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FINITE GROUPS OF CONJUGATE RANK 2

ALAN R. CAMINA

Introduction

In 1953 N. Itδ defined the conjugate rank of a finite group as the
number of distinct sizes, not equal to 1, of the conjugacy classes of the
group [71.

Let G be a finite group and let {n19 ,nr} be a set of integers

nt > lvi , nt = Πj

if and only if i = j ; and such that every conjugacy class in G has nt

elements for some i and for every i, nt is the size of some conjugacy
class of Gj then r is the conjugate rank of G.

N. Itδ showed that any group of conjugate rank 2 is soluble [8].
It is the purpose of this paper to strengthen this result.

A group G is called a group of type F, or of isolated type, if for
every pair

x,yeG; x,ye Z(G), CG(x) Π CG(y) = Z(G) or CG(x) = CG(y) .

R. Schmidt and J. Rebmann have completely classified such groups [9,10].
The main theorem is the following:

THEOREM 2. Let G be a finite group of conjugate rank 2 which is
not isolated. Then G is a direct product of an Abelian group and a
group whose order involves no more than 2 primes.

Combining this with the work of Rebmann and the theorem of
Burnside on groups whose orders are divisible by just 2 primes, Itδ?s
theorem follows from Theorem 2. The proof of this depends on the
main theorem of [3] and on an extension of this which is proved in
section 3. Unhappily in the earlier paper the situation described by (*)
is not sufficiently general for the application intended. The following is
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48 ALAN R. CAMINA

the required situation which is also needed as a basis for the proof of
Theorem 2.

(**) Let G be a finite group containing a proper subgroup A satisfy-
ing the following conditions:

( i ) A = CG(x) for some xeG,
(ii) 3 an integer r such that if yeG and CG(y) < A then

[A: CG(y)] - r.

(iii) There exists no element z e G satisfying

A < CG(z) < G .

Let π(A) = {p \ p is a prime such that 3 a p-power element whose
centralizer is A}.

Then A satisfies the condition that every non-central element of A
which has order prime to some element of π{A) has index r in A. The
index of an element is defined to be the number of elements in the
conjugacy class containing it. In [3] the main theorem classified groups
satisfying the above condition when \π(A)\>l. In this paper a similar
result is obtained for the situation when \π(A)\ = 1. The result is stated
as a corollary, as it is obtained as a consequence of a slightly more
general theorem.

COROLLARY. Let G be a finite group, p a prime number and n an
integer. If every pf-element of G has 1 or n conjugates and \G/Z(G)\ is
divisible by at least two primes different from p, then G is soluble with
p-length <2, q-length — 1, q a prime different from p and n is a power
of p.

It is convenient at this point to define for any group G a G-eecen-
tric prime p to be a prime such that G/Z(G) has a non-trivial p-element.
If q divides \G\ and q is not G-eccentric then the Sylow g-subgroup of
G is an Abelian direct factor of G. We can now state the theorem.

THEOREM 1. Let G be a finite group such that the set of G-eccentric
primes divides into two disjoint subsets, π and σ, and let n be an integer

Further let G satisfy the following conditions:
( i ) G has a non-trivial nilpotent Hall σ-subgroup
(ii) every non-central π-element of G has n conjugates, and

(iii) W > 1 .
Then G is soluble, n is a σ-number, and G = Oπ(G) x Zo where Zo is
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a central {πfσ}-sub group of G. Further either:

(1) G has a normal Abelian Hall π-sub group Lo such that G/CG(L0)

acts regularly on Lo/Lo Π Z(G), or

(2) Oπ(G) < Z(G) and L/OXG)(Z(G) ΓΊ L) is cyclic and Oσπσ(G)/L acts

regularly on L/Oπ(G)(Z(G)f)L), where L = Oσπ(G).

The corollary follows by applying Theorem 1 with σ — {p} and π —

{G-eccentric primes excluding p}. The term regularly will be used in

the sense of D. Gorenstein [5] to mean that each element acts fixed

point freely. This avoids the possible confusion of using fixed point

freely in two different senses.

In the second section a number of trivial but useful lemmas are

proved and a very useful proposition which may well be of independent

interest.

PROPOSITION 1. Let G be a finite group with a subgroup Ao such

that Ao is a characteristic subgroup of A, a subgroup of G, such that every

element of Ao has centralίzer A or G. Let π be the set of primes dividing

|A0/A0 Π Z(G)\ and assume \π\ > 1. Then either

(i) NG(A)/A is a π'-group or,

(ii) \NG(A)/A\ = p for some peπ.

It is clear that this proposition could be used to give alternative

proofs of the theorems concerning a group of type F [9], [10].

NOTATION. Most of the notation is standard, see for example [5] or

[6]. Let G be a finite group, p is said to be a G-eccentric prime if

p\\G/Z(G)\. If x e G, IndG (x) = [G:CG (x)] = the order of the conjugacy

class containing x. If A < G and x e A then to say that x is non-central

will usually mean that xeZ(G). For a definition of conjugate rank see

[7].

2. Preliminary Lemmas and a Useful Proposition

We begin with a series of simple lemmas which contain results

which are frequently used in the analysis of this type of problem.

LEMMA 1. Let q be a prime dividing the order of G.

(i) If x is in G and IndG (x) = IndG (y) for some non-central q-

element y, then CG(x) contains non-central q-elements.

(ii) // q divides IndG (w) for all non-central q-elements w then
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Z(Q) < Z(G) τvhere Q is a Syloiυ q-subgroup of G.

Proof, (i) Let qa be the highest power of q which divides IndG (x).

Let Qo be a Sylow g-subgroup of CG(x). If (i) is false Qo < Z(G). Let

Q be a Sylow g-subgroup of G such that Q ΓΊ CG(τ/) is a Sylow g-subgroup

of CG(y). Now [Q: Qo] - qa and Cρ0/) > <y, Qo>. Thus [Q: CQG/)] < q*

which contradicts the assumption that IndG (x) '= IndG(y).

(ii) If xeZ(Q), IndG (x) is prime to q. Thus xeZ(G).

LEMMA 2. Lei A be a proper subgroup of G which is the central-

izer of an element in G, and let π be a set of at least two G-eccentric

primes each of which divides the order of A. If the centralizer of each

π-element of A has order \G\ or \A\ then A possesses an Abelίan Hall

π-subgroup. Further if there is a π-element whose centralizer is A then

the Hall π-sub group is central in A.

Proof. Let p and q be G-eccentric primes in π and let x and y be

non-central p- and g-elements of A respectively. Then xy is a non-

central ^-element lying in A. Thus \CG(xy)\ = \A\. But CG(xy) = CG{x)

Π CG(y) and |CG(a0| = \CG(y)\ = \A\. So we conclude that CG(x) = CG(y)

= CG(xy). The two results now follow.

LEMMA 3. Let G be a group with a normal nilpotent subgroup H

which has a nilpotent complement K of coprime order such that for all

x9 yeK\Cκ(H), CH(x) = CH(y). Then K/CK(H) is cyclic or a direct

product of a cyclic group with a generalised quaternion group.

Proof. It is only necessary to show that there is some group on

which K acts regularly. Consider (CH(x))H for any xeK\Cκ(H). Since

H is nilpotent, (CH(x))H < H and clearly K/CK(H) acts regularly on

H/(CH(x))H.

LEMMA 4. Let P be an Abelian p-group, for some prime p and let

K be a group of automorphisms of P whose order is divisible by p. If

for all pairs x, y e K\{1}, CP(x) = CP(y) then OP,(K) = 1.

Proof. Put H = OV,(K) and assume H Φ 1. Since K is not a p-

group, CP(H) Φ 1. Hence by a simple extension of the proof of Maschkes

Theorem, P = CP(H) x L where L is a K-invariant subgroup of P. How-

ever K would have to act regularly on L and this is false since K is

not a p7-group.
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The proof of Proposition 1 will be deduced from a sequence of

Lemmas which will prove some stronger results than Proposition 1. It

is convenient to assume a slightly weaker hypothesis to begin with.

(B) Let Ao < A < G be a sequence of finite groups where Ao is

characteristic in A. Let π be the set of G-eccentric primes dividing

|A0|. Finally assume the following three conditions:

(a) If xeAQ then CG(x) = A or G

(b) \π\>l.

(c) NG{A)ΦA.

LEMMA 5. Let Ao < A < G satisfy (B). If X < Ao and X is not

central, CG(X) = A and NG(X) < NG(A).

Proof. Let x e X\Z(G). Then CG(x) = CG(X) = A. CG(X) <\ NG(X),

and so A O NG(X).

LEMMA 6. Let Ao < A < G satisfy (B). Let W = NG(A)/A. Then

( i ) if U < W and U is a p'-group for some p eπ then U acts

regularly on some section of Ao;

(ii) every Sylow subgroup of W is cyclic or generalized quater-

nion

(iii) any Sylow q-subgroup of W, for qeπ, has order q.

Proof. ( i ) Let Po be a Sylow ^-subgroup of Ao. Since Ao is

characteristic in A, Po is characteristic in Ao and so U acts on Po.

Since (|Ϊ7|,|PO|) = 1 and CPQ(U) = PQ Π Z(G) for all w ̂  1, ue U, U acts

regularly on P0\PQ Π Z(G).

(ii) This follows immediately from (i) and \π\ being greater than

one.

(iii) Let 7 be a Sylow g-subgroup of W and Qo be a Sylow ^-sub-

group of Po. 7 acts faithfully on Qo and CQo(V) = Qo Π ̂ (G). Let Γ

be a subgroup of Qo such that |Γ/Q0 Π Z(G)\ = g and [Γ, 7] < Qo Π Z.

Such a subgroup exists because Qo and 7 are g-groups. From Lemma

5 it follows that 7 acts faithfully on T but V/Cr(T) is elementary

Abelian. From (ii) we know that if 7 has exponent q it is cyclic and

so (iii) is proven.

LEMMA 7. Let Ao < A < G satisfy (B). Then NG(A)/A is a π or

πf-group. If NG(A)/A is a π-group then \NG(A)/A\ = p for some prime

p eπ.
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Proof. Let W = NG(A)/A. If W is soluble there exist subgroups
of order rs for any pairs of primes r, s dividing \W\, from Lemma 6
(ii). If W is not soluble then the Sylow 2-subgroup of W is quaternion,
again from Lemma 6 (ii), and so by [1] the involution in W is central.
Thus we have subgroups of order 2r for any prime r dividing \W\.

Let U be a subgroup of rs for two primes dividing \W\ where at
least one of the pair is in π. If one is not in π, U will be Abelian by
Lemma 6 (i) and [6; V. 8.12]. Thus we can assume that U has a normal
r-complement for r e π. Let RQ be the Sylow r-subgroup of Ao, which is
clearly normalized by U. Hence by Lemma 4, U has no normal r'-sub-
group which is false. Hence U does not exist and so either IF is a π'-
group or is a p-group for some prime p e π. Then by Lemma 6 (iii),
\W\ = p.

This Lemma completes the proof of Proposition 1. However for the
applications it is useful to have a slightly stronger hypothesis.

(C) Let Ao ^ A ^G satisfy (B) and assume that Ao is a Hall sub-
group of A.

LEMMA 8. Let AQ < A < G satisfy (C). Then A is the centralίzer
of a Sylow q-subgroup of G for any qeπ, q\\NG(A)/A\. Further (i) if
\NG(A)/A\ is a π'-group, then AQ is a Hall subgroup of G, or

(ii) // \NG(A)/A\ — p every Sylow q-subgroup of Ao, qeπ, q Φ p is
a Sylow q-subgroup of G.

Proof. The conclusion stated first follows from (i) and (ii). Let Ro

be a Sylow r-subgroup of Ao, r e π. Then by Lemma 5 NG(R0) < NG(A)
and so if NG(A)/AQ is an regroup Ro is a Sylow r-subgroup of G.

The situation described in Lemma 8 (ii) is the more exceptional and
so it is useful to investigate it more thoroughly. (D) Let AQ^A^G
satisfy (C) and let \NG(A)/A\ = p.

LEMMA 9. // Ao < A < G satisfies (D) and p is odd and the Sylow
p-subgroup of AQ/AQ Π Z{G) has order greater than p then G has a normal
π-complement.

Proof. Let Po be a Sylow p-subgroup of Ao, and let P be a Sylow
p-subgroup of NG(A). Then P0<\P and \P/PQ\ = p. Po is thus a normal
Abelian maximal subgroup of P. If Po φ ZJ(P), P contains another
normal Abelian maximal subgroup, say Px. Then P1 Π Po — Z(P). How-
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ever \P0/Z(P)\ Φ p, by assumption since Z(P) = PΠZ(G). Thus Po = ZJ(P).

Then P is a Sylow p-subgroup of G for otherwise NG(P0) = NG(ZJ(P))

would be greater than NG(A) which is false by Lemma 5. Clearly

NG(ZJ(P)) = N0(A) has a normal p-complement and so by the Thompson-

Glauberman Theorem [5; 8.3.1] so does G. Let this complement be K.

Now K D Ao is an Abelian Hall (π — {p})-subgroup of G which is con-

tained in the centralizer of its normalizer and so by Burnside [6 IV, 2,

6] the Lemma follows.

3. Proof of Theorem 1.

We begin by showing that Proposition 1 can be applied to the cen-

tralizer of a 7r-element. Let A be the centralizer of a non-central π-

element. So [G: A] = n. Further, there exists xeA such that x is a

p-element for some peπ and CG(x) = A. Also, since \π\ > 2, there is a

non-central g-element 2/ say in A, with # Φ py qeπ, by Lemma 1. Now

CG(xy) = Cβ(ίc) Π C^d/) and [G: C β ( ^ ) ] = n and so CGO) == CG(y) = A.

Clearly if we pick any π -element of prime power order in A it has order

coprime to either x or y. Thus its centralizer is either A or G. Let

Ao be the Abelian characteristic Hall π-subgroup of A. We can now

apply Proposition 1 to the centralizer A with Ao as the appropriate sub-

group.

If G is divisible by a prime s which is not G-eccentric then the

Sylow s-subgroup S of G is central. So S is an Abelian direct factor

of G. We will assume for the remainder of the proof that \G\ is not

divisible by any primes which are not G-eccentric and so, in particular,

that G is a {π, <7}-group.

Let x and y be the non-central ^-elements of G. Then it is clear

from Lemma 8 that CG(x) is conjugate to CG(y) unless \π\ — 2 and

\NG(CG(x))/CG(x)\ = p, \NG(CG(y))/CG(y)\ == q for π = {p, q}. But from the

first it could be deduced that the Sylow g-subgroup of G is Abelian which

would contradict the second statement. Let A be a centralizer of some

non-central g-element and let Ao be the Hall ^-subgroup of A.

Let ω be an element of a Sylow p-subgroup P of G p eπ such that

CP(ω) <| P and such that ωgZ(G). From Lemma 5 it follows that

P < NG(CG(ω)). Thus NG(A) contains a Sylow p-subgroup for each peπ.

Hence NG(A) has Tr'-index. Let BQ be a Hall σ-subgroup of Ao, so that

A = Aϋ x Bo. Then 3 a Hall σ-subgroup H of G such that Bo < H.
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Clearly H N0(A) = G. Then B<* = Bξ°{A)H = Bξ which is a σ-group.

However H is nilpotent and so Bo <]< G. Thus Bo < OS,(G) = Oσ(G). So

β 0 = O,/(G) Π A. It is clear now that G/Oπ,(G) satisfies the same condi-

tions as G with n replaced by n\B0\/\Ox,(G)\.

It will now be proved that G is soluble. There are three cases.

( i ) NQ(A)/A is a π'-group.

Then by Lemma 8, Ao is a Hall τr-subgroup of G and so since G

has a Hall σ-subgroup say D, G = AQ D D is nilpotent, AQ is Abelian

and so G is soluble by Kegel-Wielandt [6; VI. 4].

( i i ) \NG(A)/A\ = p>2; peπ.

If the Sylow p-subgroup of Ao/Ao Π Z(G) has order >p, there is

nothing to prove since by Lemma 9 G has a normal τr-complement. Let

P be a Sylow p-subgroup of 2VG(A). Then | P / P Π Z(G)| =£ p2. Let P x be

a Sylow p-subgroup of G containing P. Let ω e Z2(P1)\Z(P1). Then CG(ώ)

is conjugate to A and the Sylow p-subgroup of NG(A) is isomorphic to

P. However N(CPl(ω)) > P 2 and so P2 < NG(CG(ω)) by Lemma 5. Hence

Pι — P. Let Z 1 ? « , Z p + i be the distinct maximal subgroup of P con-

taining Z(P). Now if CG(Xi) = CG(Xj), ί Φ j then Z€ and Z^ commute
and so P would be Abelian which is false. Hence CG(Xi) are p + 1
distinct conjugate subgroups of G. Furthermore the Z^ are all conju-
gate since they are the Sylow p subgroups of CG{X^). Thus, as Xt <\ P,
NG(P)/CG(P) is divisible by p + 1. In particular there exists a 2-element
u such that u e NG(P)\CG(P) and u2eCG(P). Hence w normalizes some
Xi. However NG(Xt) = NG(CG(Xi)) which has a normal p-complement
and a normal Sylow 2 subgroup and hence [u, P] = 1, contradicting the
choice of u. This proves that this situation cannot occur.

(iii) \Nβ(A)/A\ = 2.

Since Oπ,(G) is soluble we can assume Oπ,(G) = 1. Let Qo be a Sylow

2-subgroup of AQ and let Q be a Sylow 2-subgroup of NG(A). Then

|Q/Q0| = 2. Further if j/ e Q\Q0, y2 e Z(G). Let T > Z{G) Π Qo be such

that [T,y]*ζZ(G). Then T^NG(CG(y)) by Lemma 5. But since

\NG(CG(y))/CG(y)\ = 2, and Cr(τ/) < Z(G), |Γ/Z(G) Π Qo\ = 2. Hence by

[6; III. 11. 9] Q/Z(G) Π Q is a dihedral group. So the group G/Z(G) has

a dihedral Sylow 2-subgroup and the centralizer of an involution has an

Abelian 2-complement. Thus the structure of G/Z(G) is known by

Gorenstein-Walter [4],
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Assume that K/Z(G) is soluble. Then there exists a normal non-

central p-subgroup N, with p eπ. N < NG(A) since [G: NG(A)] is a π'-

number. Let q eπ, p Φ q. Then N centralizes the Sylow g-subgroup

of Ao and so N < Ao. By Lemma 5 A <j G and so G would be soluble.

Thus we may assume G/Z(G) has no normal soluble subgroups. Then

if K/Z(G) is a minimal normal subgroup K/Z(G) ^PSL(2,re) of A7 [4],

where re is a power of some odd prime r. From the hypothesis it is

clear that a = {r} or {7} respectively. Assume K/Z(G) ^ PSL(2,re).

Since re > 3 we can pick 8,2/ neither being involutions such that \x\\re — 1

and \y\\re + 1 and so that the orders of the centralizers are not conju-

gate as they should be since K < G. Similarly for A7 by looking at

elements of order 3 and 5.

Thus in all cases we have shown that G is soluble.

Assume that Oπ(G) is not central. Then there exists a non-central

normal p-subgroup M of G, where p e π. Then M < NG(A) and so M < A.

Thus A O G, from Lemma 5. If x is a non-central π-element of G, CG(x)

is conjugate to A and so CG(x) = A. Thus G/A is a π'-group and clearly

acts regularly on Ao/Ao Π Z(G). This is the situation described in (i) of

Theorem 1, note n = [G: A] is a ^-number.

Now assume that O,(G) < Z(G). However G/Oπ,(G) satisfies the

hypothesis for the Theorem and Oπ(G/Oπ,(G)) is certainly not central so

we can conclude from the previous paragraph that AOπ>(G) <] G, and that

AOπ,(G) = Oπ^π(G). Hence again NG(A)/A is a π7-group and [G: A] is a

T^-number. Finally if AOS,(G) = L (2) of Theorem 1 holds by applying

Lemma 3.

4. Finite Groups of Conjugate rank 2.

This section is devoted to a proof of Theorem 2. We assume that

G is a minimal counter-example to this theorem. It follows that G

satisfies the following three properties:—

( i ) \G\ is divisible by at least 3 G-eccentric primes;

(ii) \G\ is divisible only by G-eccentric primes;

(iii) 3β < A < G with [G: A] = n, [G: B] = m both A and B are

centralizers of elements in G and every element of G has index 1, m

or w.

Let D < G and define ττ(D) = {p | p is a prime such that there exists

a p-element whose centralizer is D). π(D) could be empty. If x is a non-
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central element of G it can be classified according to the following

types:

( I ) CG(x) is isolated; and CG(x) is not isolated in the remaining

four cases

(II) [G: CG(x)] - n, | π(CG(x)) | > 1

(III) [G: CG(x)] = n, \π(CG(x))\ = 1

(IV) [G: CGc)] = m, \π(CG(x))\ > 1

(V) [G: CG(x)] = m, \π(CG(x))\ = 1.

Since every element of G has index dividing m, every prime divid-

ing \G\ also divides m by (ii).

(1) m/n = pa for some prime p and integer α > 1.

From (iii) there exists an x e G such that CG(#) is of type (II) or

(III). If CG(x) is of type (II) then CG{x) is a direct product of a non-

Abelian p-group and an Abelian p'-group and m/n = pa [3]. If CG(α?)

is of type (III), m/n — pa by the Corollary to Theorem 1, where {p} =

π(CG(x)).

(2) There is no centralizer of type II.

Let A be such a centralizer. Let Ao be the normal Abelian Hall

^/-subgroup of A. Clearly we can apply Lemma 8 to deduce that NG(A)

contains a Sylow r subgroup of G, for some prime r Φ p, r + [NG(A): A].

Since r | m and m = npa and w = [G: A] this leads to a contradiction.

We can now complete the proof of the theorem. Let X be a cen-

tralizer of type III. Let ω be a ^'-element in X. CG(ώ) if of type III,

IV or V. Note that Cx(ω) is the centralizer of an element of G, so that

if CG(ω) is of type IV or V, CG{ω) — Cx(ω). If CG(ω) is of type III we

would have that m\n is of order prime to p which is false. Thus the

centralizer of any non-central ^-element in CG(ω) is precisely CG{ω).

From (1) and Lemma 1 we can apply Proposition 1 to CG(ώ) with the

appropriate subgroup being the Hall ^/subgroup of CG(ω), the CG(ώ) be-

ing Abelian since it is a minimal centralizer. Finally by Lemma 8 CG(ω)

would contain some Sylow subgroup of G which is again false.
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