable. Then the following
conditions are equivalent:

(1) X is sober;

(2) all closed subspaces of X are Baire spaces;

(3) all closed irreducible subspaces of X are Baire spaces.

The first axiom of countability of X does not translate in a simple

fashion into a property of X . But since 0(X) S? 0(X) , we know that X

is second countable if and only if X is second countable, and second

countability implies first countability. Hence we have the corollary:

COROLLARY 1.9. Let X be a second countable quasi-locally compact

TQ-space. Then the above conditions {x)} (2) and (3) (of Proposition 1.8,1

are equivalent.

Taking Corollary 1.9 together with Dixmier's category theorem (Theorem
E) we deduce that Prim A is sober for any separable C*-algebra A ,
since the primitive ideal space of a separable C-algebra is second
countable. The la t t ice of closed two sided ideals of A is isomorphic to
O(Prim A) . Hence we know that Prim A is sober if and only if every
closed prime ideal is primitive. Thus we obtain the following corollary,
for which a different proof is given in [3], p. 79.

COROLLARY 1.10. In a separable C*-algebra every closed two-sided
prime ideal is the kernel of an irreducible representation.

In the absence of more precise information, let us denote by PRIM A
the space of closed two sided prime ideals of a C-algebra A . Then
PRIM A = (Prim A)", and as a consequence of the fact that the spectrum of a
continuous lat t ice is locally quasicompact and sober and of our results
above we may record

PROPOSITION 1.11. The space PRIM A is a locally quasicompact sober

TQ Baire space for any C*-algebra A .

I wish to acknowledge a seminar discussion with Horst Leptin who asked
me whether there was an access to the Baire space property of primitive
ideal spectra of C-algebras through continuous la t t ices . I s t i l l cannot
answer this affirmatively, but his question led me to the main theorem.
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2. More lattice theory: proofs

We begin with some notation. Let L be a l a t t i c e . Instead of x A y

we wi l l write xy , and for a subset X c L we set

\X = iy € L : y 5 x for some x € X]

and

X = {y € L : x 2 z/ for some x € X} .

We abbreviate -Ha;} by +x and + {x} by -he . A set X a L is called

an upper set if *X = X . A set F c L is a filter if it is an upper set

and satisfies FF c F .

Much of continuous lattice theory is based on the auxiliary relation

« which we introduced in Definition 1.2 (l). It is useful, however, to

deal with auxiliary relations on a formal basis (see [6], 1-1.9)•

DEFINITION 2.1. A binary relation —c on a lattice will be called

an extra order, if it satisfies the following conditions for all

u, x, y, z € L :

(1) x -< y implies x 5 y ;

(2) u 5 x —< y 5 z implies u -< z ;

(3) 0 -< x .

An extra order is said to be regular, if, in addition, it also satisfies

(h) z ? 0 implies there is a V + 0 with V —e. z .

Some extra orders satisfy the following condition which is stronger and is

called the interpolation property:

(IHT) (X —< s and x # s) implies there is a V t x with

x —< v -< z . C

REMARK 2.2. (l) The way-below relation « on a continuous lattice

is an extra order with the interpolation property; in particular, it is

regular (see C6] , 1-1 for these facts and further details).

(2) Let L = 0(X) for a topological space X . Suppose that 8 is

a basis for the topology. For U, V (. 0(X) we write U —<. V if there is

a W f 8 SUch that U c W c 7 . Then -< is an extra order which is

certainly regular if X is a regular space. D
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DEFINITION 2.3. If L is a la t t ice with an extra order —< , we say

that an upper set U is open in (L, —<) , if for every U € U there is

a u € U with u —< u . In an arbitrary complete la t t ice L we say that

an upper set U is open (without specification), if for every V € U

there is a u € U with u « V (that is if £/ is open in (L, «) ) (see

[6], 1-3.1). a

We are now ready for the key lemma, whose proof for continuous

latt ices is Keimel's streamlined version of my original proof.

LEMMA 2.4. Let L be a lattice with an extra order —< . Suppose

that V is an open upper set in (L, —<) . If N is any countable subset

of L with VN c V , then for each v € V there is an open filter U in

(L, -<) with vN c U c V .

Proof. The set G = {x € L : Vx c v} i s a f i l t e r containing

N = {x : n = 1, 2, . . . } . We define a = x ... x and note a € G

for a l l n = 1, 2, . . . . We select inductively a sequence b € V ,

n = 0, 1, . . . as follows: set £>„ = v and suppose that b~, ..., b € V

have been selected. Since a . € G we have fe a , E V . Since V i s
n+1 n n+1

open in (L, —<) , we find an element fc , € V with i> n -~< b a , .
w+1 rc+1 n n+1

Since b a £ £> , we can apply Definition 2.1 (2) to obtain

b - —< Z> . Similarly, from 2> a . 5 a n we obtain b , —< a , via
n+1 n w n+1 n+1 n+1 n+1

Definition 2.1 (2), which implies b , 2 a , by Definition 2.1 (l). We
n+1 n+l

now set U = U{+i : n = 0, 1, } . Since b € 7 for a l l n , c lear ly

U c V . In par t icu la r , v = bQ Z U and a € +2> c u for a l l n , and so

x (. U for a l l n . If i , j ( ff , then there i s an n with b < x, t/ ,

and thus xy S. +b c £/ . Hence !/ i s a f i l t e r . Therefore, va £ U for

a l l n . If u € 1/ , then there i s an n with £> —< b S u , and thus

b -< u by Definition 2.1 (2) . Hence U i s open in (£, —<) . •

DEFINITION 2 .5 . A pair (L, -<) of a l a t t i c e with an extra order i s

called a de Groot lattice, i f for every open f i l t e r U in (£, —<) there

i s an irreducible element p i L\U . We say that (L, —<) i s regular if

—< is regular. El
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LEMMA 2.6 ([6], 1-3.1* and 3.6). Let L be a complete lattice and

U an open filter. Then for any x $ U there is an irreducible element

p \ U with x 5 p . In particular, (L, « ) is a de Groot lattice.

The proof is easy: one uses the openness of U and the definition of

« to show that ^x\U is inductive and picks a maximal element p in

PROPOSITION 2.7. Let L be a continuous lattice and V an open

upper set. If N is a countable set with VN c v , then for every v € V

and every x $ V there is an irreducible element p > x with p £ +vN .

Proof. Let U be the open filter constructed in Lemma 2.h with <<

in place of —< . Let p be as in Lemma 2.6. D

This proposition generalizes some well known facts on continuous

lattices.

COROLLARY 2.8. Let L be a continuous lattice. Then

(1) if y ̂  x , then there is an irreducible element p with

x 5 p and y % p ;

(2) if y ̂  x , then there is an open filter U with y £ U

and x $ U .

Proof. Conclusion (2) is immediate from Lemma 2.U with N = {l} and

« in place of —< , and conclusion (l) follows from (2) and Lemma 2.6, or

else directly from Proposition 2.7 with N = {1} . D

Conclusion (l) is equivalent to the statement x = inf (-he n IRR.L)

for all x € L .

We return for a moment to another class of de Groot lattices, which in

fact suggested the name.

PROPOSITION 2.9. If X is a subcompaot space and B the basis

given in de Groot's Definition B,, and if we define 13 -^. V in 0(X) if

and only if there is a W e 8 such that U c ~W c V , then [o(X), ̂ c) is

a de Groot lattice which is regular if X is a regular space (see Remark

2.2 (2) and Definition 2.5).

Proof. Let U be an open filter in (0(X), —<) . Then U n B is a
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fil ter basis on 8 such as was demanded in Definition B. I t therefore

contains a point in i t s intersection by subcompactness. If x is this

point, then X\{x}~ is an irreducible element of 0{X) which is not

contained in U . ^

Now we have two instances of regular de Groot lat t ices: continuous

lattices (Remark 2.2, Lemma 2.6) and topologies of subcompact regular

spaces (Proposition 2.9). At this point we formulate a lat t ice theoretical

generalisation of de Groot's Theorem C.

THEOREM 2.10. Let L be a complete lattice with an extra order —<

such that {L, —<) is a regular de Groot lattice. Then L is a Baire

lattice.

Proof. Let N be a countable set of dense elements. This means that

0 + x and n £ N always implies 0 t xn . Let v •£ 0 be arbitrary in

L . We set V = L\{0} . By Definition 2.1 {k), the upper set V is open

in (L, —<) , and by what we just saw, VN c V . By Lemma 2.it there is an

open f i l ter U in (L, -<) with VN c U <= V = L\{0] . Since (£, —0 is

a de Groot l a t t i ce , there is an irreducible element p € L\U . Hence

p f ivN which we had to show (Definition 1.5). D

We can now readily prove some of the main results of Section 1.

Proof of the Main Theorem 1.6. For a continuous l a t t i ce , « is

regular (Remark 2.2 ( l ) ) ; so by Lemma 2.6 we know that (L, « ) is a

regular de Groot l a t t i c e . Hence L is a Baire l a t t i ce by Theorem 2.10.

Proof of de Groot's Theorem C. Let X be a regular T.-space. Then

i t is Hausdorff, hence sober. Now X is a Baire space if and only if

0(X) is a Baire l a t t i ce . But if X is regular, then the extra order of

Remark 2.2 (2) and Proposition 2.9 is regular. Hence [o(X), -^) is a

regular de Groot l a t t i ce by Proposition 2.9. Thus 0(X) is a Baire

lat t ice by Theorem 2.10. The assertion thus is proved for T -spaces.

Since an arbitrary space is a Baire space if and only if i t s universal

T -quotient (in which points x and y are identified if and only if

{x} = {y} ) is a Baire space, the theorem is proved. •

We now proceed to prove Proposition 1.8. Some further notation is

needed. On a complete l a t t i ce we introduce a 2\.-topology w(L) , called
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the lower topology, by taking the sets L\+x as subbasic. A set X c L

is called order generating, if x = inf (to n X) for all x € L . If

X c IRR L , then we call the topology induced on X by u(L) the hull-

kernel topology. If L is distributive and thus IRR.L is the set of

prime elements below 1 , this is the traditional concept.

LEMMA 2.11. Let L be a continuous lattice with 0 € IRR L . If

X c IRR L is an order generating set with 0 ^ X , and if IRR L is first

countable in 0 , then X is not a Baire space.

Proof. Step 1. For x t 0 , the closed set \x n X is nowhere

dense: indeed, if it is, then it contains a basic non-empty open set

U = X\[-\-a1 u ... u \a ) ; that is, X c ta: u +a. u ... u +a . In

particular, X c +xa1 ... a , and thus xa ...a £ inf X = 0 , since X

is order generating. But since U + 0 , neither x nor any of the a is

0 , and this is a contradiction to the irreducibility of 0 .

Step 2. Set 1 = IRR L . Basic 0)(L)-neighborhoods of 0 in Y are

of the form Y\F with a finite set F not containing 0 . Since 0 is

irreducible, 0 # inf F ; hence 0 has in fact a basis of co(L)-

neighborhoods of the form y\+U with V # 0 . Since 0 has a countable

basis of w(L)-neighborhoods, there is a sequence v > v > ... > 0 such

that the sequence YYt-D is a neighborhood basis of 0 . If x f 0 , then

there must be a basic neighborhood Y\+U which is contained in the

neighborhood L\\x . Thus V 2 x . Thus {v } is cofinal in the filter

L\{0> . This means ZA(o} = U iv , and thus X = U(A:\+U ) . Hence X is

a countable union of the closed sets X\iv , which are nowhere dense in X

by Step 1. Hence X is not a Baire space. Q

PROPOSITION 2.12. Let L be a continuous lattice and X an order

generating subspace of IRR.^ in the hull-kernel topology. Suppose that

each irreducible element p of L has a countable neighborhood basis in

+p relative to the lower topology. If p d IRR L\X , then +p\X is a

closed irreducible subset of X which is not a Baire space.
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Proof. We apply Lemma 2.11 with the continuous lattice +p in place

of L , with p in place of 0 and with +p n X in place of X . It

remains to show that +p n X is irreducible in X . Suppose then

+p n X = A u 4 2 with two closed subsets of +p n X . Since every closed

subset is an intersection of basic ones we may assume that A. and A^

are basic. Then they are of the form A = X\+F with two finite sets
n n

F , n = 1, 2 , of L . Since A = +p n A , we have

j; n tf n +p = Â  n + (f V p) , and so we may assume that F c +p , for

n = 1, 2 . Since X is order generating, we have

p = inf(+p n X) = inf[A± U A^ > inf(? u ?2) 2 p .

Since p is irreducible, this implies p € P. or p € P« , and this means

\p n X <^ A or +p n X c 4 and this shows that +p n X is

irreducible. E

As a corollary we now prove Proposition 1.8. By the results of [77],

we may assume that X is an order generating subset of the spectrum IRR L

of a continuous Heyting algebra L , and we know from [77], that X is

sober if and only if X = IRR L . If this condition holds, then X is

locally quasicompact sober, and then so is every closed subspace. Thus

X = IRR^L if and only if (l) implies (2) and (2) implies (3) in

Proposition 1.8. It remains to show that X $ IRR L implies not (3).

Indeed suppose that we have a p € IRR L\X . If IRR L is first

countable, then IRR^+p = +p r\ IRR L is first countable with respect to

u)(+p) in p . Since the topology w(L) induces on X the given topology

and on X = IRR L the sobrification topology, the hypotheses of

Proposition 2.12 are satisfied. Thus Proposition 2.12 provides the

existence of an irreducible closed subset of X which is not a Baire

space. C
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