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1. Introduction. Let R be a complete discrete valuation ring with field of fractions
K and residue field k. Denote by v the valuation on R. We assume that we are in the
unequal characteristic case; i.e. K has characteristic zero and k has characteristic p > 0.
We also assume that k is perfect. The natural injection � → R extends by continuity
to an injection �p → R. Let e = v(p). It is well known (see [7, Section II.5]) that K is a
totally ramified extension of degree e of the field of fractions of the ring of Witt vectors
of k.

Let K be a fixed algebraic closure of K and let | · | denote the absolute value on
K . We denote by µ∞ (resp. µp∞ , µpl ) the set of roots of unity (resp. p-power roots of
unity, pl-th roots of unity) in K. Let t1, . . . , tn be independent variables and let A ∈
GLn(�p) be a diagonal matrix with diagonal entries ai, for i = 1, . . . , n. The ideal
generated by t1, . . . , tn in R[[t1, . . . , tn]] is denoted by (t1, . . . , tn)R[[t1, . . . , tn]]. Let
F(t1, . . . , tn) ∈ 1 + (t1, . . . , tn)R[[t1, . . . , tn]]. Note that, as |ζ − 1| < 1 for ζ ∈ µp∞ , the
power series F induces a function (µp∞ )n → K

×
given by

(ζ1, . . . , ζn) �→ F(ζ1 − 1, . . . , ζn − 1),

for all (ζ1, . . . , ζn) ∈ (µp∞ )n. By a result of Loeser (see Théorème A.1 in [6]), we have
the following result.

THEOREM 1.1. (Loeser) Let the notation be as above. Suppose that for all integers
f ≥ 1 and for all (ζ1, . . . , ζn) ∈ (µp∞ )n such that ζ af

i
i = ζi, for i = 1, . . . , n, we have

f −1∏

i=0

F
(
ζ

ai
1

1 − 1, . . . , ζ
ai

n
n − 1

) ∈ µ∞.

Then there exist b1, . . . , bn ∈ �p and a unit G(t1, . . . , tn) ∈ R[[t1, . . . , tn]] such that

F(t1, . . . , tn) = G((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
G(t1, . . . , tn)

n∏

i=1

(1 + ti)bi .
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We stated Theorem 1.1 for diagonal matrices A in GLn(�p). As Loeser points out
in [6], one can replace “diagonal” by “diagonalizable” and, after an appropriate change
of variables, the result is still valid. It is easy to see that the converse of Theorem 1.1
is also true. Theorem 1.1 generalizes a result of Anderson [2], which in turn is an
extension of a theorem of Coleman [3]. The latter theorem affirmatively answered a
question of Deligne, a special case of which was settled by Adolphson [1]. As explained
in Remark 2.2 below, Theorem 1.1 bears a formal similarity to a recent result of
Dubickas and Smyth [4] extending the classical Hilbert’s Theorem 90 to the non-cyclic
case.

In the unramified case (i.e. the case e = 1), a crucial ingredient in Loeser’s,
Anderson’s and Coleman’s proofs is the Dieudonné-Dwork lemma on the twisted
logarithm homomorphism. Note that in the case n = 1 and a1 = 1, Theorem 1.1 can
be stated as follows. If a power series F(t) ∈ 1 + (t)R[[t]] satisfies F(ζ − 1) ∈ µ∞ for all
ζ ∈ µp∞ , then F(t) is a binomial series. The purpose of this paper is to show that, in
the special case where A is a root of unity in GLn(�p), the conclusion of Theorem 1.1
remains valid under weaker hypotheses (see Theorems 2.1 and 3.2 below). Our proofs
differ from the ones in [2], [3] and [6], in the sense that we do not use the Dieudonné-
Dwork lemma, since, given our assumptions, it is not clear how to do so (see Remark 2.3
below). It is not unlikely that similar statements to Theorems 2.1 and 3.2 hold for any
diagonal A ∈ GLn(�p), but we have been unable to come up with a successful approach
in the general case.

2. The single-variable case.

THEOREM 2.1. Let F(t) ∈ 1 + (t)R[[t]].
(1) If F(t) satisfies F(ζ − 1) ∈ µ∞ for infinitely many ζ ∈ µp∞ , then F(t) is a binomial

series; i.e. a series of the form (1 + t)b, for some b ∈ �p.
(2) Suppose that a is a primitive f -th root of unity in �p, with a �= 1. If F(t) satisfies

f −1∏

i=0

F
(
ζ ai − 1

) ∈ µ∞,

for infinitely many ζ ∈ µp∞ , then there exists b ∈ {0, 1} and a unit G(t) ∈ R[[t]]
such that

F(t) = (1 + t)b G((1 + t)a − 1)
G(t)

.

Moreover, b = 0, unless p = 2 and F(−2) = −1.

Proof. (1) Recall that |ζ − 1| = 1, if ζ ∈ µ∞ − µp∞ . For l ≥ 1, we have that |ζ − 1|
= p−1/φ(pl ), if ζ ∈ µpl − µpl−1 , where φ is the Euler function. Note that |F(ζ − 1) − 1|
≤ |ζ − 1|, for all ζ ∈ µp∞ . Therefore, if ζ ∈ µpl − µpl−1 and F(ζ − 1) ∈ µ∞, then
necessarily F(ζ − 1) ∈ µpl . Hence, by assumption, we can choose an increasing
sequence of positive integers ni and a sequence of primitive pni -th roots of unity ζni

such that F(ζni − 1) = ζ bi
ni

, for an integer bi ∈ {0, . . . , pni − 1}. By compactness of �p,
we may assume, without loss of generality, that the sequence b1, b2, . . . converges to
b ∈ �p. Define a power series G(t) ∈ 1 + (t)R[[t]] by G(t) = (1 + t)−bF(t). Let r be any
positive integer. There is a positive integer N(r) such that |bi − b| ≤ p−r; i.e. bi − b is
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divisible by pr, for all i ≥ N(r). If r ≥ ni, then ζ bi−b
ni

= 1. Otherwise, ζ bi−b
ni

is a pni−r-th
root of unity. Therefore, for all i ≥ N(r), we have

∣∣G
(
ζni − 1

) − 1
∣∣ = ∣∣ζ−b

ni
F

(
ζni − 1

) − 1
∣∣ = ∣∣ζ bi−b

ni
− 1

∣∣ ≤ ∣∣ζni − 1
∣∣pr

.

Now write G(t) − 1 = c1t + c2t2 + · · · , where cj ∈ R, for all j. We claim that |cj| < 1,
for j ∈ {1, . . . , pr − 1}. If not, there exists a least index m ≤ pr − 1 such that |cm| = 1.
Choose i ≥ N(r) such that pr ≤ φ(pni )/e. Then

∣∣∣∣∣

m−1∑

j=1

cj
(
ζni − 1

) j

∣∣∣∣∣ < p−1/e,
∣∣cm

(
ζni − 1

)m∣∣ = p−m/φ(pni ),

∣∣∣∣∣

∞∑

j=m+1

cj
(
ζni − 1

) j

∣∣∣∣∣ < p−m/φ(pni ).

Therefore, since m < pr, we get

|G(ζni − 1) − 1| = p−m/φ(pni ) > p−pr/φ(pni ) = |ζni − 1|pr
,

a contradiction, which proves the claim. Thus, |cj| < 1, for all j < pr. This is true for
every positive integer r, so |cj| < 1, for all j ≥ 1. But then |G(ζni − 1) − 1| < p−1/e, so
G(ζni − 1) is a primitive ps-th root of unity for some s such that φ(ps) < e. In other words,
the set of values {G(ζni − 1) : i = 1, 2, . . .} if finite. In particular, the power series G(t)
takes the same value at infinitely many ζni − 1. Since, by the Weierstrass preparation
theorem (see [5, p. 215]), a non-zero power series with p-integral coefficients can have
only finitely many zeros with positive p-adic valuation, it follows that G(t) is constant.
But G(0) = 1, so that G(t) = 1, and this proves that F(t) = (1 + t)b.

(2) By part (1), there exists b ∈ �p such that

f −1∏

i=0

F
(
(1 + t)ai − 1

) = (1 + t)b.

The coefficient of t on the left-hand side is a multiple of 1 + a + · · · + af −1 and should
equal b. Since a �= 1, af = 1, it follows that b = 0; i.e.

f −1∏

i=0

F
(
(1 + t)ai − 1

) = 1.

Note that, at this point, one cannot invoke Theorem 1.1 and finish the proof; the
problem is that Theorem 1.1 requires the hypothesis to be satisfied for all f , not just
for f equal to the order of a in �p. Although there is a way around this problem, we
have chosen to follow another approach instead (see also Remark 2.4 below).

As in the usual proof of the classical Hilbert’s Theorem 90, define

H(t) = 1 +
f −2∑

i=0

i∏

j=0

F
(
(1 + t)aj − 1

)
.

The constant coefficient of H(t) equals f ; in particular H(t) �= 0.
If p �= 2, then f is relatively prime to p, so that H(t) is a unit in R[[t]]. It is now easy

to verify that G(t)F(t) = G((1 + t)a − 1), where G(t) = 1/H(t).
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Now suppose that p = 2. Then f = 2 and a = −1. By the Weierstrass preparation
theorem, we may write H(t) = 2sr(t)U(t), where s is a non-negative integer, U(t) is
a unit in R[[t]] and r(t) is a distinguished polynomial. Let m = deg(r(t)). Observe
that r((1 + t)−1 − 1) = r(−t/(1 + t)) = (1 + t)−mw(t), where w(t) is also a distinguished
polynomial of degree m. The equality H(t) = H((1 + t)−1 − 1)F(t) now gives

2s(1 + t)mr(t)U(t) = 2sF(t)w(t)U((1 + t)−1 − 1).

By the uniqueness statement in the Weierstrass preparation theorem, it follows that

F(t) = (1 + t)m U(t)
U((1 + t)−1 − 1)

.

Write m = 2u + b, where u ∈ �p and b ∈ {0, 1}. Then

F(t) = (1 + t)b G((1 + t)−1 − 1)
G(t)

,

where G(t) = (1 + t)−u/U(t). Now it is clear that F(−2) = −1 if and only if b = 1, and
this completes the proof of Theorem 2.1. �

REMARK 2.2. Let X be the multiplicative group of functions from µp∞ to K
×

induced by power series in 1 + (t)R[[t]] in the way described in the Introduction.
Also, let Y be the multiplicative group of functions from µp∞ to the quotient group
K

×
/µ∞ similarly induced by power series in 1 + (t)R[[t]]. Note that, by Theorem 1.1,

Y is isomorphic to the quotient group (1 + (t)R[[t]])/(1 + t)�p . By the Weierstrass
preparation theorem, distinct elements of X can agree on only finitely many ζ ∈ µp∞ .
Theorem 2.1 shows that the same is also true for distinct elements of Y . Also, for
the sake of simplicity, consider the case R = �p and n = 1. By local class field theory,
we can identify �×

p with Gal(�p(µp∞ )/�p). The action of �×
p on 1 + (t)�p[[t]] given

by a · F(t) = F((1 + t)a − 1) therefore induces a Galois action of Gal(�p(µp∞ )/�p) on
X and on Y . In this context, Theorem 1.1 bears a formal similarity to the result of
Dubickas and Smyth [4].

REMARK 2.3. For the Dieudonné-Dwork lemma to be used in the unramified case
(as in [2], [3] and [6]) one needs to know that both

f −1∏

i=0

F
(
ζ

ai
1

1 − 1, . . . , ζ
ai

n
n − 1

)
and

f −1∏

i=0

FFr(ζ pai
1

1 − 1, . . . , ζ
pai

n
n − 1

)

(where Fr is the arithmetic Frobenius morphism) are in µp∞ when ζ af
i

i = ζi, for all i.
If one attempts to replace the hypothesis “for all (ζ1, . . . , ζn)” in Theorem 1.1 by “for
infinitely many (ζ1, . . . , ζn)”, it becomes less clear how to use the Dieudonné-Dwork
lemma. This is one of the difficulties in trying to extend Theorem 2.1 to the case where
a is an arbitrary unit in �p. Also, the following easy (and not surprising) example shows
that there is no direct way to deduce that if the values of F(t) at η − 1 have the desired
property, then so do the values of F(t) at ζ − 1, where η, ζ are pm-th, pl-th roots of
unity, respectively, and m > l. Let

F(t) = 1 + t
(t + 1)pm − 1
(t + 1)p − 1

∈ 1 + t�p[t],
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where m ≥ 2. It is clear that F(η − 1) = 1 ∈ µ∞, for η ∈ µpm − µp. On the other hand,
if ζ ∈ µp − {1}, then F(ζ − 1) = 1 + pm−1(ζ − 1), so that 0 < |F(ζ − 1) − 1| < p−1,
which shows that F(ζ − 1) /∈ µ∞.

REMARK 2.4. If a is a primitive root of unity of order f in �p and

f −1∏

i=0

F
(
ζ ai − 1

) = 1,

for infinitely many (hence for all) ζ ∈ µp∞ , it is not true that there exists a unit G(t) in
R[[t]] such that F(t) = G((1 + t)a − 1)/G(t). In other words, the conclusion of Corollary
A.7 in [6] would be false if, instead of requiring the hypothesis to be satisfied for all
f ≥ 1, we only required that it be satisfied for f equal to the order of a in �p. For example,
let p = 2, f = 2, a = −1 and consider F(t) = 1 + t. Then F(t)F((1 + t)−1 − 1) = 1, but
there is no unit G(t) ∈ R[[t]] such that F(t) = G((1 + t)−1 − 1)/G(t), since F(−2) �= 1.

3. The multi-variable case. Theorem 2.1 does not directly extend to the
multivariable case, as the following simple example illustrates.

EXAMPLE 3.1. Consider the power series F(t1, t2) = 1 + t1 − t2 ∈ 1 + (t1, t2)
�p[[t1, t2]]. Then F(ζ1 − 1, ζ2 − 1) = 1 ∈ µ∞, for infinitely many (ζ1, ζ2) ∈ (µp∞ )2 (take
ζ1 = ζ2). However, F(t1, t2) is not of the form (1 + t1)b1 (1 + t2)b2 , for b1, b2 ∈ �p, since
F(0, t2) is not a binomial series.

The above example is hardly surprising; the first and second entries of the chosen
infinite set of pairs (ζ1 − 1, ζ2 − 1) at which F has value 1 are closely related. We shall
show that, roughly speaking, this will always be the case for all examples demonstrating
the same phenomenon that Example 3.1 does. Part (1) of the following theorem (which,
for n = 1, reduces to Theorem 2.1) states that a power series in n variables whose values
are roots of unity at infinitely many tuples (ζ1 − 1, . . . , ζn − 1) is a product of binomial
series in each of its variables, provided that the collection of such tuples is parametrized
by n “algebraically unrelated” parameters. The proof of the theorem uses a clever idea
of Anderson appearing in the proof of Corollary 3.1.7 in [2].

THEOREM 3.2. Let F(t1, . . . , tn) ∈ 1 + (t1, . . . , tn)R[[t1, . . . , tn]]. Let S be a non-
empty set of non-zero tuples in (�p)n, such that for every non-trivial homogeneous
polynomial P(x1, . . . , xn) with coefficients in R we have P(S) �= {0}. In other words,
S satisfies no non-trivial homogeneous algebraic relation with coefficients in R.

(1) Suppose that for every (y1, . . . , yn) ∈ S, we have F(ζ y1 − 1, . . . , ζ yn − 1) ∈ µ∞,
for infinitely many ζ ∈ µp∞ . Then there exist b1, . . . , bn ∈ �p, such that

F(t1, . . . , tn) =
n∏

i=1

(1 + ti)bi .

(2) Let A be a diagonal matrix which is a primitive f -th root of unity in GLn(�p),
with A �= I. Let a1, . . . , an be the diagonal entries of A. Suppose that for every
(y1, . . . , yn) ∈ S, we have

f −1∏

i=0

F
(
ζ y1ai

1 − 1, . . . , ζ ynai
n − 1

) ∈ µ∞,
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for infinitely many ζ ∈ µp∞ . Then there exist b1, . . . , bn ∈ �p and a unit
G(t1, . . . , tn) ∈ R[[t1, . . . , tn]] such that

F(t1, . . . , tn) = G((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
G(t1, . . . , tn)

n∏

i=1

(1 + ti)bi .

Proof. (1) Let c1, . . . , cn be the coefficients of t1, . . . , tn in F(t1, . . . , tn), respectively.
Replacing F(t1, . . . , tn) by (1 + t1)−c1 . . . (1 + tn)−cn F(t1, . . . , tn) if necessary, we may
assume that c1 = · · · = cn = 0. It suffices to show that F(t1, . . . , tn) is identically equal
to 1. Suppose not. We can write

F(t1, . . . , tn) = 1 +
∞∑

j=2

Pj(t1, . . . , tn),

where Pj(t1, . . . , tn) is a homogeneous polynomial of degree j in t1, . . . , tn with
coefficients in R. By assumption, there exists a least m ≥ 2 such that Pm(t1, . . . , tn)
is non-zero. For each (y1, . . . , yn) ∈ S, consider the power series

H(t) = F((1 + t)y1 − 1, . . . , (1 + t)yn − 1) ∈ 1 + (t)R[[t]].

Note that

H(t) ≡ 1 + Pm(y1, . . . , yn) tm (mod (t)m+1R[[t]]).

By our hypothesis on S, there exists (y1, . . . , yn) ∈ S such that Pm(y1, . . . , yn) �= 0. For
this choice of (y1, . . . , yn), it follows that H(t) is not a binomial series (the coefficient
of t equals 0 and the coefficient of tm is non-zero). On the other hand, by assumption,

H(ζ − 1) = F(ζ y1 − 1, . . . , ζ yn − 1) ∈ µ∞,

for infinitely many ζ ∈ µp∞ , which is impossible, by Theorem 2.1.

(2) By Part (1), there exist b1, . . . , bp ∈ �p such that

f −1∏

i=0

F
(
(1 + t1)ai

1 − 1, . . . , (1 + tn)ai
n − 1

) =
n∏

i=1

(1 + ti)bi .

For each i, the coefficient of ti on the left-hand side is a multiple of 1 + ai + · · · + af −1
i

and should equal bi. If ai �= 1, then bi = 0 (since af
i = 1). If ai = 1, then bi is a multiple

of f in �p. Set di = bi/f , for all i, and define

L(t1, . . . , tn) = F(t1, . . . , tn)
(1 + t1)d1 · · · (1 + tn)dn

.

Then

f −1∏

i=0

L
(
(1 + t1)ai

1 − 1, . . . , (1 + tn)ai
n − 1

) = 1.
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If p is odd, then f is relatively prime to p. Define

H(t1, . . . , tn) = 1 +
f −2∑

i=0

i∏

j=0

L
(
(1 + t1)aj

1 − 1, . . . , (1 + tn)aj
n − 1

)
.

The constant coefficient of H(t1, . . . , tn) equals f . Therefore H(t1, . . . , tn) is invertible in
R[[t1, . . . , tn]]. Since L(t1, . . . , tn)H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1) = H(t1, . . . , tn),
it follows that L(t1, . . . , tn) (hence also F(t1, . . . , tn)) is of the desired form.

Now suppose that p = 2. Then f = 2 and ai = ±1, for all i. In addition, since A �= I ,
there exists some i such that ai = −1. Without loss of generality, assume a1 = −1. Write
L(t1, . . . , tn) as a power series in t1:

L(t1, . . . , tn) = 1 +
∞∑

j=1

gj(t2, . . . , tn) t j
1,

where gj(t2, . . . , tn) ∈ R[[t2, . . . , tn]], for all j. Let M denote the maximal ideal in
R[[t2, . . . , tn]]. We define a power series H(t1, . . . , tn) as follows.

If for some j ≥ 1, we have gj(t2, . . . , tn) /∈ M, then

H(t1, . . . , tn) = 1 + L(t1, . . . , tn) = 2 +
∞∑

j=1

gj(t2, . . . , tn) t j
1.

Otherwise,

H(t1, . . . , tn) = (1 + t1) + (1 + t1)a1 L(t1, . . . , tn)

= 2 + g1(t2, . . . , tn) t1 + (g2(t2, . . . , tn) − g1(t2, . . . , tn) + 1) t2
1 + O

(
t3
1

)
.

It easily follows that, in either case, there is some j ≥ 1 such that the coefficient of t j
1 in

the above power series expansion of H(t1, . . . , tn) is not in M. Also,

L(t1, . . . , tn)H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1) = H(t1, . . . , tn).

By the general form of the Weierstrass preparation theorem (as stated in [5]) for single-
variable power series rings over complete local rings it follows that there exists a unit
U(t1, . . . , tn) and a distinguished polynomial r(t1, . . . , tn) in R[[t2, . . . , tn]][t1] such that

H(t1, . . . , tn) = r(t1, . . . , tn)U(t1, . . . , tn).

If m is the degree of r(t1, . . . , tn) in t1, it follows that H((1 + t1)a1 − 1, . . . , (1 + tn)an − 1)
equals (1 + t1)−mw(t1, . . . , tn)U((1 + t1)a1 − 1, . . . , (1 + tn)an − 1), where w(t1, . . . , tn)
is also a distinguished polynomial in R[[t2, . . . , tn]][t1] of degree m in t1. Therefore, by
the uniqueness statement in the Weierstrass preparation theorem (see [5, p. 215]), we
get that L(t1, . . . , tn) (hence also F(t1, . . . , tn)) is of the desired form. �
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