Let $A B$ be produced to meet in E a straight line through C drawn parallel to $O B$.

Then $B \widehat{C E}=C \widehat{B} O=O \widehat{B} A=C \widehat{E} B$.
$\therefore B E=B C$, and the triangle $B E C$ is similar to the triangle OBC.

Then on a certain scale the velocity of P when in $A B$ is represented by $B E$, and on the same scale the velocity of P when in $B C$ is represented by $B C$; then on a certain scale the change of P 's velocity at B is represented by $E C$.

Hence the magnitude of the change is

$$
V \cdot \frac{E C}{B E}=\nabla \frac{B C}{O B},
$$

its direction $B O$.
The time P takes to move from B to C is $=B C \div V$.
Dividing the change of velocity by this time, which is the interval between two successive changes in P^{\prime} ' velocity, we get

$$
V \frac{B C}{O B} \div \frac{B C}{V}=\frac{V^{2}}{O B} .
$$

Now suppose the number of sides in the polygon to increase indefinitely, while V and $O B$ remain the same, and the motion tends towards that of a point moving with uniform speed V in the circumference of a circle of radius $R=O B$. And in the limit the quantity $\frac{V^{2}}{R}$ becomes the acceleration of P in this motion, the direction being inwards along the radius vector of P.

> R. F. Muirhead.

Feuerbach's Theorem.

Generally $\sum a^{2}\left(b^{9}+c^{2}-a^{2}\right)(b-c)^{2}$ is divisible by

$$
\Sigma(b+c-a)(b-c)^{2},
$$

the quotient being $a b c$.
Let a, b, c be the sides of a triangle $A B C ; D, E, F$ their middle points. The tangent from D to the in-circle is equal in length to
$\frac{1}{2}(b \sim c)$. The in-centre I is the centroid of masses proportional to

$$
4(b+c-a) \text { at } D, 4(c+a-b) \text { at } E, 4(a+b-c) \text { at } F,
$$

while the Nine-Point-centre is the centroid of masses proportional to

$$
4 a^{2}\left(b^{2}+c^{2}-a^{2}\right) \text { at } D, 4 b^{2}\left(c^{2}+a^{2}-b^{2}\right) \text { at } E, 4 c^{2}\left(a^{2}+b^{2}-c^{2}\right) \text { at } F .
$$

Hence
$\Sigma(b+c-a)(b-c)^{2}=2 N I .88 . \quad$ (perp. from I on radical axis)
$\Sigma a^{2}\left(b^{2}+c^{2}-a^{2}\right)(b-c)^{2}=2 N I .64 \triangle$ ($\ldots \ldots \ldots \ldots . .$. \qquad
or the perps. from I and N are in the ratio $64 \triangle: 8 a b c s$ or $r: \frac{1}{2} R$.
Thus the radical axis of the in- and Nine-Point-circles divides externally the join of the centres in the ratio of the radii, and consequently the circles touch each other.

Note that $\Sigma(b+c-a)(b-c)^{2}$

$$
\begin{aligned}
& =0\left\{a^{3}+b^{3}+c^{3}+3 a b c-a b^{2}-a c^{2}-b c^{2}-b a^{2}-c a^{2}-c b^{2}\right\} \\
& =4 \Delta(R-2 r),
\end{aligned}
$$

and that R is always greater than $2 r$, except when $a=b=c$.

> R. F. Davis.

Geometrical Note on the Orthopole.

Lemma.- If A, U are given fixed points; $A C, A B, A E$ given fixed straight lines through A; and a variable circle through A, U intersects these straight lines in M, N, W respectively; then the locus x of the point of intersection of $M N, U W$ will be a straight line parallel to $A E$.

