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M A X I M U M M O D U L U S T H E O R E M S A N D 
S C H W A R Z L E M M A T A F O R S E Q U E N C E 

SPACES, II 

B. L. R. SHAWYER* 

1. Introduction. In this note, we continue the investigations of [3], proving 
another analogue of the maximum modulus theorem, this time for the sequ­
ence space bv, and we investigate maximal functions for such theorems. As in 
[3], we use the notation feMM if / is analytic in the disk \z\< 1, continuous 
for \z\ < 1 and satisfies |/(z)| < 1 on \z\ = 1. We also write fsSL if feMM and 
/(0) = 0. Whenever x={xk} is a sequence of complex numbers, we write 
f(x) = {f(xk)}. 

In [3], we proved analogues of the maximum modulus theorem for the 
sequence spaces 5, m and c, and analogues of the Schwarz Lemma for the 
sequence spaces c0, lp and bv0. We begin this note with the sequence space bv. 

2. The sequence space bv. We write xebv, the space of sequences of 
bounded variation, if xec and ||jc||bu ^ l l i m ^ ^ x k \ + Y£=i \xk~xk+i\ is finite. 
Note that the usual norm associated with bv is |JCX| +Xk=i l*k~~*k+il ([!]> P-
239). However, the norm used here is readily shown to be equivalent to the 
usual norm. 

LEMMA 1. (Compare the Lemma in [3].) If xebv and f{z) = zp+1(p e N), then 
f(x)ebvand\\f(x)\\bv^f(\\x\\bv). 

Proof. Since £ k = 1 | x k -x k + i |< ° ° , we have that yn = J%=n\xk-xk+1\^>0 as 
rc-*oo. We also have that y„ -y n + i = ta-*n+il and yn^\Zk°=n(xk-xk+1)\ = 
l^-linifc^oo xk\. Thus 

ii/(x)L-iiim/(xfc)i= n/(xk)-/(xfc+1)i = Z k r 1 - ^ : ! ! 
k=\ 

^ I (yfc -y f c+i) Z (yk + lim xn\) (yk+1 + lim xn\) + 

. p + 1 

n—*oo 

P + l \ = ? ( ( y k + L 1 ™*) ~(yk+i+L i™ Xn\) ) 
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= yi+ lim xn 
n-^oo 

\ P + 1 / 

" I 
/ V 

lim xn 
n—>oo 

p + 1 

= (IWL) p + 1-( i l im|x k | 
p + i 

whence 

ll/(*)L=s/(IML). 
Suppose that f{z) = Y2=oKzn- If feMM, the radius of convergence of this 

series will be at least 1. 

THEOREM 1. (Compare Theorem 5 in [3].) If feMM with Zn=ol&nl —1 a ^ 
x G to w/r/i ||x||bu < 1, then f(x)ebv and | |/U)|L — 1-

Proof. Using the above lemma, it follows that 

ll/ML = lim f(x) + Z \f(xk)~f(xk+1) 

/ ( l i m x f c ) | + X | £ K(x"k-x"k+1) 
\fc^~ /1 fc=i l„=o 

"+Zkl((lHLr-
n = 0 \ 

*XI&» 

= Zkl-(IWL)"^I l6J^i. 

lim xk 

It is worth observing that the proofs of Theorem 5 in [3] and Theorem 1 
above, give rise to the inequalities 

(A) 

and 

(B) 

ll/WL ÎML- ZIU 

ll/toL^IIU 

Thus, we immediately obtain the following result. 

THEOREM 2. (1) If feSL with Y^=i\K\<œ and xebv0 with ||x||bt;o<l then 
(A) holds. Further, 

(1.1) if there is an x such that ||/(x)|L0 = | |*IL0^0, then £n=i | 6 n | ^ l ; 
(1.2) if l : = 1 |fcn |<l, then | | /U)L o<| |x |L o for all xebv0; 

(1.3) if En=il^nl —1 flftd ^ere is an x such that \\f(x)\\bVo = \\x\\bVo^0, tfien 

(2) If feMM with JZ=o \K\<0° and xebv with \\x\\bv < 1, then f(x)ebv and 
(B) holds. Further 
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(2.1) if there is an x such that \\f(x)\\bv = 1, then £n=o |fcn|> 1; 
(2.2) if S:=o \K\< 1, ffeen II/WIL < 1 /or all xebv; 

(2.3) // Xn=o l&nl — 1 a " d ^ ^ w an x such that ||/(x)|L = 1, then X~=0 \K\= 
1. 

3. The sequence space fcu£. We write x e bvo, the space of null sequences of 
bounded variation with index À (À > 0), if xec0 and ||x|L0* = 
Œ r = i k - * k + i | A ) 1 A is finite. 

In this section, we shall make use of Jensen's inequality: g(A) = (£ ItyJ*)17* is 
a decreasing function of A for A > 0. 

We interpret this result in the wide sense in that g(A) may be infinite for 
some values of À, but if it is finite for some value of À, then it is finite for all 
larger values of A. 

LEMMA 2. If xebv% with 0 < A < 1 and if /(z) = zp+1(peN) then f(x)ebv% 
and\\f(x)\\bVo^f(\\x\\bVo^ 

Proof. Let y„ =YZ=n\xk~xk+i\K> s o that y n-»0 as n—»°°. By Jensen's in­
equality, (yJ 1 / x =Œfc=„ |x k -x f c + 1 | À ) 1 / x >l : = Jx k -x f c + 1 |> |x„ | . Also, 
\Xn~Xn+i\x = yn~y„+i, so that 

(ll*p+1IL„̂ = £ Ixr-xj&il* = £ k - ^ i K t k l ' k J — y 
k = l fc=l V = 0 / 

^ £ (yk-yk+i)( I (yfc)
rM(yk+i)(p-r)/xV =s £ (yfc-yk+i) I y ' j K 

k = l V = 0 / k = l r = 0 

by Jensen's enequality, since 1/A > 1 

- S - i (yï+1 - yCi) = y?+1 = ( IWL0 ( p + 1 ) \ 

whence ll/(*)L0^/(IWL0). 

By using this lemma and the techniques of the proof of Theorem 5 in [3], we 
can readily prove the following result. 

THEOREM 3. If xebv£, with 0 < A < 1 and ||x||bUo*<l and if f(z)eSL with 

i : = 1 \bn\" finite, then f(x)ebv% and | | / U ) L 0 ^ Œ : = 1 |bn|A)1/A | | x | | w . Further, if 

rn=i\bn\
x^hthen\\f(x)\\bVo^\\x\\^ 

Other statements, similar to those in Theorem 2 above can be made as well. 
For A > 1, it is not possible to obtain such a result as the following example 

shows: Let xk = (2X - l ) 1 A 2 1 _ k so that ||x||bUox = l ; however ||x2Lo* = 
•3(2 A -1) 2 / X (4 A -1) - 1 / A >1. 

6 
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4. The sequence space bvk. We write x e bvx, the space of sequences of 
bounded variation with index À(À>0), if xec and 

A ^_ \ 1/A 

lim xk + £ | x k - x k + 1 | 
\ *-*» I k=i 

is finite. 
In a similar way to that in which Lemma 2 above adapts the proof of the 

lemma in [3], we can adapt the proof of Lemma 1 above, and the proof of 
Theorem 1 above, to obtain 

LEMMA 3. If xebvK with 0 < A < 1 and if /(z) = zp+1(peN) then f(x)ebvk 

and\\f(x)\\bv^f(\\x\\bv,). 

THEOREM 4. If xebvk with 0 < A < 1 and ||x||bl)x<l, and if f(z)eMM with 

Zn-o \t>n\
x finite, then f(x)ebvk and 

\\f(x)\L^(l\bn 
1M 

|A 1 

n = 0 

Further, if E? = 0 \bn\
k < 1, then ||/(x)L* < 1. 

Again we cannot obtain a similar theorem for À > 1; the same example as in §3 
suffices to show this. 

5. Maximal elements. We write / G MM if / is analytic in a region containing 
the closed unit disk and feMM. If feMM and /(0) = 0, then we write fe SL. 
For feMM, it is well known what the maximal elements are. 

PROPOSITION. (See, e.g., [2], p. 129.] If feMM and |/(z)| = 1 whenever 
\z\ = l, then f(z) = ei0zy l\k==1 (akz - f3k)l((3kz - ak) where 6 is real, y is a non-
negative integer and |«k |>| j3 f c |>0. (By convention, N is a non-negative integer, 
and empty products have value 1.) 

If feMM and x e m (or c or c0) with ||jc||m =supk |xk| = 1 (or ||JC||C = ||x||m or 
IMLHWL) t n e n it is easY t° see that / must have the form as in the above 
proposition (except that in the case of c0, where we need feSL, the result 
demands that y > l ) . For xebv0 or xebv, the result is more interesting. 

THEOREM 5. If feSL and, for every x e bv0 with \\x\\bVo = 1, we have ||/(jc)nbUo -

bv0-> ||x||bUo, then f(z) = el0z where 6 is real. 

Proof. First, consider x = {z, 0, 0, 0 , . . .} where |z| = l, so that ||jc||bro=l. 
Thus ||/(jc)||bUo = | / (z ) - / (0) | = |/(z)| = l. From the proposition, we obtain that 

f(z) = e»zvf[(akz-pk)/(Jkz-~^. 
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Let 

X = {{0, 2/2,0,0,0,...}, {z/3,0, z/3,0,0,0,.. .}, {0, z/4,0, z/4,0,0,0,.. .}, 

{z/5,0,z/5,0.z/5,0,0,0,...},...} where |z| = l, 

Let x = Xn, so that ||JC|L0 = 1 = ||/(x)L0 = n \f(z/n)\. Thus 

1 = «1 - T ft K«kz- nPkVUhz ~ n^k)\. 
k = \ 

Now 
N N 

lim n K«kZ " "0k)/(j3kz - m*k)| = f l l0k/«kl = Af. 

Since 0 < M < 1 , it follows that y= 1 and N = 0, so that f(z) = ei0z. 

THEOREM 6. IffeMM, and for every xebv with ||x||bu = 1, we /iat;e ||/(A;)|L = 
1, tfien it follows that 

(a) i//(0) = 0 tfierc /(z) = e'ez, 

(b) iff(0)^0 then f(z) = eie, 

where 6 is real. 

Proof, (a) If /(0) = 0, then we follow the proof of Theorem 5 to obtain that 
f(z) = eiez 

(b) If /(0)^0, we first consider JC={Z, 0,0,0,.. .} with |z| = l, so that 
||xL = l.Thus 

/U) = {/W,/(0),/(0),/(0),...} and ||/U)L = |/(0)| + |/(z)-/(0)| = l. 

If |/(0)| = 1, then |/(z)-/(0)| = 0 on \z\ = 1 and the minimum modulus theorem 
gives that f(z) = f(0) = eie. 

Suppose hereafter that 0<|/(0) |<1. Let F(z) = (/(z)-/(0)/l-|/(0)|). Thus 
\F(z)\ = l on \z\ = l, so that 

F(z) = eiez- ft ( « k z - A ) / ( Â z - ^ ) 
l c = l 

and, a fortiori, /(z) = /(0)+{l-|/(0)|}eiez^ 

N 

n («**-&)/(&*-«*)• 
k = l 

Define X as in the proof of Theorem 5 and let x = Xn, so that ||jc||br = 1. 
Further 

ll/(*)L = l/(0)|+ n|/(z/n)-/(0)| = l 
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so that 1 = |/(0)|+{1 - |/(0)|}nx-^ f l |(«kz - n0k)/(Az - wk)\. 
k=\ 

N N 

Now lim f l K«kz ~npk)l(pkz -nak) = f ] lfrc/<*k| = M 

Since 0 < M < 1 , it follows that 7 = 1 and N = 0. Thus 

f(z) = /(0) + e»{l - |/(0)|}z = p + qz, say, 

where 0 < | p | < l and 0 < | q | < l . 
Now choose any xebv with ||jc||bu = 1 and limk_^o xk = z where \z\ = 1. Then 

ll/WL = l/U)+£kl-k-^+il 
k = i 

= |p + qz| + kl(NL-|z |)=|p + qz| = l. 

This is impossible unless either p = 0, |q| = 1 or q = 0, \p\ = 1, both of which are 
excluded. Hence f(z) = eie. 

These last two theorems give the answer to the question posed in [3] as to 
whether X \bn\ ^ 1 is a necessary condition, if we insist that ||JC|| = 1. The answer 
is yes, but in an unexpected way. 

Maximal element theorems for bvo and bvx can be proved in similar ways to 
those used in Theorems 5 and 6 using 

Y = {{0, z/21M, 0, 0, 0 , . . . } , {z/31/À, 0, z/31 7 \ 0, 0, 0 , . . . } . . . } 

instead of X. However, the proofs will demand, as a necessary condition for the 
existence of maximal elements, that À = y and since y is an integer, we must 
have 7 = 1. Thus we obtain Theorem 5 only for bvl = bv0 and Theorem 6 only 
for bvl = bv. 
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