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1. Introduction

We will assume that the reader has a basic knowledge of time scales and the time-scale
notation that was first introduced by Hilger [7] and later refined in the monographs of
Bohner and Peterson [2,3]. Let T > 0 be fixed and let T be a time scale with 0, T ∈ T. We
are concerned here with the positive solutions of the higher-order singular boundary-value
problems (BVPs) on T consisting of the equation

(φ(u∆n−1
))∇ + λa(t)f(u) = 0, t ∈ (0, T )T, (1.1)

and one of the two multi-point boundary conditions (BCs)

u∆i

(0) =
m∑

j=1

αju
∆i

(ξj), i = 0, . . . , n − 2,

φ(u∆n−1
(T )) =

m∑
j=1

βjφ(u∆n−1
(ξj))

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.2)
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and

u∆i

(0) =
m∑

j=1

αju
∆i

(ξj), i = 0, . . . , n − 3,

φ(u∆n−1
(0)) =

m∑
j=1

αjφ(u∆n−1
(ξj)),

u∆n−2
(T ) =

m∑
j=1

βju
∆n−2

(ξj),

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(1.3)

where λ > 0 is a parameter, m � 1 and n � 2 are integers, a : (0, T )T → [0,∞) and
f : (0,∞) → [0,∞) are continuous, ξj ∈ [0, T ]T with 0 < ξ1 < · · · < ξm < ρn−1(T ),
αj , βj ∈ [0,∞) for j = 1, . . . , m, and φ : R → R satisfies the following:

(i) φ(x) is increasing in x;

(ii) φ(x) is a continuous bijection and its inverse mapping is also continuous;

(iii) φ(xy) = φ(x)φ(y) for x, y ∈ R.

Typical examples of φ satisfying the above conditions are φ(x) = |x|p−2x and φ(x) = xq/r,
where p > 1 is a real number and q and r are odd positive integers. By a positive solution
of BVP (1.1), (1.2) we mean a function u : [0, T ]T → (0,∞) satisfying (1.1), (1.2). A
similar definition applies to BVP (1.1), (1.3). We note that, in our definition, a positive
solution u(t) satisfies u(t) > 0 for all t ∈ [0, T ]T. In (1.1), the function a(t) may be
singular at t = 0 or t = T , and our nonlinear term f(x) may be singular at x = 0. One
special case of (1.1) takes the form

(φ(u∆n−1
))∇ + λa(t)(ηuµ + u−ν) = 0, t ∈ (0, T )T, (1.4)

where η � 0 and µ, ν > 0.
We note that, in the case where n = 2, the first equation in BC (1.3) vanishes, and

BVPs (1.1), (1.2) and (1.1), (1.3) now reduce to the second-order BVPs consisting of the
equation

(φ(u∆))∇ + λa(t)f(u) = 0, t ∈ (0, T )T, (1.5)

one of the BCs

u(0) =
m∑

j=1

αju(ξj), φ(u∆(T )) =
m∑

j=1

βjφ(u∆(ξj)) (1.6)

and

φ(u∆(0)) =
m∑

j=1

αjφ(u∆(ξj)), u(T ) =
m∑

j=1

βju(ξj). (1.7)

In recent years, the existence of positive solutions of the second-order BVPs (1.5), (1.6)
and (1.5), (1.7), or some of their variations, has been extensively investigated by many
researchers. We refer the reader to [1,6,8,9,13,14,17] for a small sample of some recent
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work on these problems. Here, we note that all of these cited works study the case when
the nonlinearities involved in the associated problems are regular in the phase variable,
and none of them consider the uniqueness of solutions. To the best of our knowledge, for
these BVPs, results on the uniqueness of positive solutions are rare in the literature. In
this paper we study the higher-order singular BVPs (1.1), (1.2) and (1.1), (1.3). We not
only investigate the existence and uniqueness of positive solutions but we also discuss the
dependence of positive solutions on the parameter λ. Moreover, as a simple application
of our theory, we present some uniqueness and dependence results for BVPs (1.4), (1.2)
and (1.4), (1.3).

We wish to point out that, even in the case of second-order (n = 2) differential (T = R)
and difference (T = N) equations, our results are significantly new. In our proofs, the
analysis mainly relies on some results from mixed monotone operator theory. Mixed
monotone operators were introduced by Guo and Lakshmikantham [5]. Since then, many
authors have investigated such operators and their related applications (see, for example,
[4,10–12,15,16] and the references therein).

The remainder of the paper is organized as follows. In § 2 we present our main results.
The proofs of the main results, together with several technical lemmas, are given in § 3.

2. Main results

We need the following assumptions:

(H1) 0 <

m∑
j=1

αj < 1 and 0 <

m∑
j=1

βj < 1;

(H2)
∫ T

0
a(τ) ∇τ < ∞ and

m∑
j=1

αj

∫ ξj

0
φ−1

( ∫ T

r

a(τ) ∇τ +
m∑

j=1

βi

∫ T

ξj

a(τ) ∇τ

)
∆r > 0;

(H3) f can be written as f(x) = g(x) + h(x), where g : [0,∞) → [0,∞) is continuous
and non-decreasing and h : (0,∞) → [0,∞) is continuous and non-increasing;

(H4) there exists δ ∈ (0, 1) such that

g(κx) � φ(κδ)g(x) (2.1)

and

h(κ−1x) � φ(κδ)h(x) (2.2)

for κ ∈ (0, 1) and x > 0;

(H5) δ ∈ (0, 1
2 ) and φ−1(x) is differentiable in a neighbourhood of 1.

We now state the main results of this paper. Here, for any u ∈ Cld[0, T ]T, we write
‖u‖ = supt∈[0,T ]T |u(t)|.
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Theorem 2.1. Assume that (H1)–(H4) hold. Then, for any λ > 0, BVP (1.1), (1.2)
has a unique positive solution uλ(t). If, in addition, (H5) holds, then the unique solution
uλ(t) satisfies the following properties:

(i) uλ(t) is strictly increasing in λ, i.e. if λ1 > λ2 > 0, then uλ1(t) > uλ2(t) on [0, T ]T;

(ii) limλ→0+ ‖uλ‖ = 0 and limλ→∞ ‖uλ‖ = ∞;

(iii) uλ(t) is continuous in λ, i.e. if λ → λ0 > 0, then ‖uλ − uλ0‖ → 0.

Corollary 2.2. Assume that (H1) and (H2) hold, and max{µ, ν} < 1. Then, for any
λ > 0, BVP (1.4), (1.2) has a unique positive solution uλ(t). If, in addition, (H5) holds,
then the unique solution uλ(t) satisfies the three properties stated in Theorem 2.1.

The following condition is a companion to (H2).

(H′
2)

∫ T

0
a(τ) ∇τ < ∞ and

m∑
j=1

βj

∫ T

ξj

φ−1
( ∫ r

0
a(τ) ∇τ +

m∑
j=1

αi

∫ ξj

0
a(τ) ∇τ

)
∆r > 0.

The following results are analogous to to Theorem 2.1 and Corollary 2.2.

Theorem 2.3. Assume that (H1), (H′
2), (H3) and (H4) hold. Then, for any λ > 0,

BVP (1.1), (1.3) has a unique positive solution uλ(t). If, in addition, (H5) holds, then
the unique solution uλ(t) satisfies the three properties stated in Theorem 2.1.

Corollary 2.4. Assume that (H1) and (H′
2) hold and max{µ, ν} < 1. Then, for any

λ > 0, BVP (1.4), (1.3) has a unique positive solution uλ(t). If, in addition, (H5) holds,
then the unique solution uλ(t) satisfies the three properties stated in Theorem 2.1.

3. Proofs of the main results

The major tool used to obtain our results is the mixed monotone fixed-point theorem,
which is stated as Lemma 3.8. Difficulties occur in ensuring that our problem satisfies
the hypotheses of this theorem. This is accomplished using a sequence of lemmas (Lem-
mas 3.1–3.6). Again, we wish to point out that we are able to obtain the uniqueness of
the positive solution, not just its existence.

Throughout this section we assume that (H1)–(H4) hold. Recall that if I ⊆ R is an
interval, then the characteristic function χ on I is given by

χI(t) =

{
1, t ∈ I,

0, t /∈ I.

Let

H(t, s) =
1

1 −
∑m

j=1 αj

m∑
j=1

αjχ[0,ξj ](s) + χ[0,t](s). (3.1)

For i = 1, . . . , n − 2, recursively define Gi(t, s) by

G1(t, s) = H(t, s) and Gi(t, s) =
∫ T

0
H(t, τ)Gi−1(τ, s) ∆τ, i = 2, . . . , n − 2. (3.2)
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We now present some lemmas. The first lemma gives some useful lower and upper
estimates for Gi(t, s).

Lemma 3.1. For i = 1, . . . , n − 2, the function Gi(t, s) satisfies

ci(s) � Gi(t, s) � di(s) for t, s ∈ [0, T ]T, (3.3)

where

ci(s) = c(s)
( ∫ T

0
c(τ) ∆τ

)i−1

and di(s) = d(s)
( ∫ T

0
d(τ) ∆τ

)i−1

(3.4)

with

c(s) =

∑m
j=1 αjχ[0,ξj ](s)
1 −

∑m
j=1 αj

and d(s) =

∑m
j=1 αjχ[0,ξj ](s)
1 −

∑m
j=1 αj

+ 1. (3.5)

Proof. For t, s ∈ [0, T ]T, from (3.1), we see that∑m
j=1 αjχ[0,ξj ](s)
1 −

∑m
j=1 αj

� H(t, s) �
∑m

j=1 αjχ[0,ξj ](s)
1 −

∑m
j=1 αj

+ 1,

i.e.
c(s) � G1(t, s) = H(t, s) � d(s). (3.6)

Note that c1(s) = c(s) and d(s) = d1(s). Thus, (3.3) holds for i = 1. By (3.2) and (3.6),
we have

c(s)
∫ T

0
c(τ) ∆τ � G2(t, s) =

∫ T

0
H(t, τ)G1(τ, s) ∆τ � d(s)

∫ T

0
d(τ) ∆τ.

Again from (3.2),

c(s)
( ∫ T

0
c(τ) ∆τ

)2

� G3(t, s) =
∫ T

0
H(t, τ)G2(τ, s) ∆τ � d(s)

( ∫ T

0
d(τ) ∆τ

)2

.

For i = 1, . . . , n − 2, by (3.2) and induction, we can obtain that

c(s)
( ∫ T

0
c(τ) ∆τ

)i−1

� Gi(t, s)

=
∫ T

0
H(t, τ)Gi−1(τ, s) ∆τ

� d(s)
( ∫ T

0
d(τ) ∆τ

)i−1

,

i.e. (3.3) holds. This completes the proof of the lemma. �

The next five lemmas provide the equivalent integral forms for some BVPs.
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Lemma 3.2. Let k ∈ Crd[0, T ]T. Then we have the following.

(i) The function u(t) is a solution of the BVP

u∆ = k(t) on (0, T )T, u(0) =
m∑

j=1

αju(ξj) (3.7)

if and only if

u(t) =
∫ T

0
H(t, s)k(s) ∆s. (3.8)

(ii) For n � 3, the function u(t) is a solution of the BVP

u∆n−2
= k(t), t ∈ (0, T )T, (3.9)

u∆i

(0) =
m∑

j=1

αju
∆i

(ξj), i = 0, . . . , n − 3, (3.10)

if and only if

u(t) =
∫ T

0
Gn−2(t, s)k(s) ∆s. (3.11)

Proof. We first prove part (i). Assume that u(t) is a solution of BVP (3.7). Delta
integrating u∆(t) = k(t) from 0 to t yields

u(t) = u(0) +
∫ t

0
k(s) ∆s = u(0) +

∫ T

0
χ[0,t](s)k(s) ∆s.

Then, from the condition u(0) =
∑m

j=1 αju(ξj), we have

u(0) = u(0)
m∑

j=1

αj +
m∑

j=1

αj

∫ T

0
χ[0,ξj ](s)k(s) ∆s

= u(0)
m∑

j=1

αj +
∫ T

0

m∑
j=1

αjχ[0,ξj ](s)k(s) ∆s.

Thus,

u(0) =
∫ T

0

(
1

1 −
∑m

j=1 αj

m∑
j=1

αjχ[0,ξj ](s)
)

k(s) ∆s.

As a result, we have

u(t) =
∫ T

0

(
1

1 −
∑m

j=1 αj

m∑
j=1

αjχ[0,ξj ](s) + χ[0,t](s)
)

k(s) ∆s

=
∫ T

0
H(t, s)k(s) ∆s,
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i.e. (3.8) holds. On the other hand, it can be directly verified that u(t) defined by (3.8)
satisfies (3.7). This proves part (i).

Next, we show part (ii). Assume that u(t) is a solution of BVP (3.9), (3.10). Then,
from part (i), we have

u∆n−3
(t) =

∫ T

0
H(t, s)k(s) ∆s =

∫ T

0
G1(t, s)k(s) ∆s.

Applying part (i) again, we obtain that

u∆n−4
(t) =

∫ T

0
H(t, τ)

( ∫ T

0
G1(τ, s)k(s) ∆s

)
∆τ

=
∫ T

0

( ∫ T

0
H(t, τ)G1(τ, s) ∆τ

)
k(s) ∆s

=
∫ T

0
G2(t, s)k(s) ∆s,

By induction, we see that

u∆n−k

(t) =
∫ T

0
Gk−2(t, s)k(s) ∆s, k = 3, . . . , n.

Hence,

u(t) =
∫ T

0
Gn−2(t, s)k(s) ∆s,

i.e. (3.11) holds. On the other hand, we can verify directly that u(t) defined by (3.11)
satisfies (3.9) and (3.10). This proves part (ii) and completes the proof of the lemma. �

The following lemma is an immediate consequence of [6, Lemma 2.1].

Lemma 3.3. Let k ∈ Cld[0, T ]T. Then the function u(t) is a solution of the BVP

(φ(u∆))∇ + k(t) = 0, t ∈ (0, T )T,

u(0) =
m∑

j=1

αju(ξj), φ(u∆(T )) =
m∑

j=1

βjφ(u∆(ξj))

if and only if

u(t) =
∫ t

0
φ−1(A(s)) ∆s +

∑m
j=1 αj

∫ ξj

0 φ−1(A(s)) ∆s

1 −
∑m

j=1 αj
,

where

A(s) =
∫ T

s

k(τ) ∇τ +

∑m
j=1 βj

∫ T

ξj
k(τ) ∇τ

1 −
∑m

j=1 βj
.
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Our next lemma is analogous to the previous one, except that it is for the higher-order
case.

Lemma 3.4. For n � 3, the function u(t) is a solution of BVP (1.1), (1.2) if and only
if

u(t) =
∫ T

0
Gn−2(t, s)wu(s) ∆s, (3.12)

where

wu(t) =
∫ t

0
φ−1(Au(r)) ∆r +

∑m
j=1 αj

∫ ξj

0 φ−1(Au(r)) ∆r

1 −
∑m

j=1 αj
(3.13)

with

Au(r) =
∫ T

r

λa(τ)f(u(τ)) ∇τ +

∑m
j=1 βj

∫ T

ξj
λa(τ)f(u(τ)) ∇τ

1 −
∑m

j=1 βj
.

Proof. Let u(t) be a solution of BVP (1.1), (1.2) and define wu(t) = u∆n−2
(t). Note

that

u∆i

(0) =
m∑

j=1

αju
∆i

(ξj), i = 0, . . . , n − 3,

wu ∈ Crd[0, T ]T.

Then, by Lemma 3.2 (ii), u(t) satisfies (3.12). Moreover, we have

(φ(w∆
u ))∇ + λa(t)f(u) = 0, t ∈ (0, T )T, (3.14)

wu(0) =
m∑

j=1

αjwu(ξj), φ(w∆
u (T )) =

m∑
j=1

βjφ(w∆
u (ξj)). (3.15)

Lemma 3.3 then implies that (3.13) holds.
Now let u(t) be given by (3.12). Then, by Lemma 3.2 (ii),

u∆n−2
= wu(t), t ∈ (0, T )T,

u∆i

(0) =
m∑

j=1

αju
∆i

(ξj), i = 0, . . . , n − 3,

and, from Lemma 3.3, wu(t) satisfies (3.14), (3.15). Therefore, u(t) is a solution of BVP
(1.1), (1.2). This completes the proof of this lemma. �

The next lemma follows from [13, Lemma 2.1].

Lemma 3.5. Let k ∈ Cld[0, T ]T. Then the function u(t) is a solution of the BVP

(φ(u∆))∇ + k(t) = 0, t ∈ (0, T )T,

φ(u∆(0)) =
m∑

j=1

αjφ(u∆(ξj)), u(T ) =
m∑

j=1

βju(ξj)
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if and only if

u(t) =
∫ T

t

φ−1(B(s)) ∆s +

∑m
j=1 βj

∫ T

ξj
φ−1(B(s)) ∆s

1 −
∑m

j=1 βj
,

where

B(s) =
∫ s

0
k(τ) ∇τ +

∑m
j=1 αj

∫ ξj

0 k(τ) ∇τ

1 −
∑m

j=1 αj
.

Lemma 3.6 concerns the problem (1.1), (1.3). It can be proved in a similar way to
Lemma 3.4, so we omit the details.

Lemma 3.6. For n � 3, the function u(t) is a solution of BVP (1.1), (1.3) if and only
if

u(t) =
∫ T

0
Gn−2(t, s)w̄u(s) ∆s,

where

w̄u(t) =
∫ T

t

φ−1(Bu(r)) ∆r +

∑m
j=1 βj

∫ T

ξj
φ−1(Bu(r)) ∆r

1 −
∑m

j=1 βj

with

Bu(r) =
∫ r

0
λa(τ)f(u(τ)) ∇τ +

∑m
j=1 αj

∫ ξj

0 λa(τ)f(u(τ)) ∇τ

1 −
∑m

j=1 αj
.

Let X be a real Banach space. Choose C > 1 and define

PC = {u ∈ X : C−1 � u(t) � C on [0, T ]T}. (3.16)

To prove our theorems, we need some results from monotone operator theory. The
following definition and lemma are well known. For instance, Definition 3.7 can be found
in [4, 5, 10, 11, 15, 16] and Lemma 3.4 is a special case of [11, Theorem 2.1]. In what
follows, let PC be defined by (3.16).

Definition 3.7. Assume that T : PC × PC → PC . Then, T is called mixed monotone
if T (x, y) is non-decreasing in x and non-increasing in y, i.e. for x1, x2, y1, y2 ∈ PC , we
have

x1 � x2, y1 � y2 =⇒ T (x1, y1) � T (x2, y2).

Moreover, an element u ∈ PC is said to be a fixed point of T if T (u, u) = u.

Lemma 3.8. Assume that T : PC ×PC → PC is a mixed monotone operator and that
there exists δ ∈ (0, 1) such that

T (κu, κ−1v) � κδT (u, v) for u, v ∈ PC and κ ∈ (0, 1).

Then T has a unique fixed point in PC .

We are now in a position to prove Theorem 2.1.
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Proof of Theorem 2.1. We will prove the theorem in three steps.

Step 1. Let the Banach space X := Cld[0, T ]T be endowed with the norm

‖u‖ = sup
t∈[0,T ]T

|u(t)|

and let PC be defined by (3.16) with this X. In this step, we show the claim that BVP
(1.1), (1.2) has a unique solution in PC for any λ > 0 if C is sufficiently large.

We first prove the claim of this step when n � 3. By letting κ = 1/x, x > 1 and x = 1,
respectively, in (2.1), we obtain

g(x) � φ(xδ)g(1), x � 1, (3.17)

and

g(κ) � φ(κδ)g(1), κ ∈ (0, 1). (3.18)

From (2.2) with x = 1 and κ−1x = y, respectively, we have

h(κ−1) � φ(κδ)h(1), κ ∈ (0, 1), (3.19)

and

h(κy) � φ(κ−δ)h(y), κ ∈ (0, 1), y > 0. (3.20)

Choosing y = 1 in (3.20) yields

h(κ) � φ(κ−δ)h(1), κ ∈ (0, 1). (3.21)

For any fixed λ > 0, choose C = C(λ) > 1 large enough that

C > max
{[

T
∫ T

0 dn−2(s) ∆s

1 −
∑m

j=1 αj
φ−1

(
λ(g(1) + h(1))

∫ T

0 a(τ) ∇τ

1 −
∑m

j=1 βj

)]1/(1−δ)

,

[
φ−1(λ(g(1) + h(1)))

∫ T

0 cn−2(s) ∆s

1 −
∑m

j=1 αj

×
m∑

j=1

αj

∫ ξj

0
φ−1

( ∫ T

r

a(τ) ∇τ +
m∑

j=1

βi

∫ T

ξj

a(τ) ∇τ

)
∆r

]−1/(1−δ)}
,

(3.22)

where cn−2(s) and dn−2(s) are defined in Lemma 3.1. Let PC be defined with the above
C and define an operator Tλ : PC × PC → X by

Tλ(u, v)(t) =
∫ T

0
Gn−2(t, s)wu,v,λ(s) ∆s, (3.23)

where

wu,v,λ(s) =
∫ s

0
φ−1(Au,v,λ(r)) ∆r +

∑m
j=1 αj

∫ ξj

0 φ−1(Au,v,λ(r)) ∆r

1 −
∑m

j=1 αj
(3.24)
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with

Au,v,λ(r) =
∫ T

r

λa(τ)[g(u(τ)) + h(v(τ))]∇τ

+

∑m
j=1 βj

∫ T

ξj
λa(τ)[g(u(τ)) + h(v(τ))]∇τ

1 −
∑m

j=1 βj
.

From the monotonicity of g and h assumed in (H3), it is easy to verify that Tλ is mixed
monotone.

We now show that T : PC × PC → PC . Let u, v ∈ PC and t ∈ [0, T ]T. Clearly, we have

Au,v,λ(r) �
(

1 +

∑m
j=1 βj

1 −
∑m

j=1 βj

) ∫ T

0
λa(τ)[g(u(τ)) + h(v(τ))]∇τ

=

∫ T

0 λa(τ)[g(u(τ)) + h(v(τ))]∇τ

1 −
∑m

j=1 βj
. (3.25)

Note that, from (3.17),

g(u(t)) � g(C) � φ(Cδ)g(1),

and from (3.21),

h(v(t)) � h(C−1) � φ(Cδ)h(1).

Then
g(u(t)) + h(v(t)) � φ(Cδ)(g(1) + h(1)).

Combining this with (3.25) yields

Au,v,λ(r) �
λφ(Cδ)(g(1) + h(1))

∫ T

0 a(τ) ∇τ

1 −
∑m

j=1 βj
.

From (3.24), we see that

wu,v,λ(s) �
(

1 +

∑m
j=1 αj

1 −
∑m

j=1 αj

)
Tφ−1

(
λφ(Cδ)(g(1) + h(1))

∫ T

0 a(τ) ∇τ

1 −
∑m

j=1 βj

)

=
CδT

1 −
∑m

j=1 αj
φ−1

(
λ(g(1) + h(1))

∫ T

0 a(τ) ∇τ

1 −
∑m

j=1 βj

)

for s ∈ [0, T ]T. Then, from (3.3) with i = n − 2, (3.22) and (3.23), we have

Tλ(u, v)(t) �
CδT

∫ T

0 dn−2(s) ∆s

1 −
∑m

j=1 αj
φ−1

(
λ(g(1) + h(1))

∫ T

0 a(τ) ∇τ

1 −
∑m

j=1 βj

)

� C. (3.26)
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On the other hand, from (3.18),

g(u(t)) � g(C−1) � φ(C−δ)g(1),

and from (3.19),

h(v(t)) � h(C) = h(1/C−1) � φ(C−δ)h(1).

Then

g(u(t)) + h(v(t)) � φ(C−δ)(g(1) + h(1)).

This further implies that

Au,v,λ(r) � λφ(C−δ)(g(1) + h(1))
( ∫ T

r

a(τ) ∇τ +

∑m
j=1 βi

∫ T

ξj
a(τ) ∇τ

1 −
∑m

j=1 βj

)

� λφ(C−δ)(g(1) + h(1))
( ∫ T

r

a(τ) ∇τ +
m∑

j=1

βi

∫ T

ξj

a(τ) ∇τ

)
. (3.27)

Thus, in view of (3.24) and (3.27), we have

wu,v,λ(s) �
∑m

j=1 αj

∫ ξj

0 φ−1(Au,v,λ(r)) ∆r

1 −
∑m

j=1 αj

� C−δφ−1(λ(g(1) + h(1)))
1 −

∑m
j=1 αj

×
m∑

j=1

αj

∫ ξj

0
φ−1

( ∫ T

r

a(τ) ∇τ +
m∑

j=1

βi

∫ T

ξj

a(τ) ∇τ

)
∆r.

Hence, from (3.3) with i = n − 2, (3.22) and (3.23), it follows that

Tλ(u, v)(t) �
C−δφ−1(λ(g(1) + h(1)))

∫ T

0 cn−2(s) ∆s

1 −
∑m

j=1 αj

×
m∑

j=1

αj

∫ ξj

0
φ−1

( ∫ T

r

a(τ) ∇τ +
m∑

j=1

βi

∫ T

ξj

a(τ) ∇τ

)
∆r

� C−1. (3.28)

From (3.26) and (3.28) we see that T (PC × PC) ⊆ PC .
Next, for u, v ∈ PC , κ ∈ (0, 1) and t ∈ [0, T ]T, from (2.1) and (2.2) we have

g(κu(t)) + h(κ−1v(t)) � φ(κδ)(g(u(t)) + h(v(t))).
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Then

Aκu,κ−1v,λ(r) =
∫ T

r

λa(τ)[g(κu(τ)) + h(κ−1v(τ))]∇τ

+

∑m
j=1 βj

∫ T

ξj
λa(τ)[g(κu(τ)) + h(κ−1v(τ))]∇τ

1 −
∑m

j=1 βj

� φ(κδ)
( ∫ T

r

λa(τ)[g(u(τ)) + h(v(τ))]∇τ

+

∑m
j=1 βj

∫ T

ξj
λa(τ)[g(u(τ)) + h(v(τ))]∇τ

1 −
∑m

j=1 βj

)

= φ(κδ)Au,v,λ(r).

Combining this with (3.24) yields

wκu,κ−1v,λ(s) � κδwu,v,λ(s).

Thus, from (3.23), we see that

Tλ(κu, κ−1v)(t) � κδTλ(u, v)(t).

Therefore, all the conditions of Lemma 3.8 hold, so there exists a unique uλ ∈ PC such
that Tλ(uλ, uλ) = uλ. We can see from Lemma 3.4 that uλ(t) is the unique solution of
BVP (1.1), (1.2) in PC . This completes the proof of this step if n � 3. If n = 2, Lemma 3.3
(instead of Lemma 3.4) is needed to define an operator Tλ whose fixed point is a solution
of BVP (1.1), (1.2). The idea of this part of the proof is essentially the same as that for
the case where n � 3. In fact, the proof is relatively simpler when n = 2. We omit the
details here.

Step 2. In this step, we show that BVP (1.1), (1.2) has at most one positive solution
for each fixed λ > 0. Assume that BVP (1.1), (1.2) has two positive solutions u1(t) and
u2(t) corresponding to the same λ > 0. Then, there exists C > 1 large enough that (3.22)
holds and

C−1 � u1(t) � C and C−1 � u2(t) � C for t ∈ [0, T ]T,

i.e. u1, u2 ∈ PC . By Step 1, we know that u1(t) ≡ u2(t) on [0, T ]T. Hence, BVP (1.1),
(1.2) has at most one positive solution.

Step 3. In this step, we finish the proof of the theorem. Combining Steps 1 and 2,
we see that BVP (1.1), (1.2) has a unique positive solution uλ(t) for any λ > 0. In the
remainder of the proof we will show that the three properties hold when n � 3. The
proof when n = 2 is similar but simpler, and hence is omitted.

For λ1, λ2 ∈ (0,∞), define τi(λ1, λ2), i = 1, 2, by

τ1(λ1, λ2) =

⎧⎪⎨
⎪⎩

ln(φ−1(λ1λ
−1
2 ))

(1 − δ) ln(λ1λ
−1
2 )

, λ1 	= λ2,

(1 − δ)−1(φ−1)′(1), λ1 = λ2,
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and

τ2(λ1, λ2) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − 2δ) ln(φ−1(λ1λ
−1
2 ))

(1 − δ) ln(λ1λ
−1
2 )

, λ1 	= λ2,

1 − 2δ

1 − δ
(φ−1)′(1), λ1 = λ2.

Then, in view of (H5), it is easy to see that τi ∈ C((0,∞) × (0,∞), (0,∞)), i = 1, 2,

φ((λ−1
1 λ2)δτ1(λ1,λ2))λ1 = φ((λ1λ

−1
2 )τ2(λ1,λ2))λ2 (3.29)

and

φ((λ−1
1 λ2)δτ1(λ1,λ2))λ2 = φ((λ−1

1 λ2)τ1(λ1,λ2))λ1. (3.30)

In what follows, we assume that λ1 > λ2 > 0 are fixed and let

B(λ1, λ2)

= {γ > 0: γ−1(λ1λ
−1
2 )τ1(λ1,λ2)uλ2(t) � uλ1(t) � γ(λ1λ

−1
2 )τ2(λ1,λ2)uλ2(t) on [0, T ]T},

where uλ1 and uλ2 are the unique solutions corresponding to λ1 and λ2, respectively. To
see that B(λ1, λ2) 	= ∅, first note that uλ1(t) > 0 and uλ2(t) > 0 for t ∈ [0, T ]T. Set

γ∗ := min
{

1
(λ1λ

−1
2 )τ2(λ1,λ2)

min
t∈[0,T ]T

uλ1(t)
uλ2(t)

, (λ1λ
−1
2 )τ1(λ1,λ2) min

t∈[0,T ]T

uλ2(t)
uλ1(t)

}
> 0.

Clearly, any γ satisfying 0 < γ < γ∗ is in B(λ1, λ2).
Define γ̄ = γ̄(λ1, λ2) by

γ̄ = γ̄(λ1, λ2) = supB(λ1, λ2).

Then, we have

γ̄−1(λ1λ
−1
2 )τ1(λ1,λ2)uλ2(t) � uλ1(t) � γ̄(λ1λ

−1
2 )τ2(λ1,λ2)uλ2(t) on [0, T ]T. (3.31)

We claim that γ̄ � 1. Assume, to the contrary, that 0 < γ̄ < 1. Then, from the mono-
tonicity of g and h and (3.31), we obtain

λ1a(t)[g(uλ1(t)) + h(uλ1(t))]

� λ1a(t)[g(γ̄(λ1λ
−1
2 )τ2(λ1,λ2)uλ2(t)) + h(γ̄−1(λ1λ

−1
2 )τ1(λ1,λ2)uλ2(t))]

� λ1a(t)[g(γ̄uλ2(t)) + h(γ̄−1(λ1λ
−1
2 )τ1(λ1,λ2)uλ2(t))].

From (2.1), (2.2), (3.20) with κ = (λ−1
1 λ2)τ1(λ1,λ2) and (3.29), we have

λ1a(t)[g(uλ1(t)) + h(uλ1(t))]

� λ1a(t)[φ(γ̄δ)g(uλ2(t)) + φ(γ̄δ)h((λ1λ
−1
2 )τ1(λ1,λ2)uλ2(t))]

� λ1a(t)[φ(γ̄δ)g(uλ2(t)) + φ(γ̄δ)φ((λ−1
1 λ2)δτ1(λ1,λ2))h(uλ2(t))]

� φ(γ̄δ)φ((λ−1
1 λ2)δτ1(λ1,λ2))λ1a(t)[g(uλ2(t)) + h(uλ2(t))]

= φ(γ̄δ)φ((λ1λ
−1
2 )τ2(λ1,λ2))λ2a(t)[g(uλ2(t)) + h(uλ2(t))]. (3.32)
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Then

Auλ1 ,uλ1 ,λ1(r)

=
∫ T

r

λ1a(τ)[g(uλ1(τ)) + h(uλ1(τ))]∇τ

+

∑m
j=1 βj

∫ T

ξj
λ1a(τ)[g(uλ1(τ)) + h(uλ1(τ))]∇τ

1 −
∑m

j=1 βj

� φ(γ̄δ)φ((λ1λ
−1
2 )τ2(λ1,λ2))

( ∫ T

r

λ2a(τ)[g(uλ2(τ)) + h(uλ2(τ))]∇τ

+

∑m
j=1 βj

∫ T

ξj
λ2a(τ)[g(uλ2(τ)) + h(uλ2(τ))]∇τ

1 −
∑m

j=1 βj

)

= φ(γ̄δ)φ((λ1λ
−1
2 )τ2(λ1,λ2))Auλ2 ,uλ2 ,λ2(r).

Hence, from (3.24), we see that

wuλ1 ,uλ1 ,λ1(s) � γ̄δ(λ1λ
−1
2 )τ2(λ1,λ2)wuλ2 ,uλ2 ,λ2(s).

This, together with (3.23), implies that

uλ1(t) = Tλ(uλ1 , uλ1)(t)

� γ̄δ(λ1λ
−1
2 )τ2(λ1,λ2)Tλ(uλ2 , uλ2)(t)

= γ̄δ(λ1λ
−1
2 )τ2(λ1,λ2)uλ2(t) on [0, T ]T. (3.33)

On the other hand, from the monotonicity of g and h, and from (3.31), we obtain

λ2a(t)[g(uλ2(t)) + h(uλ2(t))]

� λ2a(t)[g(γ̄(λ−1
1 λ2)τ1(λ1,λ2)uλ1(t)) + h(γ̄−1(λ−1

1 λ2)τ2(λ1,λ2)uλ1(t))]

� λ1a(t)[g(γ̄(λ−1
1 λ2)τ1(λ1,λ2)uλ1(t)) + h(γ̄−1uλ1(t))].

Thus, from (2.1), (2.2) and (3.30), we have

λ2a(t)[g(uλ2(t)) + h(uλ2(t))]

� λ2a(t)[φ(γ̄δ)φ((λ−1
1 λ2)δτ1(λ1,λ2))g(uλ1(t)) + φ(γ̄δ)h(uλ1(t))]

� φ(γ̄δ)φ((λ−1
1 λ2)δτ1(λ1,λ2))λ2a(t)[g(uλ1(t)) + h(uλ1(t))]

= φ(γ̄δ)φ((λ−1
1 λ2)τ1(λ1,λ2))λ1a(t)[g(uλ2(t)) + h(uλ2(t))].

From (3.24), we see that

wuλ2 ,uλ2 ,λ2(s) � γ̄δ(λ−1
1 λ2)τ1(λ1,λ2)wuλ1 ,uλ1 ,λ1(s),

so (3.23) yields

uλ2(t) = Tλ(uλ2 , uλ2)(t)

� γ̄δ(λ−1
1 λ2)τ1(λ1,λ2)Tλ(uλ1 , uλ1)(t)

= γ̄δ(λ−1
1 λ2)τ1(λ1,λ2)uλ1(t) on [0, T ]T. (3.34)
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Now, (3.33) and (3.34) imply

γ̄−δ(λ1λ
−1
2 )τ1(λ1,λ2)uλ2(t) � uλ1(t) � γ̄δ(λ1λ

−1
2 )τ2(λ1,λ2)uλ2(t) on [0, T ]T,

so γ̄δ ∈ B(λ1, λ2). Since 0 < δ < 1, we see that γ̄δ > γ̄. But this contradicts the definition
of γ̄. Therefore, γ̄ � 1. Thus, for any λ1 > λ2 > 0, from the second inequality in (3.31),
we have

uλ1(t) � (λ1λ
−1
2 )τ2(λ1,λ2)uλ2(t) on [0, T ]T. (3.35)

Consequently,
uλ1(t) > uλ2(t) on [0, T ]T.

This proves part (i).

Next, we prove part (ii). In (3.35), let λ1 be fixed and write λ2 as λ. Then

uλ(t) � (λλ−1
1 )τ2(λ1,λ)uλ1(t) on [0, T ]T,

which implies that
‖uλ‖ � (λλ−1

1 )τ2(λ1,λ)‖uλ1‖.

Thus, ‖uλ‖ → 0 as λ → 0+. Similarly, in (3.35), let λ2 be fixed and write λ1 as λ. Then,

uλ(t) � (λλ−1
2 )τ2(λ,λ2)uλ2(t) on [0, T ]T,

which implies that
‖uλ‖ � (λλ−1

2 )τ2(λ,λ2)‖uλ2‖.

Thus, ‖uλ‖ → ∞ as λ → ∞.
Finally, we prove part (iii). For any fixed λ0 > 0, let λ > λ0. From the first inequality

in (3.31) with λ1 = λ and λ2 = λ0, we have

uλ(t) � (λλ−1
0 )τ1(λ,λ0)uλ0(t) on [0, T ]T.

From part (i) of Theorem 2.1, uλ(t) > uλ0(t), so

‖uλ − uλ0‖ � ((λλ−1
0 )τ1(λ,λ0) − 1)‖uλ0‖.

As a result, ‖uλ − uλ0‖ → 0 as λ → λ+
0 . Similarly, we can show that ‖uλ − uλ0‖ → 0 as

λ → λ−
0 . Hence, part (iii) holds. This completes the proof of the theorem. �

Proof of Corollary 2.2. With

f(x) = ηxµ + x−ν , g(x) = ηxµ, h(x) = x−ν , δ = max{µ, ν},

it is easy to verify that (H3) and (H4) hold. The conclusion readily follows from
Theorem 2.1. �

Finally, we note that Theorem 2.3 and Corollary 2.4 can be proved by Lemmas 3.5
and 3.6 using essentially the same methods as those used above for Theorem 2.1 and
Corollary 2.2. We omit the details here.

In conclusion, as mentioned above, our results are new, even for second-order differen-
tial and difference equations.
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