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Abstract

The linear long-wave equations with (and without) small ground motion
are considered. The governing equations are represented in a matrix form and
transformations are sought which reduce the system to (for example) a form
associated with the conventional wave equation. Integration of the system is
then immediate. It is shown that such a reduction may be achieved provided
the variation in water depth is specified by certain multi-parameter forms.

1. Introduction

The majority of analytical work on two-dimensional wave generation in
shallow water has been restricted to either constant depth situations (e.g.
Kajiura [1]) or cases when the bottom has uniform slope (e.g. Tuck and Hwang
[2]).

The purpose of the present investigation is to obtain analytical solutions to
the linearized long-wave equation for cases in which the bottom surface is
curved. The technique employed is to transform the relevant governing
equation to one associated with either the constant depth or uniform slope
situations. All the analytical results for these cases can thus be employed and
then the inverse transformations yield information regarding wave propagation
in shallow water with a curved bottom profile. This procedure does not, of
couse, work for an arbitrary bottom profile, but is dependent upon the bottom
being specified by certain multi-parameter forms which emerge in the course of
the analysis. The parameters in these forms may be chosen to fit locally the
analytical curve to actual curvilinear inclines.

It is noted that although the approach presented here is believed new in the
theory of water waves, a somewhat similar approach has been utilised by the
authors in other fields, for instance, in the theory of elastic and elastic-plastic
wave propagation (Clements and Rogers [3,4], Rogers and Clements [5]).
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82 D. L. Clements and C. Rogers [21

2. The shallow-water equations with ground motion

The equations of shallow-water or long-wave theory for arbitrary ground
motion are available in Tuck and Hwang [2] and adopt the form

du du

(2.1)

( 2 - 2 )

where u(x,t) is the horizontal velocity component. The equations of the
bottom and surface are respectively given by

y=- / i ( j c ,O , (2.3)

y = T)(X, t ) , (2.4)

in the coordinate system of Figure 1. If it is taken that an upward bottom
displacement of magnitude Tjo(*,f) occurs where the undisturbed bottom shape
is y = - ho(x), we may write

Figure 1.— Schematic drawing of the ground motion and symbol definitions

h(x,t)=ho(x,t)-r,o(x,t),

so that (2.1) becomes

(2.5)

(2.6)

If attention is restricted to small amplitude waves (so that 17 and T/0 are small
compared with ha and u is small compared with the local wave speed (gh0)*)
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equations (2.2) and (2.6) may be linearized to obtain the shallow water
equations

£•«£-•• <"»
+ £<*>£ M

incorporating the forcing term drfaldt due to ground motion.
If we now set

u*=-uho{x), (2.9)

T/* = T,, (2.10)

the system (2.7), (2.8) can be written in the convenient matrix form

ft* = Aft* + E? , (2.11)

where subscripts denote partial derivatives and

n* = (;:). (2.,2)

(2.13)

Introduction of the new independent variables x*,t* according to

x* = | (gfco)"§dx, (2.15)

t* = t, (2.16)

transforms (2.11) to

ft*. = H*£l*,. + E*,., (2.17)

where

(° %) (2.18)

with
c^gho(x), (2-20)

^ = cr,0. (2-20
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3. The matrix transformations

In this section, certain matrix transformations are constructed which
transform the system (2.17) to one of two "canonical forms", namely

n^ = H'ft',. + E',., (3.1)

where, either

(0 „,_/(> l\ ( 3 2 )

or

(ii)

- - a D-
(gax'Y 0

The case (i) is essentially that corresponding to the constant depth situation, while
(ii) is the uniform slope case investigated by Truck and Hwang [2]. In
particular, in the absence of ground motion, for case (i), (3.1) reduces to a form
associated with the conventional wave equation. It emerges that such transfor-
mations may be constructed subject to ho(x) adopting a variety of forms which
involve parameters available for curve fitting.

We consider the transformations

| A | ^ 0 , (3.4)

n; = A ft*. + Bit*, \A\^o, (3.5)

x' = x*, (3.6)

t' = t*, (3.7)

where A,B,A,B are 2 x 2 matrices with entries functions of x* designated by
[fl;L [b\], [a}] and [fcj] respectively. Transformations of the type (3.4)-(3.5) are
sought which transform

fti- = Hit', + E',+*n*. = JJ*ft*. + E*. (3.8)

where H* is defined by (2.18) and H' adopts the form (3.2) or (3.3).
It is assumed that 17*, u*, 17', u' have continuous mixed second order

derivatives with respect to the independent variables x*, t* so that the
commutativity conditions

fl*;. = tl*.x., (3.9)

ftt,- = ft'rt-, (3.10)

obtain. The conditions (3.9) and (3.10) may be used in conjunction with the
relations (3.4)-(3.7) to yield
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(A-A )il*.,. - (A,. -B+ BH*)fl*. - BE*,. - Bx.fl = 0.

This equation will be satisfied if

A =A, (3.11)

R . = 0, (3.12)

BE*. = 0, (3.13)

Ax.-B + BH* = 0, (3.14)

while the transformation (3.8) is effected if

B=H'B, (3.15)

£',. = A£*., (3.16)

H* = A'H'A. (3.17)

Thus the transformation from (2.17) to (3.1) is achieved via the relations
(3,4)-(3.7) provided the conditions (3.11)—(3.17) hold.

It is now convenient to choose the matrix A in the form

so that the matrix B is given by

' * - ( « ! » ) • < > " >

where b\ and b] are constants. Hence, using (3.17) it is apparent that H' adopts
the form

H' = AH*A=( ° a\h\*la\\
H AH A \a\h]*la\ 0 / ' ( 3 - 2 O )

while (3.14) yields

(a\)x.-h'2'b
2, + h2:b'2(a\lal) = 0, (3.21)

(al)x.-h
2'b2 + h'2'b

2(alla\) = 0. (3.22)

Combination of these equations yields

detA = a ]al = A (constant), A ?*0, (3.23)

so that the system (3.21), (3.22) may be reduced to the single equation in a \

(a\)x. + h]'b2\-\a\)2-h2'b] = Q. (3.24)
The cases where there is, and is not, ground motion present are discussed in
turn in (a) and (b) below.
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(a) GROUND MOTION PRESENT

In this case, from (2.19) and (3.13), b'\ = 0 so that (3.24) reduces to

(a\)x.-h
l
2'b] = 0. (3.25)

In the case when H' is given by (3,2), h2 = 1 so that (3.25) yields

a\ = b]x* + 8 (3.26)

where 8 is a constant. Now from (2.18), (2.20), (3.17) and (3.26) it follows that

gho = (a\yiX2 = {b2
]x* + 8)4

and hence, using (2.15)

ho = (Ax+B)i (3.27)
where A and B are constants.

When H' is given by (3.3), h\' = (gax'T* so that (3.25) yields

a\=2b2(ga)-tx*> + 8. (3.28)

Hence, from (2.18), (2.20), (3.17) and (3.28) we obtain

]4l\2. (3.29)

For this case the form of ho(x) is, in general, available only in the parametric
form described by (3.29) together with the (x*,x)-relation

2[\2(b])2x* + \5(ga)*b28x*' + 5(ga)82]x** = 15(ga )'(Ax + /J. ), (3.30)

where fi is a constant of integration. It may readily be verified that if we define
new constants M,N,A and B by the relations

( 3 - 3 3 )

( 3 ' 3 4 )

and also define a new parameter 0 by x* = M202 then (3.29) and (3.30) yield, in
turn,

ho=d2[d + N]\ (3.35)

lN2] = Ax+B (3.36)
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It should be noted that, regardless of the value taken by N, the curve given by
(3.35) and (3.36) can, in general, only be fitted through two points (x,,h(x,)] for
i = l,2. For the case N = 0 (corresponding to 5 = 0) the parameter d may be
eliminated to give the explicit relation

ho = (Ax + B$. (3.37)

Summarising, it has been shown that when the bottom has the curvilinear
shape defined by (3.27), the governing equations may be reduced to those
associated with long wave propagation due to ground motion in the constant
depth situation (see Kajiura [1]). Further it has been established that when the
bottom has the shape defined by (3.35) and (3.36), the governing equations may
be transformed to those descriptive of long wave propagation due to ground
motion in the uniform slope situation. Thus the analysis of Tuck and Hwang [2]
becomes available.

(b) NO GROUND MOTION

In this case it follows from (3.24) that reduction to canonical form (i) may
be achived when a \ adopts one of the forms

a\=iUax*+y), /3=0, (3.38)

a\= - |8x* + 5, a = 0 , (3.39)

i J )}, /3/a > 0 , (3.40)

x* + Tj)}, Bla <0, (3.41)

where a = b{k~l, B = - b] and y,8,£, 17 are arbitrary constants. The case (3.39)
is, of course, the same as (3.26). The bottom profiles corresponding to (3.38)
and (3.39) are, respectively,

ho = (Ax+B)4, ho = (Ax+B)', (3.42),(3.43)

where, in each case, the constants A and B are suitably related to the constants
occurring in (3.38) and (3.39). The forms for h0 corresponding to (3.40) and
(3.41) are

)H(xx* + ()}, (3.44)

/a)'(«JC* + T,)}, (3.45)

where the (x*,x)-relation is given by (2.15).
Reduction to canonical form (ii) is only considered in the cases b[ = 0 and

b] = 0. The former case simply leads to a! in the form (3.28), while the case
b\ = 0 gives

a! ={[2(go)*bi/3A ]**'+/*}-' . (3.46)
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where /A is an arbitrary constant of integration. It is noted that the solution of
the Riccati equation (3.24) with h\', h2' defined by (3.3) and b'2/0, S2,/0 may
be obtained by transformation to an equation amenable to the Frobenius
method. Equation (3.46) corresponds to a reduction to canonical form (ii) when

where the (x *,x)-relation is again given by (2.15). In particular, if /* = 0, this
yields

ho = (Ax+Bf, (3.48)

where A and B are arbitrary constants.

4. Reduction for more general classes of hn(x).

It is natural to enquire whether reduction to canonical forms (i), (ii) may be
established for /to(jc) other than those noted above. In this section, two methods
are suggested for extending the scope of the method presented in this paper.
The first approach is similar to one used by Clements and Rogers [4] in the
context of wave propagation through inhomogeneous elastic materials, while
the second, involving iteration of what is essentially Weinstein's [6] correspon-
dence principle, has been discussed by Rogers [7] in connection with the
propagation of large amplitude disturbances through certain non-linear elastic
media.

If we return to the original system (2.7), (2.8) and eliminate u, it is seen that

(4.1)

It is now required that (4.1) be generated as a consequence of the matrix
equation

ft* = MSI, + N(l + ft, (4.2)
where

/_\

(4.3)

(4.4)

(4.5)
(4.6)

and where m,2,m2, and n,, are dependent on x alone. The requirement that
elimination of the 'intermediate' variable e(x, t) yield (4.1) shows that
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m,2m2, = \l(gho), (4.7)

homl2 = Ciexpj - I nndxL (4.8)

n,,/m,2=C2, (4.9)

where C, and C2 are constants. If we set

<& = C i e x p j - I ni,dx[, (4.10)

(4.7)_(4.9) may be rewritten in the form

m2, = <Wfto, (4.11)

m2, = l/g<t>, (4.12)

* - ' = I" (CJho)dx + C, (4.13)

where C3 is a further constant of integration. Thus, if ho(x) is specified, 4> may
be determined from (4.13) and then (4.11), (4.12) and (4.9) yield wj|2,m2i and nM.
Alternatively, given a particular <1>, (4.13) yields h0 and (4.11), (4.12) and (4.9)
fn,2,m2, and nM.

The transformations

T?* = g-<DT?, (4.14)

e* = e, (4.15)

reduce (4.2) to the system

Sl* = M*fl* + 0,, (4.16)

where

(4.18)

Introduction of the new variables x*,t* defined by (2.15), (2.16) reduces (4.16)
to

n ? . = ff*n% + 0*., (4.19)

where

„* / 0 &l[gho]>\ (42Q)
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Procedures analogous to those of the preceding section (the particular case
ni, = 0) may now be used to obtain reduction to either of the forms (i) or (ii) for
more general expressions for ho(x). The expressions for ho(x) are given by

gho = (a\Y^V\\ (4.22)

where a ! adopts the forms given in section 3. As an illustration, from (3.38) and
(4.22), it is seen that reduction to the canonical form (i) is possible, in particular,
when

/io=(gA2)-'[aJc* + y]-4<l>4. (4.23)

Now, (2.15) and (4.13) show that

so that

where C4 and C5 are constants. Writing ax* + y = 6 and using (2.15), it is
apparent that h0 is given parametrically by

jde5+ c4c5e
2- c5d~' = a\x

The cases C4 = 0 and C5 = 0 yield, in turn,

where, in each case, the relationship between A,B and C4, C5,a,A,/u. may
readily be obtained.

As another method for obtaining reduction to canonical form, the transfor-
mations may be iterated. For illustrative purposes, attention is confined to
seeking ho(x) for which reduction to canonical form (i) may be made in the
absence of ground motion. Thus, reduction to the conventional wave equation
is sought.

Consider the transformations

(4.25)
a, = A2a; + B2a\

where

(4.26)
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IY
These transformations link the system

ft; = j/ 'ft; , (4.29)

(4.30)
\y " /

with the associated system

ily=Hfl,, (4.31)

where

Explicitly, the transformations yield

TJ7 = y -"- 1
M ;- f ( P + 1)TJ\ p * - \ (4.33)

rjy = y -p-'u',, (4.34)

«=y ' ' + 1 i7 ' . (4.35)

The latter gives an analogue for the hyperbolic system (4.31), (4.32) of
Weinstein's [6] correspondence principle for the Stokes-Beltrami equations.

It is readily shown by iteration of the above transformation that the
general solution of the system (4.31), (4.32) for p = 2N, N = 0,1,2,••• is given
by

(4.36)

^—-f: = 1 when r = N = Oj, (4.37)

whereF,G are arbitrary functions of t + y and < - y respectively, while <t><r>(£)
denotes the rth derivative of <I> with respect to its indicated argument £. It is
further observed that the single transformation
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T) = « \ M = T)f

takes the system (4.31) to the system

ai = H'a], (4.38)

(4.40)

so that the solution of the system (4.31) and (4.32) for p = -2N, N =
0,1,2, • • • is given by

, (4.41)

u=f(y,t), (4.42)

where /, g are as defined in (4.36), (4.37) above.

By comparing (2.17)-(2.20) and (4.31, (4.32) it is apparent that if

ho(x) = g-'[{p + \)x]^, (4.43)

then, in the absence of ground motion, the system (2.7), (2.8) has the solution

r /=/ (y ,O, (4.44)

uho=-g(y,t), for p =0,2,4,-•• (4.45)

and

v=g(y,t), (4.46)

uho= -f(y,t) for p = 0 , - 2 , -4 , - • • (4.47)

where / and g are defined by (4.36) and (4.37) and

* (4.48)

5. Solutions to the basic equations

The results of the previous sections are now used to obtain specific
solutions to the basic equations. In order to demostrate the technique it will be
sufficient to consider bottom profiles which are special cases of (3.27) and
(3.37).

Eliminating u from (2.7) and (2.8) we obtain

.. ..
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We consider the bottom profiles ho = x', and ho = x* separately.

(i) ho(x) = x'. (5.2)

In this case (3.27) is applicable with A = 1 and B = 0. Use of (3.4), (3.5) and
(3.26) yields

Hence, integrating and using (2.10) and (2,15), we obtain

where the constant 8 is necessarily zero because x =0 when x* = 0. The
constant b2 may be chosen arbitrarily so, for convenience, take b] = 1. Hence,
the transformations

T,'=3g-*x*T,, (5-3)

x* = 3g->x> (5.4)
transform (5.1) to

dt2 dx*2 X dt • ( 5 - 5 )

Putting, u = (x* + 0/2, v = (x* - t)/2 in (5.5) it follows that

iSr-^°- (5-6)
where TJ0 = dr]oldt. Integrating

r,' = F(u) + G(v)-\\(u + v)'Jjodudv, (5.7)

where F and G are arbitrary functions of their respective arguments. Using
(5.3), (5.4) and (5.7) the general solution to (5.1) (with h0 given by (5.2)) may be
written in the form

•q =(]/3)g>x-'{F(u) + G(v)-jj(u+v)riodudv}, (5.8)

where

« = ! ( 3 g - * j c * + f ) , (5.9)

v=\Og-'x'-t). (5.10)

(ii) ho(x) = xK

In this case (3.37) is applicable with A = 1, B = 0. Use of (3.4), (3.5) and
(3.26) yields

+ (gax*)-*6]ri*, (5.11)
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Integrating and using (2.10) and (2.15) we obtain

17' = 2(ga)-*Sfr**Tj, x* =

where, as in case (i), S is necessarily zero since x =0 when x* = 0. The
constant b? may be chosen arbitrarily so, for convenience, put b? = j(g«)'-
Thus the transformations

V = ***TJ, (5.13)

M (5.14)
transform (5.1) to

dt2 x^dx*[X dx*\ X dt '

Introduction of the new independent variable

jf =(2/3)JC** = (2/3)[(5/2)g-*]*x' (5.16)

transforms (5.15) to

The solution this equation may be expressed in terms of integrals involving
Bessel functions (see Tuck and Hwang [2]). '
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