Alan R. Camina Nagoya Math. J. Vol. 53 (1974), 47-57

FINITE GROUPS OF CONJUGATE RANK 2

ALAN R. CAMINA

Introduction

In 1953 N. Itô defined the conjugate rank of a finite group as the number of distinct sizes, not equal to 1, of the conjugacy classes of the group [7].

Let G be a finite group and let $\{n_1, \dots, n_r\}$ be a set of integers

$$n_i > 1 orall i$$
 , $n_i = n_j$

if and only if i = j; and such that every conjugacy class in G has n_i elements for some i and for every i, n_i is the size of some conjugacy class of G, then r is the conjugate rank of G.

N. Itô showed that any group of conjugate rank 2 is soluble [8]. It is the purpose of this paper to strengthen this result.

A group G is called a group of type F, or of isolated type, if for every pair

 $x, y \in G$; $x, y \notin Z(G)$, $C_G(x) \cap C_G(y) = Z(G)$ or $C_G(x) = C_G(y)$.

R. Schmidt and J. Rebmann have completely classified such groups [9, 10]. The main theorem is the following:

THEOREM 2. Let G be a finite group of conjugate rank 2 which is not isolated. Then G is a direct product of an Abelian group and a group whose order involves no more than 2 primes.

Combining this with the work of Rebmann and the theorem of Burnside on groups whose orders are divisible by just 2 primes, Itô's theorem follows from Theorem 2. The proof of this depends on the main theorem of [3] and on an extension of this which is proved in section 3. Unhappily in the earlier paper the situation described by (*) is not sufficiently general for the application intended. The following is

Received June 28, 1973.

the required situation which is also needed as a basis for the proof of Theorem 2.

(**) Let G be a finite group containing a proper subgroup A satisfying the following conditions:

(i) $A = C_G(x)$ for some $x \in G$,

(ii) \exists an integer r such that if $y \in G$ and $C_G(y) < A$ then $[A: C_G(y)] = r$.

(iii) There exists no element $z \in G$ satisfying

$$A < C_{\scriptscriptstyle G}(z) < G$$
 .

Let $\pi(A) = \{p \mid p \text{ is a prime such that } \exists a p \text{-power element whose centralizer is } A\}.$

Then A satisfies the condition that every non-central element of A which has order prime to some element of $\pi(A)$ has index r in A. The index of an element is defined to be the number of elements in the conjugacy class containing it. In [3] the main theorem classified groups satisfying the above condition when $|\pi(A)| > 1$. In this paper a similar result is obtained for the situation when $|\pi(A)| = 1$. The result is stated as a corollary, as it is obtained as a consequence of a slightly more general theorem.

COROLLARY. Let G be a finite group, p a prime number and n an integer. If every p'-element of G has 1 or n conjugates and |G/Z(G)| is divisible by at least two primes different from p, then G is soluble with p-length ≤ 2 , q-length = 1, q a prime different from p and n is a power of p.

It is convenient at this point to define for any group G a G-eccentric prime p to be a prime such that G/Z(G) has a non-trivial p-element. If q divides |G| and q is not G-eccentric then the Sylow q-subgroup of G is an Abelian direct factor of G. We can now state the theorem.

THEOREM 1. Let G be a finite group such that the set of G-eccentric primes divides into two disjoint subsets, π and σ , and let n be an integer

Further let G satisfy the following conditions:

- (i) G has a non-trivial nilpotent Hall σ -subgroup
- (ii) every non-central π -element of G has n conjugates, and

(iii) $|\pi| > 1$.

Then G is soluble, n is a σ -number, and $G = O_{\pi}(G) \times Z_0$ where Z_0 is

a central $\{\pi, \sigma\}$ -subgroup of G. Further either:

(1) G has a normal Abelian Hall π -subgroup L_0 such that $G/C_G(L_0)$ acts regularly on $L_0/L_0 \cap Z(G)$, or

(2) $O_{\pi}(G) \leq Z(G)$ and $L/O_{\pi}(G)(Z(G) \cap L)$ is cyclic and $O_{\sigma\pi\sigma}(G)/L$ acts regularly on $L/O_{\pi}(G)(Z(G) \cap L)$, where $L = O_{\sigma\pi}(G)$.

The corollary follows by applying Theorem 1 with $\sigma = \{p\}$ and $\pi = \{G$ -eccentric primes excluding $p\}$. The term regularly will be used in the sense of D. Gorenstein [5] to mean that each element acts fixed point freely. This avoids the possible confusion of using fixed point freely in two different senses.

In the second section a number of trivial but useful lemmas are proved and a very useful proposition which may well be of independent interest.

PROPOSITION 1. Let G be a finite group with a subgroup A_0 such that A_0 is a characteristic subgroup of A, a subgroup of G, such that every element of A_0 has centralizer A or G. Let π be the set of primes dividing $|A_0/A_0 \cap Z(G)|$ and assume $|\pi| > 1$. Then either

- (i) $N_G(A)/A$ is a π' -group or,
- (ii) $|N_G(A)/A| = p$ for some $p \in \pi$.

It is clear that this proposition could be used to give alternative proofs of the theorems concerning a group of type F [9], [10].

NOTATION. Most of the notation is standard, see for example [5] or [6]. Let G be a finite group. p is said to be a G-eccentric prime if p||G/Z(G)|. If $x \in G$, $\operatorname{Ind}_G(x) = [G:C_G(x)] =$ the order of the conjugacy class containing x. If A < G and $x \in A$ then to say that x is non-central will usually mean that $x \notin Z(G)$. For a definition of conjugate rank see [7].

2. Preliminary Lemmas and a Useful Proposition

We begin with a series of simple lemmas which contain results which are frequently used in the analysis of this type of problem.

LEMMA 1. Let q be a prime dividing the order of G.

(i) If x is in G and $\text{Ind}_G(x) = \text{Ind}_G(y)$ for some non-central qelement y, then $C_G(x)$ contains non-central q-elements.

(ii) If q divides $\operatorname{Ind}_{G}(w)$ for all non-central q-elements w then

 $Z(Q) \leq Z(G)$ where Q is a Sylow q-subgroup of G.

Proof. (i) Let q^a be the highest power of q which divides $\operatorname{Ind}_G(x)$. Let Q_0 be a Sylow q-subgroup of $C_G(x)$. If (i) is false $Q_0 \leq Z(G)$. Let Q be a Sylow q-subgroup of G such that $Q \cap C_G(y)$ is a Sylow q-subgroup of $C_G(y)$. Now $[Q:Q_0] = q^a$ and $C_Q(y) \geq \langle y, Q_0 \rangle$. Thus $[Q:C_Q(y)] < q^a$ which contradicts the assumption that $\operatorname{Ind}_G(x) = \operatorname{Ind}_G(y)$.

(ii) If $x \in Z(Q)$, $\operatorname{Ind}_G(x)$ is prime to q. Thus $x \in Z(G)$.

LEMMA 2. Let A be a proper subgroup of G which is the centralizer of an element in G, and let π be a set of at least two G-eccentric primes each of which divides the order of A. If the centralizer of each π -element of A has order |G| or |A| then A possesses an Abelian Hall π -subgroup. Further if there is a π -element whose centralizer is A then the Hall π -subgroup is central in A.

Proof. Let p and q be G-eccentric primes in π and let x and y be non-central p- and q-elements of A respectively. Then xy is a non-central π -element lying in A. Thus $|C_G(xy)| = |A|$. But $C_G(xy) = C_G(x)$ $\cap C_G(y)$ and $|C_G(x)| = |C_G(y)| = |A|$. So we conclude that $C_G(x) = C_G(y)$ $= C_G(xy)$. The two results now follow.

LEMMA 3. Let G be a group with a normal nilpotent subgroup H which has a nilpotent complement K of coprime order such that for all x, $y \in K \setminus C_{\kappa}(H)$, $C_{H}(x) = C_{H}(y)$. Then $K/C_{\kappa}(H)$ is cyclic or a direct product of a cyclic group with a generalised quaternion group.

Proof. It is only necessary to show that there is some group on which K acts regularly. Consider $(C_H(x))^H$ for any $x \in K \setminus C_K(H)$. Since H is nilpotent, $(C_H(x))^H < H$ and clearly $K/C_K(H)$ acts regularly on $H/(C_H(x))^H$.

LEMMA 4. Let P be an Abelian p-group, for some prime p and let K be a group of automorphisms of P whose order is divisible by p. If for all pairs $x, y \in K \setminus \{1\}, C_P(x) = C_P(y)$ then $O_{p'}(K) = 1$.

Proof. Put $H = O_{p'}(K)$ and assume $H \neq 1$. Since K is not a pgroup, $C_P(H) \neq 1$. Hence by a simple extension of the proof of Maschkes Theorem, $P = C_P(H) \times L$ where L is a K-invariant subgroup of P. However K would have to act regularly on L and this is false since K is not a p'-group. The proof of Proposition 1 will be deduced from a sequence of Lemmas which will prove some stronger results than Proposition 1. It is convenient to assume a slightly weaker hypothesis to begin with.

(B) Let $A_0 \leq A \leq G$ be a sequence of finite groups where A_0 is characteristic in A. Let π be the set of G-eccentric primes dividing $|A_0|$. Finally assume the following three conditions:

- (a) If $x \in A_0$ then $C_G(x) = A$ or G
- (b) $|\pi| > 1$.
- (c) $N_G(A) \neq A$.

LEMMA 5. Let $A_0 \leq A \leq G$ satisfy (B). If $X \leq A_0$ and X is not central, $C_G(X) = A$ and $N_G(X) \leq N_G(A)$.

Proof. Let $x \in X \setminus Z(G)$. Then $C_G(x) = C_G(X) = A$. $C_G(X) \triangleleft N_G(X)$, and so $A \triangleleft N_G(X)$.

LEMMA 6. Let $A_0 \leq A \leq G$ satisfy (B). Let $W = N_G(A)/A$. Then (i) if $U \leq W$ and U is a p'-group for some $p \in \pi$ then U acts regularly on some section of A_0 ;

(ii) every Sylow subgroup of W is cyclic or generalized quaternion;

(iii) any Sylow q-subgroup of W, for $q \in \pi$, has order q.

Proof. (i) Let P_0 be a Sylow *p*-subgroup of A_0 . Since A_0 is characteristic in A, P_0 is characteristic in A_0 and so U acts on P_0 . Since $(|U|, |P_0|) = 1$ and $C_{P_0}(u) = P_0 \cap Z(G)$ for all $u \neq 1$, $u \in U$, U acts regularly on $P_0 | P_0 \cap Z(G)$.

(ii) This follows immediately from (i) and $|\pi|$ being greater than one.

(iii) Let V be a Sylow q-subgroup of W and Q_0 be a Sylow q-subgroup of P_0 . V acts faithfully on Q_0 and $C_{Q_0}(V) = Q_0 \cap Z(G)$. Let T be a subgroup of Q_0 such that $|T/Q_0 \cap Z(G)| = q$ and $[T, V] \leq Q_0 \cap Z$. Such a subgroup exists because Q_0 and V are q-groups. From Lemma 5 it follows that V acts faithfully on T but $V/C_V(T)$ is elementary Abelian. From (ii) we know that if V has exponent q it is cyclic and so (iii) is proven.

LEMMA 7. Let $A_0 \leq A \leq G$ satisfy (B). Then $N_G(A)/A$ is a π or π' -group. If $N_G(A)/A$ is a π -group then $|N_G(A)/A| = p$ for some prime $p \in \pi$.

51

Proof. Let $W = N_G(A)/A$. If W is soluble there exist subgroups of order rs for any pairs of primes r, s dividing |W|, from Lemma 6 (ii). If W is not soluble then the Sylow 2-subgroup of W is quaternion, again from Lemma 6 (ii), and so by [1] the involution in W is central. Thus we have subgroups of order 2r for any prime r dividing |W|.

Let U be a subgroup of rs for two primes dividing |W| where at least one of the pair is in π . If one is not in π , U will be Abelian by Lemma 6 (i) and [6; V. 8.12]. Thus we can assume that U has a normal r-complement for $r \in \pi$. Let R_0 be the Sylow r-subgroup of A_0 , which is clearly normalized by U. Hence by Lemma 4, U has no normal r'-subgroup which is false. Hence U does not exist and so either W is a π' group or is a p-group for some prime $p \in \pi$. Then by Lemma 6 (iii), |W| = p.

This Lemma completes the proof of Proposition 1. However for the applications it is useful to have a slightly stronger hypothesis.

(C) Let $A_0 \leq A \leq G$ satisfy (B) and assume that A_0 is a Hall subgroup of A.

LEMMA 8. Let $A_0 \leq A \leq G$ satisfy (C). Then A is the centralizer of a Sylow q-subgroup of G for any $q \in \pi$, $q \mid \mid N_G(A)/A \mid$. Further (i) if $\mid N_G(A)/A \mid$ is a π' -group, then A_0 is a Hall subgroup of G, or

(ii) If $|N_G(A)/A| = p$ every Sylow q-subgroup of A_0 , $q \in \pi$, $q \neq p$ is a Sylow q-subgroup of G.

Proof. The conclusion stated first follows from (i) and (ii). Let R_0 be a Sylow r-subgroup of A_0 , $r \in \pi$. Then by Lemma 5 $N_G(R_0) \leq N_G(A)$ and so if $N_G(A)/A_0$ is an r'-group R_0 is a Sylow r-subgroup of G.

The situation described in Lemma 8 (ii) is the more exceptional and so it is useful to investigate it more thoroughly. (D) Let $A_0 \leq A \leq G$ satisfy (C) and let $|N_G(A)/A| = p$.

LEMMA 9. If $A_0 \leq A \leq G$ satisfies (D) and p is odd and the Sylow p-subgroup of $A_0/A_0 \cap Z(G)$ has order greater than p then G has a normal π -complement.

Proof. Let P_0 be a Sylow *p*-subgroup of A_0 , and let *P* be a Sylow *p*-subgroup of $N_G(A)$. Then $P_0 \triangleleft P$ and $|P/P_0| = p$. P_0 is thus a normal Abelian maximal subgroup of *P*. If $P_0 \neq ZJ(P)$, *P* contains another normal Abelian maximal subgroup, say P_1 . Then $P_1 \cap P_0 = Z(P)$. How-

52

ever $|P_0/Z(P)| \neq p$, by assumption since $Z(P) = P \cap Z(G)$. Thus $P_0 = ZJ(P)$. Then P is a Sylow p-subgroup of G for otherwise $N_G(P_0) = N_G(ZJ(P))$ would be greater than $N_G(A)$ which is false by Lemma 5. Clearly $N_G(ZJ(P)) = N_G(A)$ has a normal p-complement and so by the Thompson-Glauberman Theorem [5; 8.3.1] so does G. Let this complement be K. Now $K \cap A_0$ is an Abelian Hall $(\pi - \{p\})$ -subgroup of G which is contained in the centralizer of its normalizer and so by Burnside [6; IV, 2, 6] the Lemma follows.

3. Proof of Theorem 1.

We begin by showing that Proposition 1 can be applied to the centralizer of a π -element. Let A be the centralizer of a non-central π element. So [G:A] = n. Further, there exists $x \in A$ such that x is a p-element for some $p \in \pi$ and $C_G(x) = A$. Also, since $|\pi| \ge 2$, there is a non-central q-element y say in A, with $q \neq p, q \in \pi$, by Lemma 1. Now $C_G(xy) = C_G(x) \cap C_G(y)$ and $[G:C_G(xy)] = n$ and so $C_G(x) = C_G(y) = A$. Clearly if we pick any π -element of prime power order in A it has order coprime to either x or y. Thus its centralizer is either A or G. Let A_0 be the Abelian characteristic Hall π -subgroup of A. We can now apply Proposition 1 to the centralizer A with A_0 as the appropriate subgroup.

If G is divisible by a prime s which is not G-eccentric then the Sylow s-subgroup S of G is central. So S is an Abelian direct factor of G. We will assume for the remainder of the proof that |G| is not divisible by any primes which are not G-eccentric and so, in particular, that G is a $\{\pi, \sigma\}$ -group.

Let x and y be the non-central q-elements of G. Then it is clear from Lemma 8 that $C_G(x)$ is conjugate to $C_G(y)$ unless $|\pi| = 2$ and $|N_G(C_G(x))/C_G(x)| = p$, $|N_G(C_G(y))/C_G(y)| = q$ for $\pi = \{p, q\}$. But from the first it could be deduced that the Sylow q-subgroup of G is Abelian which would contradict the second statement. Let A be a centralizer of some non-central q-element and let A_0 be the Hall π -subgroup of A.

Let ω be an element of a Sylow *p*-subgroup *P* of $G \ p \in \pi$ such that $C_P(\omega) \triangleleft P$ and such that $\omega \notin Z(G)$. From Lemma 5 it follows that $P \leqslant N_G(C_G(\omega))$. Thus $N_G(A)$ contains a Sylow *p*-subgroup for each $p \in \pi$. Hence $N_G(A)$ has π' -index. Let B_0 be a Hall σ -subgroup of A_0 , so that $A = A_0 \times B_0$. Then \exists a Hall σ -subgroup *H* of *G* such that $B_0 \leqslant H$.

ALAN R. CAMINA

Clearly $H \cdot N_G(A) = G$. Then $B_0^G = B_0^{N_G(A)H} = B_0^H$ which is a σ -group. However H is nilpotent and so $B_0 \triangleleft \triangleleft \square G$. Thus $B_0 \leqslant O_{\pi'}(G) = O_{\sigma}(G)$. So $B_0 = O_{\pi'}(G) \cap A$. It is clear now that $G/O_{\pi'}(G)$ satisfies the same conditions as G with n replaced by $n|B_0|/|O_{\pi'}(G)|$.

It will now be proved that G is soluble. There are three cases.

(i) $N_G(A)/A$ is a π' -group.

Then by Lemma 8, A_0 is a Hall π -subgroup of G and so since G has a Hall σ -subgroup say D, $G = A_0 \cdot D$ D is nilpotent, A_0 is Abelian and so G is soluble by Kegel-Wielandt [6; VI. 4].

(ii) $|N_G(A)/A| = p > 2; p \in \pi.$

If the Sylow *p*-subgroup of $A_0/A_0 \cap Z(G)$ has order >p, there is nothing to prove since by Lemma 9 G has a normal π -complement. Let P be a Sylow p-subgroup of $N_G(A)$. Then $|P/P \cap Z(G)| \neq p^2$. Let P_1 be a Sylow *p*-subgroup of *G* containing *P*. Let $\omega \in \mathbb{Z}_2(P_1) \setminus \mathbb{Z}(P_1)$. Then $C_G(\omega)$ is conjugate to A and the Sylow p-subgroup of $N_{G}(A)$ is isomorphic to P. However $N(C_{P_1}(\omega)) \ge P_1$ and so $P_1 \le N_G(C_G(\omega))$ by Lemma 5. Hence $P_1 = P$. Let X_1, \dots, X_{p+1} be the distinct maximal subgroup of P containing Z(P). Now if $C_{\mathcal{G}}(X_i) = C_{\mathcal{G}}(X_j)$, $i \neq j$ then X_i and X_j commute and so P would be Abelian which is false. Hence $C_{g}(X_{i})$ are p+1distinct conjugate subgroups of G. Furthermore the X_i are all conjugate since they are the Sylow p subgroups of $C_G(X_1)$. Thus, as $X_i \triangleleft P$, $N_{g}(P)/C_{g}(P)$ is divisible by p + 1. In particular there exists a 2-element u such that $u \in N_G(P) \setminus C_G(P)$ and $u^2 \in C_G(P)$. Hence u normalizes some X_i . However $N_G(X_i) = N_G(C_G(X_i))$ which has a normal p-complement and a normal Sylow 2 subgroup and hence [u, P] = 1, contradicting the choice of u. This proves that this situation cannot occur.

(iii) $|N_G(A)/A| = 2.$

Since $O_{\pi'}(G)$ is soluble we can assume $O_{\pi'}(G) = 1$. Let Q_0 be a Sylow 2-subgroup of A_0 and let Q be a Sylow 2-subgroup of $N_G(A)$. Then $|Q/Q_0| = 2$. Further if $y \in Q \setminus Q_0$, $y^2 \in X(G)$. Let $T > Z(G) \cap Q_0$ be such that $[T, y] \leq Z(G)$. Then $T \leq N_G(C_G(y))$ by Lemma 5. But since $|N_G(C_G(y))/C_G(y)| = 2$, and $C_T(y) \leq Z(G)$, $|T/Z(G) \cap Q_0| = 2$. Hence by [6; III. 11. 9] $Q/Z(G) \cap Q$ is a dihedral group. So the group G/Z(G) has a dihedral Sylow 2-subgroup and the centralizer of an involution has an Abelian 2-complement. Thus the structure of G/Z(G) is known by Gorenstein-Walter [4].

Assume that K/Z(G) is soluble. Then there exists a normal noncentral *p*-subgroup *N*, with $p \in \pi$. $N \leq N_G(A)$ since $[G:N_G(A)]$ is a π' number. Let $q \in \pi$, $p \neq q$. Then *N* centralizes the Sylow *q*-subgroup of A_0 and so $N \leq A_0$. By Lemma 5 $A \leq G$ and so *G* would be soluble.

Thus we may assume G/Z(G) has no normal soluble subgroups. Then if K/Z(G) is a minimal normal subgroup $K/Z(G) \cong PSL(2, r^e)$ of A_7 [4], where r^e is a power of some odd prime r. From the hypothesis it is clear that $\sigma = \{r\}$ or $\{7\}$ respectively. Assume $K/Z(G) \cong PSL(2, r^e)$. Since $r^e > 3$ we can pick x, y neither being involutions such that $|x||r^e - 1$ and $|y||r^e + 1$ and so that the orders of the centralizers are not conjugate as they should be since $K \leq G$. Similarly for A_7 by looking at elements of order 3 and 5.

Thus in all cases we have shown that G is soluble.

Assume that $O_{\pi}(G)$ is not central. Then there exists a non-central normal *p*-subgroup M of G, where $p \in \pi$. Then $M \leq N_G(A)$ and so $M \leq A$. Thus $A \triangleleft G$, from Lemma 5. If x is a non-central π -element of G, $C_G(x)$ is conjugate to A and so $C_G(x) = A$. Thus G/A is a π' -group and clearly acts regularly on $A_0/A_0 \cap Z(G)$. This is the situation described in (i) of Theorem 1, note n = [G:A] is a π' -number.

Now assume that $O_{\pi}(G) \leq Z(G)$. However $G/O_{\pi'}(G)$ satisfies the hypothesis for the Theorem and $O_{\pi}(G/O_{\pi'}(G))$ is certainly not central so we can conclude from the previous paragraph that $AO_{\pi'}(G) \triangleleft G$, and that $AO_{\pi'}(G) = O_{\pi',\pi}(G)$. Hence again $N_G(A)/A$ is a π' -group and [G:A] is a π' -number. Finally if $AO_{\pi'}(G) = L$ (2) of Theorem 1 holds by applying Lemma 3.

4. Finite Groups of Conjugate rank 2.

This section is devoted to a proof of Theorem 2. We assume that G is a minimal counter-example to this theorem. It follows that G satisfies the following three properties:—

(i) |G| is divisible by at least 3 G-eccentric primes;

(ii) |G| is divisible only by G-eccentric primes;

(iii) $\exists B < A < G$ with [G:A] = n, [G:B] = m both A and B are centralizers of elements in G and every element of G has index 1, m or n.

Let $D \leq G$ and define $\pi(D) = \{p \mid p \text{ is a prime such that there exists} a p-element whose centralizer is <math>D\}$. $\pi(D)$ could be empty. If x is a non-

ALAN R. CAMINA

central element of G it can be classified according to the following types:

- (I) $C_{g}(x)$ is isolated; and $C_{g}(x)$ is not isolated in the remaining four cases
- (II) $[G: C_G(x)] = n, |\pi(C_G(x))| > 1;$
- (III) $[G: C_G(x)] = n, |\pi(C_G(x))| = 1;$
- (IV) $[G: C_G(x)] = m, |\pi(C_G(x))| > 1;$
- (V) $[G: C_G(x)] = m, |\pi(C_G(x))| = 1.$

Since every element of G has index dividing m, every prime dividing |G| also divides m by (ii).

(1) $m/n = p^a$ for some prime p and integer $a \ge 1$.

From (iii) there exists an $x \in G$ such that $C_G(x)$ is of type (II) or (III). If $C_G(x)$ is of type (II) then $C_G(x)$ is a direct product of a non-Abelian *p*-group and an Abelian *p'*-group and $m/n = p^a$ [3]. If $C_G(x)$ is of type (III), $m/n = p^a$ by the Corollary to Theorem 1, where $\{p\} = \pi(C_G(x))$.

(2) There is no centralizer of type II.

Let A be such a centralizer. Let A_0 be the normal Abelian Hall p'-subgroup of A. Clearly we can apply Lemma 8 to deduce that $N_G(A)$ contains a Sylow r subgroup of G, for some prime $r \neq p$, $r + [N_G(A):A]$. Since $r \mid m$ and $m = np^a$ and n = [G:A] this leads to a contradiction.

We can now complete the proof of the theorem. Let X be a centralizer of type III. Let ω be a p'-element in X. $C_G(\omega)$ if of type III, IV or V. Note that $C_X(\omega)$ is the centralizer of an element of G, so that if $C_G(\omega)$ is of type IV or V, $C_{G(\omega)} = C_X(\omega)$. If $C_G(\omega)$ is of type III we would have that $m \mid n$ is of order prime to p which is false. Thus the centralizer of any non-central p'-element in $C_G(\omega)$ is precisely $C_G(\omega)$. From (1) and Lemma 1 we can apply Proposition 1 to $C_G(\omega)$ with the appropriate subgroup being the Hall p'subgroup of $C_G(\omega)$, the $C_G(\omega)$ being Abelian since it is a minimal centralizer. Finally by Lemma 8 $C_G(\omega)$ would contain some Sylow subgroup of G which is again false.

REFERENCES

- R. Brauer and M. Suzuki. On finite groups of even order whose 2-Sylow group is a generalized quaternion group. Proc. Nat. Acad. Sci., U.S., 45 (1959), 1757-1759.
- [2] W. Burnside. Theory of Groups of Finite Order (Cambridge University Press). 1911. Reprinted Dover 1955.

56

- [3] A. R. Camina. Conjugacy Classes of finite groups and some theorems of N. Itô. J. Lond. Math. Soc., (2) 6 (1973) 421-426.
- [4] D. Gorenstein & J. H. Walter. On finite groups with dihedral Sylow 2-subgroups. Illinois J. Math., 6 (1962), 553-593.
- [5] D. Gorenstein. Finite Groups. (Harper & Row, New York). 1968.
- [6] B. Huppert. Endliche Gruppen (Springer Verlag). 1967.
- [7] N. Itô. On finite groups with given conjugate type I. Nagoya Math. J., 6 (1953), 17-28.
- [8] N. Itô. On finite groups with given conjugate type II. Osaka J. Math., 7 (1970), 231-251.
- [9] J. Rebmann. F-Gruppen. Archiv. der Math., 22 (1971), 225-230.
- [10] R. Schmidt. Zentralisatorverbande endlicher Gruppen. Rendiconti Padova, 44 (1970), 97-131.

University of East Anglia, School of Mathematics and Physics.