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AUTOCONJUGATE FUNCTIONS AND REPRESENTATIONS OF
MONOTONE OPERATORS

JEAN-PAUL P E N O T

We show the existence of a convex representation of a maximal monotone operator
by a convex function which is invariant with respect to the Fenchel conjugacy (up to
an interchange of variables). We use the framework of generalised convexity.

1. INTRODUCTION

The representations of maximal monotone operators on a reflexive Banach space
X by closed proper convex functions on the product X x X*, first obtained by Krauss
[7, 8, 9, 10] and Fitzpatrick [4], have recently received a renewed interest. In particular,
Martinez-Legaz and Thera [13] have characterised the image of the Fitzpatrick repre-
sentation and described the inverse correspondence; Burachik and Svaiter [2] have given
a criterion ensuring that a convex function o n X x X* represents a maximal monotone
operator and have introduced a whole class of such functions [3]. Penot [20] has used a
special kind of representations to deduce results about operations on maximal monotone
operators from classical results of convex analysis. His approach is connected with the
following problem: given a monotone operator M : X =t X*, it is possible to get a closed
convex function q on X x X* such that q*(x*,x) = q(x,x*) for any (x,x*) € X x X*
and fM ^ q ^ pM, where fM is the Fitzpatrick representation of M and pM = fM. A
positive answer is provided here in the broader framework of generalised convexity and
generalised monotonicity (see [1, 14, 15, 27, 29]). For the study of maximal monotone
operators and their representations by convex functions (on spaces which are larger than
X x X*), we refer to the recent monograph by Simons [28].

2. DUALITIES

DEFINITION 1: Given a pair of sets W, Y a duality is a mapping D : f >-* fD from
RW into RY (where I : = R U {-co, +co}), such that, for any family (fi)iei of l " ' ,
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Y Y/

The reverse (or dual or reciprocal) duality D': 3R —> M. is then defined by

(2) gD' := inf{/j € R^ : hD ^ g}.
Then the pair (D, D') is a Galois correspondence between the complete lattices R

y
and R and one can draw from tha t useful consequences:

f gD'DDI=gD'

Vf€RW V f f 6 f {fD < g) «=> (gD> < f)

\/feWW (fDDI = f)*(3geRY: f = gD').

We denote by TD(W) (respectively, TD>(Y)) the image of D (respectively, D').

Among dualities, a familiar class is formed by conjugacies (or conjugations), that is,
dualities for which

(/ + r)
D = fD - r V/ e RW Vr € R.

It can be shown ([12]) that D is a conjugacy if and only if there exists a coupling function
c:W xY -*W:=RU {-oo, +00} such that fD = fc, where

fc(y) := - inf{/(to) - c(w, y) : w € W},

with the convention (+00) + (—00) = +00. In such a case, r^iW) is the set of functions
on W which are suprema of families of functions of the form w i-t c(w, y) - r for (y, r)
in some subset of Y x R; a similar assertion holds for TD>(Y). Conjugacies have been
introduced by Moreau [14] and have been studied by a number of authors (see [1, 6,
11, 16, 19, 18, 15, 22, 23, 26] and the references therein). It has also be shown by

yy yy
R

Martinez-Legaz and Singer ([12]) that dualities from R into R are characterised as
yy Y

the mappings D : R ->• R for which there exists a function G : W x y x E - > l (called
the generating function of D) such that for any (w, y) € W x Y the function G(w, y, •) is
nonincreasing, lower semicontinuous and such that

fD(y) = sup G(w, y, /(to)) V/ € R^ Vy 6 Y.
wew

The generating function G is given by

(3) G(w>y,r):={i{w)+r)D(y),

where i$ is the indicator function of a subset S of W given by LS(W) — 0 if w € 5, +00
else. When D is a conjugacy with coupling function c, formula (3) is reduced to

G(w,y,r) = ~(r-c(w,y)).
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With any duality one can associate a notion of subdifferential. However, for simplicity,
we only consider the case D is a conjugacy arising from a coupling function c; then the

w
c-subdifferential of a function / G R at some point w € W where f(w) is finite is the
set

a c / H := {y € Y : /(•) - c(-,y) > f(w) - c(w,y)}.
As in [15, Section 2.4], which deals with the case c is an evaluation function, we observe
that the multimapping M : w :=} dcf(w) is c-monotone in the following sense:

c{w,y) + c(w',y') ^ c(w', y) + c(w, y') Vtu, w' € W, y € M(w), y' € M(w').

When X is a Banach space, W — X, Y := X* and c : X x X* —> M is the natural pairing
c(-, •) := (•, •), this definition coincides with the usual one. We say that a multimapping
M : W =3 Y is maximal c-monotone if it is c-monotone and if its graph is not strictly
contained in the graph of a c-monotone operator.

3. REPRESENTATIONS OF MONOTONE OPERATORS.

In the sequel, W and Y are sets, c : W x Y —»Risa coupling function and we
focus our attention on c-monotone operators M :W -=XY. We set Z := W x Y and we
consider the duality D : RZ -»• RZ, given by £>(/) = fD, with

fD(w', y') := - inf{/(«/, y') - (c(w, y') + c(w', y)) : (w, y) € z) («,', y') € Z.

This duality is the conjugacy associated with the coupling function cD : Z x Z -+ R given

by
cD(z, z') := c(w,y') + c(w', y) for z := (w,y), z' := («/,y') e Z.

When W is a reflexive Banach space X, Y = X* and c is the evaluation (x,x*)
>->• x*(x), this duality is close to the classical Fenchel conjugacy since it is composed
of this conjugacy with the interchange of variables (x*,x) >-* (x,x*). As in such a case,
one disposes of the representations

IM '•— (CM) , PM '•= (CM)

of [4, 3, 20] respectively, where c : W x Y -y R is the given pairing, cM := c + iM

and where M is identified with its graph. Part of the interest of these representations is
expounded in the following statement.

LEMMA 2 . Let M : W =i Y be a c-monotone operator. Then

(a) the functions fM and pM belong to TD(Z) and one has /M^PM^ ^M\

(b) if (the graph of) M is contained in the domain of c then one has c — /M

= pM on M;
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(c) if M is maximal c-monotone, then one has c ^ fM < pM and {z € Z :
fM(z) = c(z)}cM;

(d) if M is maximal c-monotone and if its graph is contained in the domain of
c then one has c ^ /M < PM and M — {z € Z : /M(Z) = c(z)} = {z G Z :
PM(Z) = C(Z)}.

PROOF: (a) The inclusions /M, PM € TD{Z) are obvious. Using [14, Proposition
3.c], we deduce from the c-monotonicity of M that for any {w',y') € W x V, (w,y)
eW xY

c{w', y') + LM(w't y') > ~ [c(w, y) + LM{W, y) - (c(u/,y) + c{w, y'))] •

Setting cM '•= c + LM and taking the supremum over (w, y) € W x Y we get

CM ^ JM-

Taking the biconjugates, we obtain pM ^ JM-
(b) When M is contained in the domain of c, for (w',y') € M one can take

(w,y) — (w',y') in the supremum giving fM, one can simplify by c(w',y') and get
fM(w',y') > -[-c(w',y') + LM(w',y')] = c(w',y'). Since cM ^ PM ^ IM, one gets
c(w', y') - c M « y ' ) = ?«(«,',y') = fM(w',y').

(c) If M is maximal c-monotone, for any (u/, y1) € (W x Y) \M one can find some
(w,y) e M such that

c(u/, ?/') + c(w, y) < c(w', y) + c{w, y').

Then one has c(w',y') < +oo, cM{w,y) = c(iy,2/) < +oo, and

c(w', y') < c{w', y) + c(w, y') - c(w, y) = - \cM(w, y) - (c(wr, y) + c{w, y'

^ sup{- [cM(w",y") - (c(w',y") +c(w",y'))] : (w",y") eW x

$/MK,!/ ' ) .

(d) is a consequence of (b) and (c). D

A partial converse of assertion (d) of the preceding lemma can be given. When W is
a reflexive Banach space, Y — W* and c is the evaluation map given by c(w,y) = y(w),
a full converse is displayed in [2].

LEMMA 3 . Suppose W and Y are convex subsets of some vector spaces and Z
:= W x Y. Ifg : Z —• R is a convex function such that g ^ c, and if tie coupling function
c takes finite vaiues and is concave in both variables, then M :— {z : g(z) — c(z)} is
c-monotone.
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PROOF: Let z := (w, y) € M, z' := {w1, %/) € M. Then

-c(w, y) + -c(w', y') = -g(w, y) + -g(w', y')

> -c(w, y) + -c(iu, y') + -c(w', y) + -c(u;', y'),

so that c(w,y) + c(w', y') ^ c(w',y) + c(w,y'): M is c-monotone. D

The preceding proof is similar to an argument due to Martinez-Legaz and Svaiter;
see also [20, Proposition 3] in which its origins are described. The assumptions on c are
satisfied in each of the following examples.

EXAMPLE 1. W is a normed vector space, Y = W* and the coupling function c is given
by c(w,y) :— (y,w) - k(w), where k : W —> R is convex. The case k(-) = (l/2)r||-||2

corresponds to the classical theory of augmented Lagrangians ([6, 25]); some extensions
to more general situations are given in [1, 18, 23, 26].

EXAMPLE 2. W is a normed vector space, Y — W* and the coupling function c is given
by c(w,y) := min((y, w),0), an important case for quasiconvex programming ([11, 17,
22, 24]).

EXAMPLE 3. W is a normed vector space, Y — W* x K and the coupling function c is
given by c(w, (w*,r)) := min((w*, w),r), which is also important for quasiconvex duality
([11, 16, 21]).

EXAMPLE 4. W is a normed vector space, Y = W* x L+{W,W*) where L+(W,W) is
the cone of positive semidefinite symmetric operators from W into W and c(w, (xo*, A))
= {w*,w) -l/2(Aw,w) ([5]).

The representation we have in view is given in the following statement.

THEOREM 4 . For any c-monotone operator M : W zzt Y there exists q e r£)(W
x Y) such that qD = q and JM ^ q ^ PM- If moreover M is maximal c-monotone and
contained in the domain ofc, then M — {(w,y) : q{w,y) = c(w,y)}.

COROLLARY 5 . ([20]) For any reflexive Banach space X and any maximal
monotone operator M : X =3 X* there exists a closed convex function q : X x X* -> R
such that q*(x*,x) = q(x,x') for any (x,x') £ X x X* and /M^Q^ PM- If moreover
M is maximal monotone then M — {(x,x') : q{x,x*) = (x',x)}.

The theorem is a consequence of Lemma 2 and of the following proposition inspired

by [9] Theorem 4 and [20] Proposition 10. Let us note that here too uniqueness of q is

not ensured. However, as claimed by the second assertion, the coincidence set of q and

c is independent of the choice of q when M is maximal monotone; this assertion stems

from the fact that this set is also the coincidence set of pM with c and of p ^ with c.
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In the following proposition which casts the preceding statement in a more general
2 z

framework, Z is any set and D : R —)• R is a duality satisfying the conditions:

(A) ((l/2)q+ (l/2)qD)D < (l/2)q+(l/2)qD for any function q eRZ such that

(B) for any z e Z one has limsupfr - (t{2} + r)D(z)) > 0,

Condition (B) can be rephrased in terms of the generating function G of D as:

(B') for any z £ Z one has limsup(r — G(z, z, r)) > 0.
r—foo

It is satisfied when D is the conjugacy induced by a coupling c such that c(z, z) is finite
for each z E Z, since then tf (z) — c(z, z) and (/ + r)D = fD — r for any / € R and any
r € R (or since then r — G(z, z, r) = 2r — c(z, z)). Since G(z, z, •) is nonincreasing, it is
also satisfied when the following condition is fulfilled:

(B") for any z € Z there exists some r € R such that G(z, z, r) < +oo.

Condition (A) is also satisfied whenever D is the conjugacy induced by a coupling c.
More generally, condition (A) is satisfied when the generating function G associated with
the duality D is convex in its third variable. Then D satisfies the following convexity
property:

(A') for any f,g € RZ, s,t € R+ with s + t = 1 one has {sf + tg)D ^sfD + tgD.
2

In fact, for any / , g 6 R , s,t € R + with s + t — 1 and for any z 6 Z one has

(s/ + tg)D (z) = sup G(w, z, sf(w) + tg{w))
wez

< s sup G(w, z, f(w)) +1 sup G(w', z, g(w'))
wzz w'ez

<sfD(z)+tgD(z).

PROPOSITION 6 . Let Z be an arbitrary set and let D : f ^ fD, D :RZ -> RZ

be a duality satisfying conditions (A) and (B). Let p : Z —¥ R U {+00} be such that

p ^ pD. Then there exists a function q : Z -+ R U {+00} such that qD — q and

P>q>PD-

The first part of the following proof is a simplified form due to C. Zalinescu of a proof
given in a preliminary version of the paper [20]. The second part fills a gap disclosed by
B.F. Svaiter while reading a draft of [20].

PROOF: Let R be the set of functions r : Z -> R U {+00} such that rDD = r,p^r

^ rD ^ pD. This set is nonempty as pDD € R. Let us show that R is (downward) induc-
tive for the pointwise order. Given a totally ordered family (rj)j6/, let r := (inf r^)

Then r is such that p ^ r ^ pD and rD — (infrA = supr f = limrf, so that rD ^ infr*.
vie/ ,-e/ te/ te/

Taking biconjugates, we get rD ^ r and r € R is a minorant of (ri)i€i. By Zorn lemma,
R has a minimal element q. Let us show that qD = q. Let r = (l/2)q + (l/2)qD ^ q.
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Then rD ^ qD ^ p D . On the other hand, by assumption (A),

Thus r S R. Since r sj q, we get r = 9, hence q = qD on doing.

Suppose now that there exists some a € Z\domg such that qD{a) < +00. Let
a ^ 9°(a) and let s : Z —> R U {+00} be denned by s(a) := a, s(z) :— +00 for
z ^ a. Taking a large enough, by assumption (B), we may suppose that sD(a) ^ a.
Thus sD ^ s and since s ^ qD we also have sD ^ q. Let i := (min(qr,s)) . Then
* ^ Q ̂  V a Qd ^D = ( m m (9 i s ) ) = max(gD,sD) ^ g; we also have max.(qD,sD) ^ s,
so that tD ^ min(g, s). Taking biconjugates, we get tD ^ t : t e i?. Since t ^ q, the
minimality of g implies that t — q. Since t(a) ^ a < +00 = 9(0), we get a contradiction.
Thus qD — q everywhere. D
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