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Abstract

We state and verify up to weight 172 a conjecture on the existence of a certain generating set for spaces of
classical Siegel modular forms. This conjecture is particularly useful for calculations involving Fourier
expansions. Using this generating set, we verify the Böcherer conjecture for nonrational eigenforms and
discriminants with class number greater than one. As a further application we verify another conjecture
for weights up to 150 and investigate an analog of the Victor–Miller basis. Additionally, we describe
some arithmetic properties of the basis we found.
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1. Introduction

We know many basic facts about Siegel modular forms of degree two. In particular, the
classical Siegel modular forms have been thoroughly investigated. However, we still
lack knowledge about analogs of well-known properties of elliptic modular forms.
A first effort to overcome this situation using a computational approach was made
in [17]. This work focused on scalar-valued (that is, classical) Siegel modular forms.
There are recent calculations of Hecke eigenvalues of vector-valued Siegel modular
forms by Bergström et al. [1] that use cohomological methods. The effort made to
explore paramodular forms of low weight in [13] should also be mentioned. Building
on this and the paramodular conjecture (see [5]), some spinor L-series attached to
paramodular forms were calculated in [16]. This last work is particularly significant
since it begins to build the picture for high-level paramodular groups. We also point out
that the author will extend the calculations presented in this paper to the paramodular
case in another paper.
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All the computations mentioned above have in common the feature that they are
restricted to low weights. Moreover, they focus on Fourier expansions. But only the
last one is able to provide access to the associated L-series with sufficient precision.
However, this computation relies on the paramodular conjecture and is hence not
provably correct—though it is very useful. It is also restricted to weight-2 forms.
In contrast, in this paper, we want to consider modular forms of higher weights. We
need an efficient way to generate the Fourier expansions of Siegel modular forms for
forms of weight k if k is large.

We provide evidence for a conjecture on generating sets for spaces of classical
Siegel modular forms. Namely, the products of at most two elements of the Maass
Spezialschar form a generating set of the space of all Siegel modular forms associated
to the full modular group. We will use Sage [18] for our computations. Additionally,
we will use Magma [4] for fast linear algebra.

In Section 2, we verify that these products generate the spaces of Siegel modular
forms up to weight 172. This makes it possible to calculate Fourier expansions for
very high-weight forms to high precision. These Fourier expansions can be used to
compute the attached spinor L-series of Hecke eigenforms up to a precision involving
primes up to 1500.

We will do this in Section 3 to investigate the following conjecture. In [2], an analog
of the Gross–Zagier theorem for the spinor L-series attached to Siegel modular forms
of degree two was conjectured.

CONJECTURE 1 (Böcherer). Let f (z)=
∑

t a f (t) exp(2π i · tr(t z)) be a Siegel
Hecke eigenform of degree two associated to the full modular group. Denote by Z f,D

the attached spinor L-series twisted by the Kronecker character ( D
·
), where D < 0.

Then
Z f,D(k − 1)= c f B f (D)

where

B f (D)= |D|
1−k

( ∑
[t]∈S(D)

a f (t)

|Aut(t)|

)2

for some c f ∈ C depending only on f . Here [t] runs over a set S(D) of representatives
with respect to the SL2(Z) action such that det t =−D/4, and the automorphism
group of t is given by

Aut(t)= {a ∈ SL2(Z) : atrta = t}.

A proof of this conjecture could also provide a tool to investigate statistics of central
values more efficiently.

The conjecture has been proved for Maass lifts (see [2]) by using the splitting of the
L-series and Waldspurger’s theorem on special values of L-series attached to elliptic
modular forms. The case of Yoshida lifts of weight two has also been treated (see [3]).
The author [14] and Ryan and Tornaría [16] recently argued that the conjecture should
also hold in the paramodular setting, and proved that it holds for Gritsenko lifts. For
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forms that are not Maass lifts, it seems inaccessible at the moment. Indeed, even the
functional equation of the twisted L-series, which appears in the conjecture, has been
proved completely only recently [12].

The conjecture has been verified in [10] for even weights k from 20 to 26 and
discriminants D ∈ {−3,−4,−7,−8}. Besides the small number of cases considered,
there are two other outstanding problems with this verification. First, all discriminants
correspond to quadratic number fields with class number one. Second, all Hecke
eigenforms are rational up to weight 26. But the space of cuspidal forms that are
not Maass lifts has dimension two for weight 24 and 26. Hence the rational Hecke
action on this space is not irreducible. This phenomenon is exceptional, as suggested
by computations presented in Section 4. More precisely, the rational action of the
Hecke algebra on spaces of Siegel modular forms of weight k is irreducible when
28≤ k ≤ 150. The reason for this curious fact is not yet known, but checking the
Böcherer conjecture outside the range of this phenomenon can provide further support
for it.

This is done in Section 3. We obtain intervals I f,D such that c f (see Conjecture 1),
which is a real number in all cases, is contained in I f,D if the conjecture holds. The
intersection

⋂
D I f,D is nonempty for weight-k cuspidal Hecke eigenforms that are

not contained in the Maass Spezialschar when 20≤ k < 40.
In Section 4, we present two further applications. First, we state a conjecture on

the maximal discriminant of a pivot set for the Fourier expansion of a basis. This has
already been considered in a recent preprint [13]. We are able to provide evidence
of better asymptotic behavior. Second, we consider the rational Hecke action on the
spaces of weight-k forms as mentioned above.

Although the construction of the generating set was motivated by computational
needs, this set turns out to have interesting arithmetic properties. We will present these
at the end of Section 4.

Throughout this paper, we consider only spaces of rational modular forms. In
particular, we are not concerned with integral modular forms. A basis for the module
of integral Siegel modular forms can easily be deduced from our results, and might be
of some use.

2. Generating spaces by products of elements in the Maass Spezialschar

The well-known Igusa generators for the ring of classical Siegel modular forms
associated to the full modular group of degree two (see [9]) are elements of
the Maass Spezialschar. Multiplication of multidimensional Fourier expansions is
computationally very expensive. Thus, an important question arises: how many
multiplications will we need to calculate a basis element of a given space of modular
forms of weight k? Using Igusa generators, the answer is clearly O(log(k)). For
example, to calculate the Fourier expansion of a generic weight 30 form, we have
to perform more than 15 multiplications and the longest product involves four
multiplications.
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Since it is rather cheap to calculate Fourier expansions of elements in the Maass
Spezialschar, we do not need to restrict to the aforementioned generators of the ring,
but we can consider all elements of this space. Indeed, up to weight 18, the Maass
Spezialschar is equal to the spaces of modular forms. For every higher weight, it is
a proper subspace. Surprisingly, using this enlarged set of generators, we are able
to restrict to products with at most two factors. Using such a basis to calculate the
Fourier expansion of a generic weight 30 form, we need six multiplications and the
longest product involves two factors.

From now on we assume that Siegel modular forms are classical unless otherwise
stated. To state a precise conjecture, denote the Jacobian modular group of degree one
by 0J and the full Siegel modular group of degree g by 0g . For a detailed discussion
of Jacobi forms, see [7]. Let [0g, detk] and [0g, detk]0 be the spaces of modular forms
and cusp forms of weight k, respectively. Analogously, denote the space of Jacobi
forms of index m and weight k by [0J , m, k]. Let V f denote Gritsenko’s arithmetic
lift of a Jacobi form f (see [8]).

CONJECTURE 2. We have⊕
k≥0,2|k

[02, detk] =
( ⊕

k≥0,2|k

V [0J , 1, k]

)2

.

REMARK 3. The reader may wonder if there is an obvious obstruction to our
conjecture that arises from dimensional considerations. The spaces of formal products
of Maass lifts have dimension asymptotically growing as k5, while the spaces of Siegel
modular forms have dimension asymptotically growing as k4.

REMARK 4. This conjecture is an analog of the fact that the spaces for weight k are
spanned by Ek and Ei Ek−i for i ∈ {4, . . . , k − 4} for the full elliptic modular group.
In this case, even the relations can be deduced with help of the theory of periods
(see [11]).

REMARK 5. The paramodular analog of Conjecture 2 has to include symmetrizations
of paramodular forms of lower level. This is already relevant for paramodular forms of
level two, where symmetrizations of Siegel modular forms for the full modular group
suffice to span the space together with Gritsenko lifts for low weights. Notice that
there are paramodular forms of weight two for sufficiently high levels, as was shown
by Poor and Yuen in [13]. Gritsenko suggested that Gritsenko lifts with a character,
that also exist for weight 1, might fill this gap.

By explicit computation, we can prove the following theorem.

THEOREM 6. Conjecture 2 holds up to weight 172.

In Table 1, we present some of the generators that we calculated. To explain the
table, we fix some notation. The Maass Spezialschar is the image of

[0J , 1, k] ∼= [01, detk] × [01, detk+2
]0.
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TABLE 1. Products generating the spaces of Siegel modular forms, ignoring the Maass Spezialschar.

Weight Products

20 10|0 · 10|0, 10|0 · 10|1

22 10|0 · 12|0, 10|0 · 12|1
24 12|0 · 12|0, 12|0 · 12|1, 12|1 · 12|1, 10|0 · 14|0
26 12|0 · 14|0, 12|0 · 14|1, 12|1 · 14|0
28 14|0 · 14|0, 14|0 · 14|1, 14|1 · 14|1, 12|0 · 16|0, 12|0 · 16|1
30 14|0 · 16|0, 14|0 · 16|1, 14|0 · 16|1, 14|1 · 16|0, 14|1 · 16|1, 12|0 · 18|0
32 16|0 · 16|0, 16|0 · 16|1, 16|0 · 16|1, 16|1 · 16|1, 16|1 · 16|1, 16|1 · 16|1, 14|0 · 18|0
34 16|0 · 18|0, 16|0 · 18|1, 16|0 · 18|1, 16|1 · 18|1, 16|1 · 18|1, 16|1 · 18|1,

16|1 · 18|0, 14|0 · 20|0

Every space [01, detk] admits a Victor–Miller basis, which is canonically enumerated.
We denote this basis by { fk, i : i ∈ {0, . . . , dim[01, detk] − 1}}. The lift of ( fk, i , 0)
is denoted by k|i and the lift of (0, fk+2,i ) is denoted by k|i . In the table, we have
listed only elements which do not belong to the Maass Spezialschar. Together with
V [0J , 1, k] they span [02, detk].

3. The Böcherer conjecture

To verify the Böcherer conjecture for nonrational eigenforms, a suitable generating
set for the spaces of Siegel modular forms was needed. This motivated the
investigations in Section 2.

In this section, we approximate the central values of the twisted spinor L-function
with a bound on the approximation error. This yields very small intervals for the
constant c f . Since they have nonempty intersection, the calculations in this section
support Conjecture 1.

Consider a cuspidal eigenform f ∈ [02, detk] and a primitive Dirichlet character
χD = (

D
·
). We revise the approximation of the twisted spinor L-function Z f,D at

s ∈ C based on a series representation found by Kohnen (see [10]). We denote the nth
coefficient of the spinor ζ -function by λ f (n). Then

Z f,D(s)=
∞∑

n=1

gD(n)λ f (n)χD(n),

where

gD(n) = 2(2π/|D|)2−k+2sn−k/2/(0(s)0(s − k + 2))

×

∫
∞

n
Kk−2(4π

√
y/|D|)((y/n)3k/2−2−s

+ (y/n)s−k/2) dy.

By Kk−2 we mean the K -Bessel function with parameter k − 2.
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This series can be approximated by suitably truncating it:

Z̃ f,D(s, P, N )=
∑

n∈S(N ,P)

gD(n)λ f (n)χD(n),

where S(N , P) is the set of all positive integers greater than N all of whose prime
divisors are less than P . When s = k − 1, a bound for the approximation error has
already been given by Kohnen and Kuß:

|Z f,D(k − 1)− Z̃ f,D(k − 1, P, N )|

≤ η f (N , P, D, s)

:=

∑
N>p>P

1≤ν≤N/p

4pk−3/2
|λ f (ν)|̃gD(νp)

+ 4(2π/|D|)k/0(k − 1)
∫
∞

N+1
Kk−2(4π

√
y/|D|)y(k+1)/2(y − N ) dy.

The function g̃D is defined as follows:

g̃D(n) := 4(2π/|D|)k/0(k − 1)
∫
∞

n
Kk−2(4π

√
y/|D|)(y/n)k/2−1.

Note that this bound is far from optimal. So we also use a second estimate,

η̃ f (P, N , P ′, N ′, D, s)= |Z̃ f,D(s, P, N )− Z̃ f,D(s, P ′, N ′)|,

with suitable P ′ and N ′. Later we will have to introduce a correction factor κ , since η̃
might become too small if the series converges slowly. Nevertheless, the bounds κη̃ f
obtained in this way are much tighter in general.

In the course of these calculations, we will take P = 1500, N = 7999, P ′ = 1000,
and N ′ = 3999, and neglect these parameters in notation. We will also omit the
parameter s, if s = k − 1.

Denote the Fourier expansion of f ∈ [02, detk] by

f (z)=
∑

t
a f (t) exp(2π i · tr(t z)).

Here tr is the usual trace of a matrix. We will use Andrianov’s formula for the Hecke
eigenvalues (see [10] for an easy-to-read statement). To do so, we need to assume that

a f

(
1 1/2

1/2 1

)
6= 0.

This assumption holds for all the forms that we consider.
We have to calculate the Fourier expansion of forms f up to discriminants−

√
8000.

This is no problem at all. But we also have to calculate certain Fourier coefficients of
discriminant up to −3× 14992

≈−6.75× 106. Namely, we have to calculate the
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Fourier coefficients associated to (
1 p/2

p/2 p2

)
.

This is actually a very hard problem.
We briefly describe the technical details of our method. By the results of the

preceding section, we can use a basis which consists of products of at most two
elements of the Maass Spezialschar in all cases considered. We have to compute η−6.
Notice that this is the most expensive part of the computation of the Fourier expansion
of the lifts and we precalculate it. Multiplication of such big polynomials with only
positive coefficients using Fourier transforms consumes too much memory. Here, we
combine a multimodular approach with ordinary O(n2) multiplication, which admits
easy hard-drive caching.

Assume that we have calculated the elements of the Maass Spezialschar. Let
us now focus on a nontrivial product g = g1 · g2. We have to calculate certain
Fourier coefficients ag(t)=

∑
t1+t2=t ag1(t1) · ag2(t2). Since agi (ti ) depends only on

di := det(ti ) and εi := gcd(ti ) (here i = 1, 2), we may write

ag(t)=
∑

ε1,ε2,d1,d2

v(ε1, ε2, d1, d2)ag1(ε1, d1)ag2(ε2, d2).

The function v : Z4
→ N can be precalculated. This formula saves a lot of time, as

the same numbers do not need to be multiplied many times. See the code, which is
available on the author’s homepage, for more details.

We calculate the central values of twisted spinor L-series associated to cuspidal
Hecke eigenforms which do not belong to the Maass Spezialschar of even weight k up
to 40, and for all discriminants D strictly between 0 and −300. The relevant quotients
are denoted by c′f (D) := Z̃ f,D(s, P, N )/B f (D). The factor B f (D) is essentially the
right-hand side of the Böcherer conjecture, as defined in the introduction. The results
support the Böcherer conjecture. However, for large discriminants, they are not very
precise. A brief summary is given in Tables 3 and 4. For the complete data, download
the relevant files on the author’s homepage. Here is a precise statement.

THEOREM 7. Let f be a weight-k cuspidal Hecke eigenform that is not an element of
the Maass Spezialschar, where 20≤ k < 40. Then the intervals

[c′f (D)− η f (D)/B f (D), c′f (D)+ η f (D)/B f (D)],

for discriminants D strictly between 0 and −300, have nonempty intersection. If κ f is
chosen according to Table 2, then the intervals

[c′f (D)− κ f η̃ f (D)/B f (D), c′f (D)+ κ f η̃ f (D)/B f (D)]

also have nonempty intersection.
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TABLE 2. Correction factors κ for weight-k forms in Theorem 7.

k 20 22 24a 24b 26a 26b 28 30 32 34 36 38

κ f 180 90 70 45 400 220 90 150 120 2300 85 400

TABLE 3. Numerical estimates c′f (D) of the constant c f occurring in the Böcherer conjecture.

Weight D c′f (D) η(D)/B f (D) η̃(D)/B f (D)

20 −3 2.067215202868765× 1011 8.7123× 10−41 2.4462× 10−31

−4 2.067215202868765× 1011 2.6633× 10−24 2.9904× 10−17

−15 2.067220228408808× 1011 8.2915× 1025 1.8868× 106

−20 2.066999728524787× 1011 3.3599× 1033 2.2640× 108

28 −3 5.105310601780946× 1014 5.6429× 10−32 3.3222× 10−22

−4 5.105310601780946× 1014 9.7141× 10−17 3.4976× 10−10

−15 5.105287106899537× 1014 2.0716× 1045 1.2487× 1011

−20 5.108464527256237× 1014 8.7051× 1053 2.0228× 1012

30 −3 7.494659605198417× 1015 6.3380× 10−30 3.3652× 10−21

−4 7.494659605198417× 1015 1.4559× 10−13 3.3121× 10−7

−15 7.493428754840905× 1015 4.6698× 1050 3.8657× 1012

−20 7.525312838702049× 1015 2.9997× 1060 2.7895× 1014

32 −3 1.205163535250015× 1017 6.3368× 10−28 3.5683× 10−18

−4 1.205163535250015× 1017 1.5997× 10−12 6.5727× 10−7

−15 1.205732652809925× 1017 3.2290× 1057 3.7921× 1015

−20 1.205060112394051× 1017 2.9225× 1064 7.7758× 1013

34 −3 1.086138503038145× 1018 5.6918× 10−26 2.5842× 10−17

−4 1.086138503038145× 1018 9.1579× 10−10 6.7761× 10−4

−15 1.086049155614554× 1018 1.3262× 1061 9.5845× 1015

−20 1.084637644518613× 1018 9.1134× 1070 3.1879× 1016

36 −3 1.684497849534415× 1019 4.6300× 10−24 5.5959× 10−16

−4 1.684497849534415× 1019 6.5481× 10−9 4.5361× 10−3

−15 1.704113931864776× 1019 4.0039× 1068 1.2502× 1018

−20 1.683266203530922× 1019 3.3778× 1075 5.0592× 1016

38 −3 6.357076618815059× 1019 3.4351× 10−22 1.1738× 10−14

−4 6.357076618815059× 1019 1.8281× 10−7 4.3949× 10−1

−15 6.517241676742821× 1019 8.0534× 1073 2.9605× 1018

−20 6.375510867491227× 1019 1.6586× 1081 7.7408× 1017
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TABLE 4. Some values of |log(c′f (D)/c
′

f (−3))|.

D\weight 20 28 30 32 34 36 38

−4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−7 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

−20 0.0001 0.0006 0.0041 0.0001 0.0014 0.0007 0.0029

−103 1.3565 0.1592 3.3038 0.4526 1.2287 1.0546 1.9854

−203 0.2641 0.4993 2.2404 0.1465 0.6835 0.6584 0.4231

−299 0.2152 0.2511 0.1197 0.7238 1.1443 0.2187 0.2517

REMARK 8. We note that the only critical value of L-series attached to Siegel modular
forms is k − 1. Hence Deligne’s conjecture [6] predicts that the central value is, up to
an algebraic number, the determinant of the period matrix attached to the eigenform f .
This is captured in the constant c f , but we know of no way to extract this determinant
from c f .

4. Two further applications

As mentioned in the introduction, one motivation for finding a basis as described in
Section 2 was to provide computational access to high weights. Indeed, on an ordinary
Sun server we are able to compute the Fourier expansions of the basis sufficiently
precisely to apply Hecke operators in a few seconds. In this section, we present two
applications which become amenable using the new bases.

4.1. The minimal discriminant of pivot sets. One often encounters modular forms
in other fields of mathematics. In order to use modular forms as a tool of investigation
in these fields, it is crucial to express them in terms of a given basis. This is often done
by comparing Fourier coefficients. Sometimes it is computationally very expensive
to calculate the Fourier expansions. Since the costs of this computation grow rapidly
in terms of the discriminant of the Fourier index, it is natural to ask the following
question: up to which discriminant does one have to calculate the Fourier expansion
of a Siegel modular form of degree two to uniquely determine it?

More precisely, we fix k and denote the Fourier expansion of a modular form f by∑
a f (t) exp(2π i · tr(t z)). Now, we consider D(p)=mini (−4 det(ti )) the minimal

discriminant associated to any set of pivot indices p= {ti }i of [02, detk]. By pivot
indices, we mean a set of indices p= {ti }i such that the rank of the matrix (a f (ti ))i, f ,
where f runs over a basis of [02, detk], is equal to dim[02, detk]. Now the question
can be formulated as follows. Can we express maxp D(p) in terms of k?

Using the basis presented in the preceding section, we can give a partial answer to
this question. The double logarithmic plot in Figure 1 of the data from Table 5 reveals
that for high weights k the slope tends to 2. This supports the following conjecture.
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FIGURE 1. Double logarithmic plot of maximal minimal discriminants for weights up to 172.

TABLE 5. Maximal minimal discriminants of pivot sets for weights 100≤ k < 160.

Weight maxpD(p) Weight maxpD(p) Weight maxpD(p)

100 301 120 433 140 589
102 301 122 436 142 596
104 320 124 456 144 616
106 337 126 477 146 641
108 341 128 481 148 645
110 364 130 508 150 676
112 365 132 513 152 685
114 385 134 533 154 705
116 404 136 556 156 732
118 408 138 560 158 736

CONJECTURE 9. Fix k and let p run over all sets of pivot indices associated to weight-
k forms. Then

max
p

D(p)=−ck2
+O(1) as k→∞,

where c ≈ 184/792 < 0.03.

REMARK 10. Note that the analogous result for [01, detk] is maxpD(p)=−k, due
to the Victor–Miller construction. In a recent preprint, Poor and Yuen show a similar
result that implies that c ≤ 8/225≈ 0.035 (see [13]).

4.2. Irreducibility of the Hecke action. Let K : [01, k] → [02, k] be the Klingen–
Eisenstein lift. The Hecke invariant splitting of the spaces of Siegel modular forms

[02, k] = K [01, k]0 ⊕ V [0J , 1, k] ⊕ S′k

is well known.
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In analogy to the degree-one case, one might expect that S′k is irreducible with
respect to the rational Hecke action for all k. But computations by Skoruppa in [17]
revealed that S′k is reducible if k ∈ {24, 26}. He found the aforementioned eigenforms
ϒka, ϒkb. We mention that the normalization of ϒk∗ was chosen such that all Fourier
coefficients were integral and coprime.

Nevertheless, the conjecture that the Hecke action on spaces of Siegel modular
forms should be ‘as irreducible as possible’ is commonly supposed to hold true. Using
the computational advantages of the basis presented in Section 2, we were able to
prove the following result.

THEOREM 11. The spaces S′k are irreducible with respect to the Hecke action for all
even k such that 28≤ k ≤ 150.

REMARK 12. No attempt was made to consider the odd-weight case, although in
principle the computations are feasible using Wronskians. See [15] for a detailed
treatment.

To prove this, the author calculated the matrix associated to the Hecke operator T (2)
with respect to the basis above using Sage, and then calculated its minimal polynomial
using Magma.

4.3. Interesting properties of the basis. The bases presented in Table 1 have
surprising properties. They are canonical in the sense that the maximum of the weights
of all lifts involved in nontrivial products is minimal within the set of all possible bases
of that kind.

We can read off the noteworthy fact that 14|1 · 16|1 is contained in the six-
dimensional space spanned by the Maass Spezialschar together with the three elements

14|0 · 16|0, 14|0 · 16|1, 14|0 · 16|1,

whereas dim[02, det30
] = 11. Hence the products we use to span the spaces of Siegel

modular forms satisfy more linear relations than one might expect in general.
Next, we consider the two Hecke eigenforms ϒ24a and ϒ24b of weight 24

normalized as in [17]. Expressing them in terms of the given basis yields two vectors
va, vb ∈Q8. It is surprising that (va)i = 0 exactly when (vb)i = 0, as one can see
in Table 6. An analogous result holds for the Hecke eigenforms ϒ26a and ϒ26b (see
Table 7). This suggests that the bases that we constructed are indeed connected to
periods, as mentioned in Remark 4.

There is one further phenomenon which presumably is of arithmetic interest and
might reflect the above connection. The denominators of the entries in these vectors
tend to be smooth. Recall that ϒ24∗ and ϒ26∗ are canonically normalized in the sense
that they are primitive integral eigenforms.

REMARK 13. We remark that the framework used to calculate this basis as well as the
applications are available on the author’s homepage. This framework is derived from
a set of tools that is presented in [15].
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TABLE 6. Coordinates of the exceptional eigenforms of weight 24 with respect to the basis in Table 1.

ϒ24a ϒ24b

0 0
−292

· 2237/25
· 34
· 5 · 7 · 13 416761/23

· 35
· 52
· 7

−52956193/22
· 33
· 5 · 7 · 13 −11 · 83 · 4987/34

· 52
· 7

−227 · 2969/25
· 34
· 5 · 7 · 13 937 · 947/23

· 35
· 52
· 7

0 0
11 · 157/26

· 35
· 5 · 7 · 13 13 · 83/24

· 36
· 52
· 7

22
· 5 · 11 · 157 · 661/3 −24

· 5 · 7 · 133
· 83/32

0 0

TABLE 7. Coordinates of the exceptional eigenforms of weight 26 with respect to the basis in Table 1.

71 · 139 · ϒ26a 71 · 139 · ϒ26b

0 0
10718579/23

· 132
−3 · 5 · 54059/23

61 · 79 · 3967087/24
· 3 · 52

· 7 · 132
−2251 · 9923/24

· 3 · 5
3 · 1703358596089/2 · 52

· 7 · 132
−3 · 191 · 10784339/2 · 5

0 0
−11 · 29 · 839/2 · 52

· 7 · 132 4177/23
· 3 · 5

11 · 29 · 37 · 167/25
· 3 · 7 · 13 −5 · 7 · 13 · 19 · 37/25

· 3
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