
Math. Proc. Camb. Phil. Soc. (2020), 168, 601–612 C© Cambridge Philosophical Society 2019 601
doi:10.1017/S0305004119000021

First published online 22 February 2019

A generalisation of von Staudt’s theorem on cross-ratios

YATIR HALEVI† AND ITAY KAPLAN‡

Einstein Institute of Mathematics, Edmond J. Safra Campus, The Hebrew University of
Jerusalem, Givat Ram 91904, Jerusalem, Israel.

e-mails: yatir.halevi@mail.huji.ac.il, kaplan@math.huji.ac.il

(Received 01 August 2018; revised 02 January 2019)

Abstract

A generalisation of von Staudt’s theorem that every permutation of the projective line
that preserves harmonic quadruples is a projective semilinear map is given. It is then con-
cluded that any proper supergroup of permutations of the projective semilinear group over
an algebraically closed field of transcendence degree at least 1 is 4-transitive.

2010 Mathematics Subject Classification: 14N99; 20B27; 20E28

1. Introduction

In his book Geometrie der Lage (see [vS47]), first appearing in 1847, Karl Georg Christian
von Staudt, wanting to establish (real) projective geometry on an axiomatic approach,
defined a projectivity to be a permutation of the projective line P(R) =R∪ {∞} preserving
harmonic quadruples, i.e. quadruples of distinct elements having cross-ratio −1 (which can
be defined strictly geometrically), where the cross-ratio of a quadruple of distinct elements is

[a, b; c, d] = c − a

c − b
· d − b

d − a
.

He proved that a projectivity is a composition of a finite number of perspectivities (which
are basic geometric maps). It was noticed later that there is a small gap in von Staudt’s
reasoning, see [Coo34, Voe08] for a detailed historical background.

Given a field F , a projectivity (also known as a homography or a fractional linear
transformation) of the projective line P(F) = F ∪ {∞} is an element of the group

PGL2(F) =
{

ax + b

cx + d
: a, b, c, d ∈ F, ad − bc �= 0

}
,

where the usual conventions when dealing with ∞, 0 and fractions apply here. It is easy to
see that projectivities preserve cross-ratios.
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It was Schreier and Sperner who first proved in [SS35, page 191] that every permutation
of F ∪ {∞}, where F is a field of characteristic �= 2, preserving harmonic quadruples, i.e.

[a, b; c, d] = −1 =⇒ [ f (a), f (b); f (c), f (d)] = −1,

is an element of

P�L2(F) =
{

axσ + b

cxσ + d
: a, b, c, d ∈ F, ad − bc �= 0, σ ∈ Aut (F)

}
.

Any result in this spirit is now called a von Staudt theorem.
Over the years this theorem was generalised by relaxing the assumptions on F , for

instance for F a skew-field or a ring with some additional assumptions, see the introduction
in [Hav15] for a survey of results in that direction.

In this paper, we follow a generalisation in a different direction. Hoffman eliminated the
restriction on the characteristic of the field and replaced −1 with any field element which is
fixed by Aut (F), see [Hof51]. Our main result is corollary 2·16 from the text:

THEOREM. Let F be a field, k its prime field and ∅ �= O ⊆ F \ {0, 1} which is Aut (F)-
invariant. If

(i) k(O)� F and
(ii) if char(F) = 2 then F is perfect and there exists an Aut (F)-invariant subfield

k � L � F,

then the subgroup of permutations f of F ∪ {∞} satisfying

[a, b; c, d] ∈ O ⇐⇒ [ f (a), f (b); f (c), f (d)] ∈ O

is exactly P�L2(F).

The motivation for seeking such a generalisation came from infinite symmetric groups,
and some model theory. It is well known that for a cardinal κ , the closed subgroups (in
the product topology) of the infinite symmetric group Sκ , for a cardinal κ , in the product
topology correspond exactly to automorphisms groups of first-order structures. Thus, finding
closed supergroups of such groups sheds light on the the first order theory of such structures.

In [KS16], the second author and Pierre Simon proved that the affine groups AGLn(Q)

(for n ≥ 2) and the projective linear groups PGLn(Q) (for n ≥ 3) are maximal closed in Sω.
They ask whether it is true that P�L2(F) is maximal closed, for an algebraically closed field
F of transcendence degree greater that 1. The aim of this paper is to step towards answering
this question.

Bogomolov and Rovinsky proved that P�Ln(F) is maximal closed for n ≥ 3 and any field
F , see [BR13]. The reason for the distinction between n = 2 and n ≥ 3 is that by the fun-
damental theorem of projective geometry, P�Ln(F) (for n ≥ 3) is exactly the collineation
group of Pn−1(F). On the other hand, for n = 2, since P1(F) is the projective line, all the
points are collinear.

If P�L2(F) were not maximal closed, a proper supergroup of it must preserve one out
of a known family of relations, two of them being quaternary relations (see [KS16] for
details). The aim is to show that it can not preserve any member of this family of relations.
In this paper, using the above theorem, we conclude that if F is an algebraically closed
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field of transcendence degree at least 1, then any group of permutation of F ∪ {∞} prop-
erly containing P�L2(F) is 4-transitive and hence does not preserve any proper quaternary
relation.

2. Proofs

Definition 2·1. Let f be a permutation of F ∪ {∞} and ∅ �= O ⊆ F \ {0, 1}. We say that
f is O-preserving if

[a, b; c, d] ∈ O ⇐⇒ [ f (a), f (b); f (c), f (d)] ∈ O,

where a, b, c, d are distinct elements from F ∪ {∞}.
Remark 2·2. In this paper the cross-ratio is only taken for distinct points so that it takes
values in F \ {0, 1} (one can expand the definition to allow repetitions, but this will not be
used).

Throughout we will implicitly use the following property of the cross-ratio:

For any two quadruples of distinct elements of F ∪ {∞}, {A, B, C, D} and
{A, B, C, X}, the following holds:

[A, B; C, D] = [A, B; C, X ] ⇐⇒ D = X.

PROPOSITION 2·3. For every x ∈ F \ {0, 1} there exists a unique function

gx : X −→ F ∪ {∞},
where X ⊆ (F ∪ {∞})3 is the set of triples of distinct elements, such that for every distinct
a, b, c ∈ F ∪ {∞}, [

a, b; c, gx(a, b, c)
] = x. The function gx satisfies:

(i) gx(a, b, c) �= a, b, c and
(ii) the map x 
→ gx(a, b, c) is injective.

Furthermore, if f is an O-preserving permutation of F ∪ {∞}, for some ∅ �= O ⊆ F \
{0, 1}, then for every distinct a, b, c ∈ F ∪ {∞} there exists a permutation α : O → O, such
for every x ∈ O

f (gx(a, b, c)) = gα(x) ( f (a), f (b), f (c)) .

Proof. The function gx is uniquely determined since, by the definition of the cross-ratio, we
get the following formula:

gx(a, b, c) = b(c − a) − ax(c − b)

(c − a) − x(c − b)
.

Properties (i) and (ii) follow easily.
As for the furthermore, for x ∈ O , define

α(x) := [
f (a), f (b); f (c), f (gx(a, b, c))

] ∈ O

and likewise

α−1(x) := [
a, b; c, f −1(gx( f (a), f (b), f (c)))

] ∈ O.
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They are both elements of O since f is O-preserving, and note that by uniqueness, the
definition of α gives that

f (gx(a, b, c)) = gα(x)( f (a), f (b), f (c)).

Claim. For every a, b, c, y ∈ F ∪ {∞} distinct, if [a, b; c, y] ∈ O then

α([a, b; c, y]) = [ f (a), f (b); f (c), f (y)]
and if [ f (a), f (b); f (c), y] ∈ O then

α−1([ f (a), f (b); f (c), y]) = [a, b; c, f −1(y)].
Proof. Assume that [a, b; c, y] = x ∈ O . By uniqueness necessarily

y = gx(a, b, c).

It now follows that

α([a, b; c, y]) = α(x) = [ f (a), f (b); f (c), f (gx(a, b, c))] = [ f (a), f (b); f (c), f (y)],
as required.

The proof for α−1 is similar.

We may now compute

(α ◦ α−1)(x) = α
([a, b; c, f −1(gx( f (a), f (b), f (c)))])

= [ f (a), f (b); f (c), gx( f (a), f (b), f (c))] = x .

Similarly we get that (α−1 ◦ α)(x) = x , as needed.

Remark 2·4. The previous proposition is obviously also true if we permute the coordinates
of the cross-ratio, e.g. consider a function hx which guarantees that

[a, b; hx(a, b, c), c] = x .

In Corollary 2·6, Lemma 2·7, Lemma 2·8 and Proposition 2·9 we work under the
following assumption and notation:

ASSUMPTION 2·5. Let O be a non-empty subset of F \ {0, 1}, f an O-preserving permu-
tation of F ∪ {∞} which fixes {0, 1, ∞} pointwise.

Furthermore, denote by K := k(O) the field generated by the elements of O , where k is
the prime field.

COROLLARY 2·6. (Assumption 2·5) For all a �= b ∈ F there exist permutations τa,b, ρa,b,

χa,b, αa,b, βa,b : O → O, such that for every x ∈ O:

f (ax + b(1 − x)) = f (a)τa,b(x) + f (b)(1 − τa,b(x)),

f

(
a − (1 − x)b

x

)
= f (a) − (1 − ρa,b(x)) f (b)

ρa,b(x)
,
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f

(
a − xb

1 − x

)
= f (a) − χa,b(x) f (b)

1 − χa,b(x)
,

f

(
abx − bx − ab + a

ax − x − b + 1

)
= f (a) f (b)αa,b(x) − f (b)αa,b(x) − f (a) f (b) + f (a)

f (a)αa,b(x) − αa,b(x) − f (b) + 1
,

f

(
a − b − abx + bx

a − b − ax + x

)
= f (a) − f (b) − f (a) f (b)βa,b(x) + f (b)βa,b(x)

f (a) − f (b) − f (a)βa,b(x) + βa,b(x)
.

(For αa,b and βa,b we also require that a, b �= 1.)
Moreover, f � O is a permutation of O.

Proof. We apply Proposition 2·3. Let a �= b ∈ F . For τa,b use the identity

[ax + b(1 − x), a; b, ∞] = x .

For ρa,b use the identity [
a,

a − (1 − x)b

x
; b, ∞

]
= x .

For χa,b use the identity [
a, b; a − xb

1 − x
, ∞

]
= x .

For αa,b use the identity [
b, a; 1,

abx − bx − ab + a

ax − x − b + 1

]
= x .

For βa,b use the identity [
b, 1; a,

a − b − abx + bx

a − b − ax + x

]
= x .

In order to show that f � O is a permutation of O , note that [a, 1, 0, ∞] = a for every
a ∈ F \ {0, 1}.

LEMMA 2·7. (Assumption 2·5) For every a, b ∈ K and x ∈ O

f (a) + (1 − x) f (b) ∈ f (K ) and

x f (a) + f (b) ∈ f (K ).

Proof. We start with the first assertion, so let a, b ∈ K and x ∈ O . If b = 0 there is nothing
to show. If a = 0 and b �= 0, then since τ0,b is a permutation, by Corollary 2·6,

(1 − x) f (b) = (1 − (τa,b ◦ τ−1
a,b)(x)) f (b) = f ((1 − τ−1

a,b(x))b) ∈ f (K ).

We may thus assume that a, b �= 0 and let x2 = ρ−1
a,0(x), so f (a/x2) = f (a)/x . If b = a/x2

then

f (a) + f (b) − x f

(
a

x2

)
= f (b) ∈ f (K ).
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Now, assume that b �= a/x2 and let x3 = τ−1
a/x2,b(x). Hence

f

(
a

x2
x3 + b(1 − x3)

)
= f

(
a

x2

)
τa/x2,b(x3) + f (b)(1 − τa/x2,b(x3))

= f (a) + f (b) − x f (b).

Now the second assertion. If a = 0 there is nothing to show. If a �= 0 and b = 0 then since
τa,b is a permutation, x f (a) ∈ f (K ). We may thus assume that a, b �= 0 and let x2 = χ−1

b,0(x).
If a = b/(1 − x2) then

x f

(
b

1 − x2

)
+ f (b) = x

1 − x
f (b) + f (b) = f (a) ∈ f (K ).

Finally, assume that a �= b/(1 − x2), and let x3 = τ−1
a,b/(1−x2)

(x). Hence

f

(
ax3 + b

1 − x2
(1 − x3)

)
= f (a)τa,b/(1−x2)(x3) + f

(
b

1 − x2

)
(1 − τa,b/(1−x2)(x3))

= f (a)x + f (b).

LEMMA 2·8. (Assumption 2·5) For every 0 �= a ∈ K and x ∈ O,

− f (a)2x + f (a)x + f (a) ∈ f (K ) and

1 + x − x

f (a)
∈ f (K ).

Proof. Let x ∈ O and a ∈ K with a �= 0. If a = 1 both assertions are trivial, so assume a �= 1.
We start with the first assertion. Since τa,0 is a permutation, by Corollary 2·6, we may

define x1 = τ−1
a,0(x) so, f (x1a) = x f (a). We aim to use the permutation αa,x1a . Obviously,

x1a �= a and if x1a = 1 then x f (a) = 1 and − f (a)2x + f (a)x + f (a) = 0. Thus, by
Corollary 2·6, αa,x1a is a permutation. Let x2 := α−1

a,x1a(x), so

f

(
a(x1a)x2 − (x1a)x2 − a(x1a) + a

ax2 − x2 − (x1a) + 1

)

= f (a) f (x1a)x − f (x1a)x − f (a) f (x1a) + f (a)

f (a)x − x − f (x1a) + 1
= − f (a)2x + f (a)x + f (a).

Now for the second assertion. Since f � O is a permutation, we may define x1 := f −1(x).
Note that, since x ∈ O , necessarily x �= 1 and thus, since f is permutation fixing 1, x1 �= 1
as well. We aim to use the permutation βa,x1 . If a = x1 then the statement is obviously
true, so we may assume that a �= x1 (and both not equal to 1). By Corollary 2·6, βa,x1 is
a permutation, so we may define x2 := β−1

a,x1
(x) and so

f

(
a − x1 − ax1x2 + x1x2

a − x1 − ax2 + x2

)
= f (a) − f (x1) − f (a) f (x1)x + f (x1)x

f (a) − f (x1) − f (a)x + x

= 1 + x − x

f (a)
.

PROPOSITION 2·9. Using Assumption 2·5 and if when char(F) = 2 we assume further that
O is closed under taking square-roots, then f (K ) = K .
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Proof. We first show that K ⊆ f (K ). Note that O ⊆ f (K ), indeed f � O is a permutation
by Corollary 2·6.

Let a, b ∈ K and x ∈ O , which exists since O is non-empty. By Lemma 2·7, f (a) +
f (b) − x f (b) ∈ f (K ). By the same lemma

f (a) + f (b) = x f (b) + ( f (a) + f (b) − x f (b)) ∈ f (K ).

In order to show that if f (c) ∈ f (K ) then also − f (c), first notice that by considering ρ0,c

in Corollary 2·6 we see that

−1 − x

x
f (c) ∈ f (K ).

By considering χd,0 in the same corollary, we see that

f (d)

1 − x
∈ f (K ),

for any d ∈ K . In particular − f (c)/x ∈ f (K ), for any c ∈ K . Similarly, by considering τa,0,
we get that x f (c) ∈ f (K ) for all c ∈ K and together − f (c) ∈ f (K ) for all such c, as needed.

As for the multiplication, by Lemma 2·8,

− f (a)2x + f (a)x + f (a) ∈ f (K ),

for every x ∈ O . Using the above, and since f (a), f (a)x ∈ f (K ),

− f (a)2x ∈ f (K ).

So − f (a)2x = f (b) for some b ∈ K . Since − f (b)/x ∈ f (K ) as well, f (a)2 ∈ f (K ).

Let a �= 0 ∈ K , by Lemma 2·8, 1 + x − x/ f (a) ∈ f (K ) for any x ∈ O . Using the above,
and since 1, x ∈ f (K ),

x

f (a)
∈ f (K ).

Using a similar argument to the previous paragraph, −1/ f (a) ∈ f (K ), so 1/ f (a) ∈ f (K ).
Finally, we first assume that char(F) �= 2. Let a, b ∈ K . Since ( f (a) + f (b))2 ∈ f (K ) we

get that

2 f (a) f (b) ∈ f (K ).

To get that f (K ) is a subfield, we need this final claim:

Claim. If a ∈ K then f (a)/2 ∈ f (K ).

Proof. We may assume that a �= 0. Since f (a) ∈ f (K ) then 1/ f (a) ∈ f (K ) and so also
2/ f (a). Take the inverse again and f (a)/2 ∈ f (K ).

We conclude that if char(F) �= 2, f (K ) is a field and so K ⊆ f (K ).
Assume that char(F) = 2. For any n ≥ 0, let

( f (K ))2n := {a2n : a ∈ f (K )}.
Note that since f (K ) is closed under squares, {( f (K ))2n : n ≥ 0} forms a decreasing
sequence under inclusion. The following is an easy observation:
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Claim. For every n ≥ 0, ( f (K ))2n
is also closed under addition, additive and multiplicative

inverses and taking square powers.

Consider L := ⋂
n≥0( f (K ))2n

.

Claim. L is a field containing O. Therefore, K ⊆ L ⊆ f (K ).

Proof. Since O is closed under square-roots it is contained in L and by the previous claim L
is closed under addition, additive and multiplicative inverses and taking square-powers. Let
a, b ∈ L and let n ≥ 0. We will show that ab ∈ ( f (K ))2n

. Since a, b ∈ ( f (K ))2n+1
, by the fol-

lowing form of Hua’s identity (first mentioned in [Hua49] but we use the more manageable
form from [Jac68, page 2]):

a − (a−1 + (b−2 − a)−1)−1 = a2b2

and, by the last claim, a2b2 ∈ ( f (K ))2n+1
. Since the Frobenius map is injective, ab ∈

( f (K ))2n
, as required.

Either way, K ⊆ f (K ), but since f −1 is also O-preserving by definition, we actually have
K ⊆ f (K ) ⊆ K as required.

From now on we no longer assume Assumption 2·5.

Definition 2·10. For an Aut (F)-invariant subfield K ⊆ F , a K -chain is an image of
K ∪ {∞} under the action of an element of P�L2(F).

Remark 2·11. The term K -chain is due originally to von Staudt who introduced it for
any real subline of the complex projective line. Note that the usual definition of K -chain
is for any subfield K ⊆ F and only images under the action of PGL2(F) (see [Her95,
definition 2·2·2]). Naturally, these definitions are equivalent for Aut (F)-invariant subfields.
See [Her95] for more on this subject, and in a higher level of generality.

We recall that an action of a group G on a set X (with |X | ≥ k) is k-transitive if G acts
transitively on the set of k-tuples of distinct elements of X . For example, the action of the
group PGL2(F) on F ∪ {∞} is 3-transitive.

COROLLARY 2·12. Let f be an O-preserving permutation of F ∪ {∞}, for some non-empty
O ⊆ F \ {0, 1} which is Aut (F)-invariant. If, when char(F) = 2, we further assume O is
closed under taking square-roots, then f sends K -chains to K -chains, where K = k(O).

Proof. Let X = T (K ∪ {∞}) be a K -chain, where T ∈ P�L2(F). Since O is Aut (F)-
invariant, f ◦ T is also O-preserving. Thus we may assume that X = K ∪ {∞}. Since
PGL2(F) is 3-transitive and preserves the cross-ratio, by composing with an element of
PGL2(F) we may assume that f fixes {0, 1, ∞} pointwise. By Proposition 2·9, f (K ∪
{∞}) = K ∪ {∞} as needed.

We recall some definitions from affine geometry. Given a K -vector space V , an affine
line is a set of the form K a + b for some a, b ∈ V with a �= 0. A map T : V → V is called
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semilinear if there exists a field automorphism σ ∈ Aut (K ) such that for all v, u ∈ V and
x, y ∈ K

T (xv + yu) = σ(x)T (v) + σ(y)T (u).

FACT 2·13 (The Fundamental Theorem of Affine Geometry). [BR98, theorem 3·5·6] Let K
be any field and V a K -vector space of dimension at least 2. If f a permutation of V sending
affine lines to affine lines then there exists a semilinear map T : V → V and b ∈ V such that
f (x) = T (x) + b for all x ∈ V .

The following theorem is a generalisation of the main theorem in [Hof51].

THEOREM 2·14. Let k � F be a field, where k is the prime field of F, and let f be a
permutation of F ∪ {∞}.

If char(F) = 2 we assume further that:
(a) F is perfect and
(b) there exists an Aut (F)-invariant subfield k � L � F.

Then the following are equivalent:
(i) f ∈ P�L2(F);

(ii) f is O-preserving for all non-empty O ⊆ F \ {0, 1} which are Aut (F)-invariant and
satisfy k(O)� F ;

(iii) f is O-preserving for some non-empty O ⊆ F \ {0, 1} which is Aut (F)-invariant
and satisfies k(O)� F ;

(iv) There exists an Aut (F)-invariant subfield K � F such that f sends K -chains to
K -chains;

(v) For all Aut (F)-invariant subfields K � F, f sends K -chains to K -chains.

Remark 2·15. The implication (iv) ⇒ (i) is well known for fields F with char(F) �= 2, see
[Her95, theorem 9·2·5], but we provide a direct proof.

Proof. (i) ⇒ (ii). This is by the definition of P�L2(F).
(ii) ⇒ (iii). If char(F) �= 2 just take O = k \ {0, 1} (which is non-empty). If char(F) = 2,

then take O = L \ {0, 1}, where L is the given Aut (F)-invariant subfield.
(iii) ⇒ (iv). Let K = k(O). Since O is Aut (F)-invariant, K is Aut (F)-invariant and if

char(F) = 2 then O is closed under taking square-roots since F is perfect and hence the
inverse of the Frobenius map is an automorphism. Now apply Corollary 2·12.

(iv) ⇒ (i). By composing with an element of PGL2(F), we may assume that f fixes
{0, 1, ∞} pointwise. We plan to use Fact 2·13, so we must show that, in F as a K -vector
space, f � F sends affine lines to affine lines. Since f fixes {∞}, and sends K -chains to
K -chains, it is sufficient to show the following, where by a projective affine line we mean a
union of an affine line with {∞},

Recall also that any K -chain is equal to some T (K ∪ {∞}), where T (x) is of the form

axσ + b

cxσ + d
,

for a, b, c, d ∈ F , with ad − bc �= 0, and σ ∈ Aut (F). Since K is Aut (F)-invariant we may
assume that σ = id.
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Claim. A subset of F ∪ {∞} is a K -chain which includes ∞ if and only if it is a projective
affine line.

Proof. A projective affine line has the form a(K ∪ {∞}) + b, for a, b ∈ F , so it is a K -chain.
For the other direction, by translation it is enough to show that any K -chain containing 0
and ∞ is a projective affine line.

Note that projective affine lines that contain 0 are just of the form aK (for a �= 0), and that
both families of projective affine lines containing 0 and K -chains containing 0 and ∞ are
closed under scalar multiplication (by non-zero elements from F) and inverse (x 
→ 1/x).
So it is enough to show that after applying finitely many operations of the form above on a
K -chain containing 0 and ∞ gives a projective affine line (containing 0). Assume that we
are given a K -chain of the form T (K ∪ {∞}) for T as above which contains 0 and ∞.

(i) If T is of the form ax + b with a �= 0, then b = 0 and we are done.
(ii) If T is of the form b/(cx + f ) with c �= 0, then we are done by the first bullet (after

dividing by b and taking inverse).
(iii) If the T is of the form (ax + b)/(cx + d) with a, c �= 0, then after multiplying by

c/a, we may assume that a = c = 1, and then since the chain contains 0, b ∈ K , and
since the chain contains ∞, d ∈ K . So it is equal to (K ∪ {∞}).

As a result, f preserves the system of affine lines in the K -vector space F . Since
K�F , dimK F ≥ 2 so by the fundamental theorem of affine geometry (Fact 2·13) and since
f (0) = 0, f must be additive and so also f (−a) = − f (a) for all a ∈ F .

The conjugation of f by the PGL2(F) map x 
→ 1/x also satisfies the above, so it is also
additive. This translates to

f (a) f (b)

f (a) + f (b)
= f

(
ab

a + b

)
,

for all nonzero a, b ∈ F . By setting in the equation a = 1 and b = t − 1 (for t �= 1) we obtain,
f (t) f (t−1) = 1, thus f commutes with inversion.

Putting in the same equation b = 1 − a, for a �= 0, 1, we obtain f (a) f (1 − a) =
f (a(1 − a)), which gives f (a2) = f (a)2.

If char(F) �= 2 then, since f is additive, f (x/2) = f (x)/2 for all x ∈ F . Set a = x + y in
the last equation to get f (xy) = f (x) f (y) for all x, y ∈ F .

If char(F) = 2 we once again use Hua’s identity:

f (a2b2) = f
(
a − (a−1 + (b−2 − a−1)−1

)

= f (a) − ( f (a)−1 + ( f (b)−2 − f (a)−1)−1) = f (a2) f (b2).

Hence f (ab)2 = ( f (a) f (b))2, so f (ab) = f (a) f (b).
Either way, we get that f is an automorphism of F , an in particular f ∈ P�L2(F).
(i) ⇒ (v) is clear and (v) ⇒ (iv) follows by taking K = k.

As a direct corollary of Theorem 2·14 we get the following.
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COROLLARY 2·16. Let F be a field, k its prime field and ∅ �= O ⊆ F \ {0, 1} which is
Aut (F)-invariant. If :

(i) k(O)� F and
(ii) if char(F) = 2 then F is perfect and there exists an Aut (F)-invariant subfield k �

L � F,

then the subgroup of O-preserving permutations of F ∪ {∞} is exactly P�L2(F).

It was shown by Hoffman in [Hof51], that if F is a field, a ∈ F \ {0, 1} and f is an
{a}-preserving permutation of F ∪ {∞} then f ∈ P�L2(F). One may ask, what about if
f preserves a set of cardinality larger than 1? Theorem 2·14 only gives a partial answer.
More specifically, can the proper containment of fields assumptions be dropped? Can the
perfectness assumption when char(F) = 2 be dropped? For example:

Question 2·17. Does the subgroup of permutations of Q(
√

2) ∪ {∞} which are {±√
2}-

preserving properly contain P�L2(Q(
√

2))?

3. Every proper extension of P�L2(F) is 4-transitive

Our final aim is to show that, as a corollary of Theorem 2·14, any group of permutations
of F ∪ {∞}, for F algebraically closed of transcendence degree at least 1, which properly
contains P�L2(F) must be 4-transitive and as a result does not preserve any non-trivial
4-relation.

LEMMA 3·1. Let {Oi }i∈I be the orbits of Aut (F) acting on F \ {0, 1}. Then the orbits of
P�L2(F) acting on quadruples of distinct elements from F ∪ {∞} are

{(a, b, c, d) : [a, b; c, d] ∈ Oi }i∈I .

Proof. Let T ◦ σ ∈ P�L2(F, ), for T ∈ PGL2(F) and σ ∈ Aut (F). Since elements of
PGL2(K ) preserve the cross-ratio, and σ(Oi) = Oi by definition, P�L2(F) preserves the
orbits.

Now, let (x, y, z, w), (a, b, c, d) be quadruples of distinct elements such that

[x, y; z, w], [a, b; c, d] ∈ Oi .

By applying an element of Aut (F) we may assume that [x, y; z, w] = [a, b; c, d].
Since PGL2(F) is 3-transitive, there exists T ∈ PGL2(K ) such that T (x) = a,

T (y) = b, T (z) = c. So we have that

[a, b; c, T (w)] = [a, b; c, d].
As a, b, c are distinct we have that T (w) = d.

THEOREM 3·2. Let F be an algebraically closed field of transcendence degree at least 1,
and H be a group of permutations of F ∪ {∞} properly containing P�L2(F). Then H is
4-transitive.

Proof. By Lemma 3·1, the action of P�L2(F) breaks the space of quadruples of distinct
elements from F ∪ {∞} into infinitely many finite orbits (corresponding to finite Galois
orbits) and one infinite orbit (corresponding to the Galois orbit of transcendentals).
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Thus it is enough to show that every orbit of the action of H on the space of quadruples
of distinct elements from F ∪ {∞} intersects the orbit corresponding to the transcendentals.

Aiming for a contradiction, assume there exists an orbit X of the action of H , which only
contains orbits with algebraic cross-ratio, i.e.

X =
⋃
i∈I0

{(a, b, c, d) : [a, b; c, d] ∈ Oi },

for some I0 ⊆ I and Oi finite, where I and Oi are as in Lemma 3·1. Let O = ⋃
i∈I0

Oi be
the cross-ratios arising from quadruples from X and let K = k(O), where k is the prime
field. Note that K � F and that O is Aut (F) invariant. By assumption every element of H
is O-preserving and thus by Corollary 2·16, H ⊆ P�L2(F), contradiction.

Question 3·3. What about other fields? For instance, is it true that every group of
permutations of Q(

√
2) ∪ {∞} properly containing P�L2(Q(

√
2)) must be 4-transitive?
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