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Background
Schizophrenia is considered a polygenic disorder. People with
schizophrenia and those with genetic high risk of schizophrenia
(GHR) have presented with similar neurodevelopmental deficits
in hemispheric asymmetry. The potential associations between
neurodevelopmental abnormalities and schizophrenia-related
risk genes in both schizophrenia and those with GHR remains
unclear.

Aims
To investigate the shared and specific alternations to the struc-
tural network in people with schizophrenia and those with GHR.
And to identify an association between vulnerable structural
network alternation and schizophrenia-related risk genes.

Method
A total of 97 participants with schizophrenia, 79 participants with
GHR and 192 healthy controls, underwent diffusion tensor
imaging (DTI) scans at a single site. We used graph theory to
characterise hemispheric and whole-brain structural network
topological metrics. For 26 people in the schizophrenia group
and 48 in the GHR group with DTI scans we also calculated their
schizophrenia-related polygenic risk scores (SZ-PRSs). The cor-
relations between alterations to the structural network and SZ-
PRSs were calculated. Based on the identified genetic–neural
association, bioinformatics enrichment was explored.

Results
There were significant hemispheric asymmetric deficits of nodal
efficiency, global and local efficiency in the schizophrenia and

GHR groups. Hemispheric asymmetric deficit of local efficiency
was significantly positively correlated with SZ-PRSs in the
schizophrenia and GHR groups. Bioinformatics enrichment ana-
lysis showed that these risk genes may be linked to signal
transduction, neural development and neuron structure. The
schizophrenia group showed a significant decrease in the whole-
brain structural network.

Conclusions
The shared asymmetric deficits in people with schizophrenia and
those with GHR, and the association between anomalous
asymmetry and SZ-PRSs suggested a vulnerability imaging
marker regulated by schizophrenia-related risk genes. Our find-
ings provide new insights into asymmetry regulated by risk genes
and provides a better understanding of the genetic–neural
pathological underpinnings of schizophrenia.
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Background

Schizophrenia is a highly heritable disorder with neurodevelopmen-
tal deficits – characterised by a failure to integrate neural processes
as a result of an abnormal brain network.1–3 These brain network
deficits can occur years before the illness appears through disrup-
tions of normal neuro-maturational processes. Furthermore,
family studies reported a tenfold increased risk of developing
schizophrenia in unaffected relatives of people with schizophrenia,4

and polygenic risk score (PRS) analysis was estimated to explain 7%
of the variance in liability.5 Identifying these potential imaging fea-
tures could help explain the multilevel genetic–neural underpin-
nings of the development of schizophrenia.

Hemispheric asymmetry and schizophrenia

Neurodevelopmental researchers have suggested that brain asym-
metry is a core metric of both neurodevelopment in healthy indivi-
duals6,7 and in numerous developmental disorders.8,9 Previous

post-mortem and neuroimaging studies in schizophrenia have
repeatedly shown the condition to be associated with an anomalous
pattern of hemispheric asymmetry.10–13 Crow and colleagues
undertook a series of studies14,15 and proposed an influential
theory: schizophrenia, which stems from the failure of normal
hemispheric asymmetry in the temporal lobe region can be
explained by genes.15 Furthermore, Crow et al indicated that hemi-
spheric asymmetry in schizophrenia was unrelated to episode pro-
gression, and the anatomical asymmetry occurred during
development.10 These neurodevelopmental alterations in hemi-
spheric asymmetry were found both in brain structure and function,
such as white matter architecture, cortical thickness and functional
activation.

White matter

White matter plays a pivotal role in modulating communication
and the functional integrity of the brain. A brain network study
found that reduced communication capacity and altered functional
brain dynamics in schizophrenia may be caused by a selective* These authors contributed equally to this article.
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disruption of brain connectivity among central hub regions of the
brain.16 Anomalous white matter integrity has been associated
with neurodevelopmental abnormalities of myelination, axonal
growth and synaptic plasticity in schizophrenia.17,18 Pathological
turbulences of the brain are rarely focused on a single brain
region, as deficits often spread via axonal pathways to affect other
regions.

Using diffusion tensor imaging (DTI), we can virtually recon-
struct white matter tracts and model the human brain as a
complex network/graph. Graph theoretical analysis can provide a
powerful new way to evaluate the topological organisation of the
constructed human brain white matter network. Multiple topo-
logical metrics can be used to assess white matter network connect-
ivity by graph theoretical analysis,19,20 which is a relatively novel
technique to understand the neuropathology in neural disease.
Neuroimaging evidence indicates a global efficiency decrease in
the topological metric of brain anatomical networks in schizophre-
nia.21 Although some studies have focused on abnormal topological
metrics of the whole-brain network, few studies have investigated
alterations to topological metrics of hemispheric asymmetry and
the whole-brain network within the context of the same study in
schizophrenia.

Benefits of studying populations at genetic high risk for
developing schizophrenia

Abnormalities of hemispheric asymmetry and the whole-brain
network have also been found in individuals without psychosis
but with genetic high risk for developing schizophrenia
(GHR).20,22 Thus, GHR populations can be used to identify liabil-
ities expressed across a range of phenotypes, presumably reflecting
vulnerability. Studies of morphology and the white matter network
in neonates at genetic risk of schizophrenia indicated that this risk
would induce lower efficiency both in the white matter network and
grey matter structural associations.23 Furthermore, recent studies
found that people with schizophrenia and their unaffected siblings
showed disrupted asymmetry of inter- and intrahemispheric func-
tional connectivity.24 A similar pattern was also found in prefrontal,
occipitoparietal cortical regions compared with healthy con-
trols,25,26 particularly, left-sided language dysfunctional asymmetry
was considered to be the result of familial heritable outcomes.27,28

Evidence shows that people with schizophrenia and their unaffected
monozygotic co-twins present with decreased language asymmetry;
however, the asymmetry was not associated with the severity of
psychosis, which suggested that asymmetry was a result of genetic
risk, rather than a state-related trait.29 However, few studies have
focused on evaluating white matter structural network topological
metrics at the hemispheric level in people with schizophrenia and
their unaffected relatives.

Value of using PRSs

Although family association studies have confirmed genetics contri-
butes significantly to schizophrenia risk, these studies have resulted
in few replicated findings. It is difficult to find research on the latent
genetic architecture of schizophrenia using individual single nucleo-
tide polymorphisms (SNPs). This is because the disease is highly
polygenic and has many common genetic variants facilitating the
disease.30 Genome-wide association studies (GWASs) could iden-
tify millions of SNPs across the entire genome associated with psy-
chiatric disorders. PRS analysis calculates a single score to predict
disease risk, via combining risk alleles at thousands of genetic loci,
and it provides a robust technique to investigate an individual’s
genetic risk for polygenic traits at a population level. These cumula-
tive risk scores are based on the identification of genetic variants
through GWASs.31 A family study found a positive correlation

between the PRS of schizophrenia (SZ-PRS) and bilateral frontal
gyrification, which implicated that SZ-PRSs had a negative effect
on early neurodevelopment and enhanced the risk of developing
the disorder.32 Furthermore, schizophrenia-related PRS was asso-
ciated with early endogenous phenotypic alterations of neurofunc-
tion.33–36 Terwisscha van Scheltinga and colleagues described how
higher PRS was related to smaller white matter volume, and sug-
gested genetic schizophrenia-associated variants modulated white
matter development.37 Therefore, PRS analysis makes it possible
to test whether individuals with high familial risk of schizophrenia
carry an increased burden of neurodevelopmental deficits.
Bioinformatics enrichment analysis has been regarded as a promis-
ing tool that contributes to the gene functional analysis of large gene
lists for various high-throughput biological studies. Fromer et al
have indicated that polygenes played a role in synaptic transmis-
sions that were enriched for schizophrenia genetic associations.38

Aims

To the best of our knowledge, this is the first study to investigate the
shared and specific alterations in topological metrics of hemispheric
asymmetry and the whole-brain structural network in people with
schizophrenia and those with GHR. We combined genetic
imaging data (genetic variable × white matter structural network
in hemispheric asymmetry and whole brain) to explore a vulnerabil-
ity imaging marker regulated by schizophrenia-related risk genes.
The primary aim of this study was to identify an association
between shared white matter structural network alternation and
schizophrenia-related risk genes in people with schizophrenia and
those with GHR, and investigate the functions of these risk genes
through bioinformatics enrichment analyses. Secondly, our aim
was to reveal a core deficit in the white matter structural network
related to pathology in schizophrenia.

Method

Participants

A total of 368 individuals participated in this study, including 97
people with schizophrenia, 79 with GHR and 192 healthy controls,
aged 18–54 years. Detailed inclusion and exclusion criteria are
described in the Supplementary Material available at https://doi.
org/10.1192/bjp.2021.47. Symptom severity was measured using
the 17-item version of the Hamilton Rating Scale for Depression
(HRSD-17),39 the Hamilton Rating Scale for Anxiety (HRSA)40

and the Brief Psychiatric Rating Scale (BPRS).41 All participants
gave written informed consent. This research was approved by the
Medical Research Ethics Committee of the China Medical
University and in accordance with the Declaration of Helsinki.

Magnetic resonance imaging (MRI) data
MRI acquisition

All MRI scans were performed using a 3.0 T GE Sigma system
(General Electric, Milwaukee, USA) with a standard eight-channel
head coil at the First Affiliated Hospital of China Medical
University, Shenyang, China. The parameters of T1 images and
DTI are described in the Supplementary Material. Two neuro-
radiologists with more than 3 years of experience interpreting
neuroradiology images checked image quality.

Data preprocessing and network construction

The DTI data-set was preprocessed using PANDA.42 Briefly, data
preprocessing included (a) brain extraction (b) correction for
eddy-current distortion and simple head motion, (c) correction
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for b-matrix, and (d) computation for diffusion tensor and frac-
tional anisotropy. The construction of the white matter network
was implemented by PANDA. The procedures used for the white
matter network construction are described in the Supplementary
Material.

Network analysis

Graph theory was used to characterise the topological metrics of the
white matter structural networks derived above. In the current
study, both nodal metrics and global network metrics were com-
puted. We characterised a single nodal metric by computing the
nodal degree (Dnodal) and nodal efficiency (Enodal). The global
metrics of the network were computed for the global efficiency
(Eglob) and local efficiency (Eloc). GRETNA (https://www.nitrc.
org/projects/gretna/) was used to calculate network metrics.43

Brief descriptions and formulas are provided in Supplementary
Table 1.

Asymmetry index analysis

White matter structural network asymmetry of topological metrics
(Dnodal, Enodal, Eglob and Eloc) was estimated using the asymmetry
index (AI): AI(X) = 100 × [X(L) – X(R)]/[X(L) + X(R)], where X(L)
and X(R), respectively, represent the network metrics of the left
and right hemispheres. AI provides the differences between the
left and right hemispheres, by incorporating the relative network
metrics over both hemispheres in one value.

Genetic data
Genotyping and imputation

Whole blood samples were withdrawn into EDTA (ethylenediami-
netetraacetic acid) anticoagulant tubes, with samples taken between
10.00 h and 15.00 h and stored at −80°C until it was assayed.
Genomic DNAwas extracted fromwhole blood using standard pro-
tocols. Illumina Global Screening Array-24 v1.0 BeadChip was used
to screen genome-wide variants for 74 participants (26 in the
schizophrenia group and 48 in the GHR group). Detailed demo-
graphic and clinical data are provided in Supplementary Table 2 for
the 74 participants included in the genetic analysis. This array provides
data for 642 824 fixed genetic variants, addition to 53 411 customised
variants. Detailed exclusion criteria relating to data and genotype
imputation are described in the Supplementary Material.

Calculation of PRSs

The latest international GWAS results published by the Psychiatric
Genomics Consortium were used as discovery samples, and our
imputed genotyping data were used as a target sample. In the
paper by the Bipolar Disorder and Schizophrenia Working Group
of the Psychiatric Genomics Consortium,44 the specific genetic
factors contributing to schizophrenia were analysed in 33 426
people with schizophrenia and 32 541 controls. A total of 843 107
ambiguous variants were excluded. PRSs were generated using
PRSice software (www.PRSice.info). P-value-informed clumping
was performed with a cut-off of r2 = 0.1 in a 250 kb window.
Twelve PRSs at different P-value thresholds (0.0001, 0.001, 0.01,
0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5) were derived for
each study participant. The number of variants for 12 PRSs were
915, 2523, 6376, 8055, 9185, 10 102, 10 846, 13 638, 17 339,
20 086, 22 299 and 24 268, respectively.

Bioinformatics enrichment analyses

All the SNPs in SZ-PRSs under a certain P-value threshold were
extracted and transformed into the corresponding genes where

they were located based on the dbSNP database. A gene list was
obtained and uploaded to the online tool DAVID Bioinformatics
Resources v6.8 (https://david.ncifcrf.gov/)42,43 for the Gene
Ontology and the Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analyses. The functions of genes were annotated
with three Gene Ontology terms: biological process, cellular compo-
nent and molecular function. Multiple testing corrections were per-
formed with the Bonferroni method (significance level at 0.01).

Statistical analysis

ANOVAs (analyses of variance) or chi-square tests were used to
examine participants’ demographic characteristics (age and
gender) and clinical characteristics (duration of illness, first
episode and medication status). ANCOVA (analyses of covariance)
was implemented to evaluate differences between white matter
network topological metrics for the asymmetry index and the
entire brain among the three groups, with gender and age as covari-
ates. Least significant differences post hoc analyses were performed
to detect significant group effects in the ANCOVA. Bonferroni cor-
rection was applied for multiple comparisons (90 tests), and signifi-
cance was set to a corrected P < 0.05. Partial correlation analyses,
with age and gender as covariates, were performed to investigate
the relationships between asymmetry index metrics and entire
brain network metrics with SZ-PRSs in the schizophrenia and
GHR groups. Significance was set at P < 0.05 (two-tailed) for all
tests. All analyses were performed using SPSS 22.0.

Results

Demographics and clinical scales

No significant between-group differences were found in age and
gender. The effect of diagnosis on HRSD, HRSA and BPRS scores
was significant (see Table 1), with significantly higher HRSD,
HRSA and BPRS scores in the schizophrenia group compared
with the GHR and healthy control groups, and higher HRSD
scores in the GHR group compared with the healthy control
group. There was no significant difference between the GHR and
healthy control groups in HRSA and BPRS.

Asymmetry index among the schizophrenia, GHR and
healthy control groups

Significant group effects were observed in AI-Enodal of the right
orbital superior frontal gyrus in the three groups. Post hoc analysis
revealed significant increases in the schizophrenia and GHR groups
compared with the healthy control group. There was no statistical
difference between schizophrenia and GHR (details in Fig. 1(a)
and Supplementary Table 3). ANCOVA showed significant
between-group effects in AI-Eglob and Eloc among the schizophrenia,
GHR and healthy control groups. Comparisons of the healthy
control, schizophrenia and GHR groups increased in AI-Eglob and
Eloc but did not differ from each other (details in Fig. 1(b) and
Supplementary Table 3). No significant group effect was found in
AI-Dnodal after Bonferroni correction among the schizophrenia,
GHR and healthy control groups.

Dnodal and Enodal of whole brain among the
schizophrenia, GHR and healthy control groups

A significant difference was observed in Dnodal left postcentral
gyrus, and post hoc analyses revealed that compared with the
healthy control and GHR groups, the schizophrenia group
showed a decrease in Dnodal. Significant group differences in
the Enodal of the right middle frontal gyrus, right opercular
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inferior frontal gyrus, left superior occipital gyrus, left postcen-
tral gyrus, right inferior parietal angular gyrus and left angular
gyrus were observed. Post hoc analyses revealed that compared
with the healthy control and GHR groups, the schizophrenia
group showed a decrease in Enodal. But there was no significant
difference in Dnodal and Enodal between the GHR and healthy
control groups (details in Fig. 1(d), 1(f) and Supplementary
Table 3).

Eglob and Eloc of whole brain among the schizophrenia,
GHR and healthy control groups

Significant differences were found in Eglob and Eloc among the three
groups. Compared with the healthy control and GHR groups, the
schizophrenia group showed a decrease in Eglob and Eloc, but
there was no significant difference between the GHR and healthy
control groups (Fig. 1(g) and Supplementary Table 3).

Correlation between SZ-PRS and AI-Eloc in the
schizophrenia and GHR groups

We excluded participants who failed to evaluate SZ-PRS, and demo-
graphic and clinical data for participants in the correlation analysis
are provided in Supplementary Table 2. According to the aims of
our study, we performed partial correlation analyses to investigate
the relationships between asymmetry index metrics and entire
brain network metrics using SZ-PRS rather than using a gene-
based association test to find specific risk genes influencing develop-
ment of hemispheric asymmetry. AI-Eloc was significantly positively
correlated with SZ-PRS at P-value thresholds of 0.0001, 0.001, 0.01,
0.02, 0.03, 0.04, 0.05, 0.1, 0.2, 0.3, 0.4 and 0.5, and after Bonferroni
correction there was significant correlation at P-value thresholds of
0.03, 0.04, 0.05, and 0.1 (Table 2). There was no significant correl-
ation between other white matter network or asymmetry index
metrics with SZ-PRSs.

Gene Ontology and KEGG pathway enrichment analyses
for genes of SZ-PRSs

To explore the biological mechanism of SZ-PRS genes involved in
schizophrenia, we conducted bioinformatics enrichment analyses
for genes of SZ-PRSs at P-value thresholds of 0.05 (PT_0.05),
which has the smallest P-value in the association analysis with AI-
Eloc. In total, 10 729 SNPs and 4070 genes were extracted and iden-
tified in SZ-PRSs at PT_0.05. Thirty-five Gene Ontology terms were
detected for SZ-PRS genes (Fig. 2a).

For biological process, terms were enriched in signal transduc-
tion (intracellular signal transduction, calcium ion transmembrane
transport, ion transmembrane transport and positive regulation of
GTPase activity) as well as neural development (cell adhesion,
nervous system development and axon guidance).

With regard to cellular components, neuron structure was
among the significant aspects, containing several terms (cell junc-
tion, plasma membrane, postsynaptic density, postsynaptic mem-
brane and cytoskeleton).

Calcium ion binding was the most significant term in molecular
function. Additionally, we obtained eight significantly enriched path-
ways (Fig. 2b) based on the KEGG database, including calcium signal-
ling pathway, axon guidance, focal adhesion, glutamatergic synapse,
Rap1 signalling pathway and oxytocin signalling pathway.

Discussion

Main findings

To our knowledge, this is the first combined genetic imaging study
(genetic variable × white matter network in hemispheric asymmetry
and the entire brain) to investigate shared and specific alterations in
hemispheric asymmetry and the whole-brain structural network
among people with schizophrenia, those with GHR and healthy
controls, to estimate the possible effects of genes on the white
matter network, and to explore SZ-PRS bioinformatics enrichment.
There were shared alterations in network topological asymmetry
(right orbital superior frontal gyrus of Enodal, Eglob and Eloc) in the
schizophrenia and GHR groups. The implication of this is that
genetic susceptibility to schizophrenia potentially regulated abnor-
malities in the cerebral hemispheres. Furthermore, we found Eloc
of hemispheric asymmetry was associated with SZ-PRSs in both
the schizophrenia and GHR groups, and bioinformatics enrichment
analyses revealed that genes driving the SZ-PRS interaction were
involved in signal transduction, neural development, neuron struc-
ture and calcium signalling pathways. Thus, we were able to link our
imaging findings to potential pathways involved in the molecular
pathophysiology of schizophrenia.

In the schizophrenia group, we observed decreased Dnodal (left
postcentral gyrus), Enodal (right middle frontal gyrus, right opercular
inferior frontal gyrus, left superior occipital gyrus, left postcentral
gyrus, right inferior parietal angular gyrus and left angular gyrus),
Eglob and Eloc of the entire brain, compared with the GHR and
healthy control groups.

Interpretation of our findings and comparison with
findings from other studies

The human brain is structurally and functionally asymmetrical – the
left cerebral hemisphere is typically associated with language ability,
and the right hemisphere is typically associated with non-verbal
functions.7,47,48 Although the cerebral hemispheres are similar in
weight and volume, there is a difference in brain tissue distribution.
The right hemisphere protrudes anteriorly beyond the left, and the
left hemisphere extends posteriorly beyond the right.47,49 In

Table 1 Demographic and clinical characteristics of the schizophrenia, genetic high risk of schizophrenia (GHR) and healthy control groups

Schizophrenia group GHR group Healthy control group F/χ2 P

n 97 79 192 – –

Demographic characteristics
Age, years: mean (s.d.) 29.81 (9.40) 29.52 (7.72) 31.22 (9.85) 1.281 0.279
Female, n (%) 55(56.7) 34 (43.0) 107 (55.7) 4.248 0.120

Clinical characteristics
Duration of illness, months: mean (s.d.) 36.69 (48.93) — — – –

First episode, yes: n (%) 51(53.7) — — – –

Medication, yes: n (%) 69 (71.1) — — – –

Hamilton Rating Scale for Depression, mean (s.d.) 7.23 (6.35) 2.53 (3.80) 1.19 (2.26) 63.568 <0.001
Hamilton Rating Scale for Anxiety, mean (s.d.) 6.03 (7.15) 2.03 (4.37) 1.00 (2.52) 32.693 <0.001
Brief Psychiatric Rating Scale, mean (s.d.) 31.13 (11.39) 18.92 (2.22) 18.63 (1.93) 118.038 <0.001
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Fig. 1 (a) AI-Enodal among the schizophrenia, GHR and healthy control groups. (b) AI-Eglob and AI-Eloc among the schizophrenia, GHR and healthy
control groups. (c) Three-dimensional representations of the Dnodal in the entire brain among the schizophrenia, GHR and healthy control groups.
(d) Dnodal in the entire brain among the schizophrenia, GHR and healthy control groups. (e) Three-dimensional representations of the Enodal in the
entire brain among schizophrenia, GHR and healthy control groups. (f) Enodal in the entire brain among schizophrenia, GHR and healthy control
groups. (g) Eglob and Eloc in the entire brain among schizophrenia, GHR and healthy control groups.

AI, asymmetry index; ANG.L and Angular_L, left postcentral gyrus; Dnodal, nodal degree; Eglob, global efficiency; Eloc, local efficiency; Enodal, nodal efficiency; Frontal_Sup_Orb_R, right
superior frontal gyrus, orbital part; IFGoperc.R and Frontal_Inf_Oper_R, right inferior frontal gyrus, opercular part; IPL.R and Parietal_Inf_R, right inferior parietal angular gyrus; HC,
healthy control; GHR, genetic high risk of schizophrenia; PoCG.L and Postcentral_L, left postcentral gyrus; SOG.L and Occipital_Sup_L, left superior occipital gyrus; MFG.R and
Frontal_Mid_R, right middle frontal gyrus; SZ, schizophrenia. ***P < 0.001; **P < 0.01; *P < 0.05.
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addition, the right hemisphere is significantly more efficient and
interconnected than the left, whereas the left hemisphere has
more central/indispensable regions for whole-brain structural
network function.50

These results are in line with brain functional principles: the left
hemisphere may demand specialised networks for processes such as
language and motor actions, whereas the right hemisphere is more
efficient and interconnected for more general processes such as inte-
grating information. Patients with schizophrenia do not show these
patterns of right-more-than-left efficient global integration that are
observable in healthy control participants. Consistent with this
result, our study found that patients with schizophrenia and those
with GHR have higher asymmetry index scores in Eglob and Eloc
(AI = L-R/L + R), implying that in both schizophrenia and those
with GHR there is abnormal lateralisation at the ‘whole-hemi-
sphere’ level. Furthermore, those with schizophrenia demonstrated
lower global and local efficiency in the whole brain and higher
asymmetry index scores in the ‘whole hemisphere’. These findings
suggest that there may be right hemisphere impairments of efficient
connection in schizophrenia.

We also found local network efficiency of asymmetry to be posi-
tively correlated with SZ-PRSs. This finding suggested that schizo-
phrenia-related risk genes may influence aberrant alterations in
hemispheric asymmetry. This finding is also in line with a previous
study, in which higher SZ-PRSs were associated with a steeper
decline in the white matter network in older age.51 Although enor-
mous studies have illustrated functional and structural network dif-
ferences in the two hemispheres and genetic risk factors have
contributed to the development of abnormal lateralisation, post-
mortem studies have failed to find hemisphere discrepancies of
gene expression in cerebral cortex.52,53 Due to the lack of availability
of post-mortem tissue samples, these studies have small sample sizes
(four mid-fetal brains and two adult brains, respectively). There may
still be significant lateralised expression differences, particularly
because it is likely that multiple genes interact to influence neuronal
and circuit properties. Overall, our PRS findings may help to identify
intermediate brain phenotypes that are fundamental or common in
the development of schizophrenia neuropathology.

Interestingly, we conducted bioinformatics enrichment analyses to
identify the functions of schizophrenia-related polygenic risk that influ-
enced aberrant alterations in hemispheric asymmetry.We found genes
driving the SZ-PRS interaction were involved in functions such as
signal transduction, neural development, neuron structure and
calcium signalling pathways. One study has found that brain asym-
metry was regulated by genes, and this asymmetrical genes expression
was involved in signal transduction, synaptic plasticity and axonal
guidance.54 Lateralization of gene expression in language cortex has
identified genes that can fine-tune electrophysiology and neurotrans-
mission of cortical circuits through synaptic transmission, signal trans-
duction, glutamate receptor activity, nervous system development,
system development, transmission of nerve impulse and multicellular
organismal development.55 Asymmetry of olfactory neurons in
Caenorhabditis elegans (nematodes) was established by communicat-
ing via gap junctions, calcium signalling and tight junctions.56 Our
findings contribute to the increasing evidence that multiple risk
genes in schizophrenia help to explain anomalous brain asymmetry.

We also found a consistent decline in nodal degree and nodal
efficiency of the left postcentral gyrus in the patients with schizo-
phrenia. The major function of the postcentral gyrus is primary
somatosensory processing, which includes somatotopic informa-
tion as well as receipt of peripheral tactile and kinaesthetic sensa-
tion.57 Furthermore, the schizophrenia group showed lower Eglob
and Eloc consistent with previous studies3,16,21,58 that have demon-
strated disrupted connectivity in global and local white matter net-
works in schizophrenia. Additionally, there were no differences in
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the white matter structural network of the whole brain between the
GHR and healthy control groups in this study. The specificity of the
whole-brain structural network deficits in the schizophrenia group
indicates that these deficits relate to the disorder.

Limitations

There were several limitations in this study. First, most of the
patients with schizophrenia were taking psychotropic medications
at the time of study participation. Second, a moderate sample size

was used for association analyses between SZ-PRSs and abnormal
asymmetric changes (total 74 participants including participants
with schizophrenia and those with GHR) in this study. Further
study is needed, in a larger, unmedicated sample to confirm our
results. Additionally, environmental risk factors could also influence
the development of abnormalities in hemispheric asymmetry and
the whole-brain structural network in schizophrenia. Therefore,
future studies are needed to evaluate how specific genes and their
interactions with environmental risks may contribute to the altera-
tions in asymmetry found in schizophrenia.
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Implications

The shared deficits of hemispheric asymmetry in patients with
schizophrenia and those with GHR suggested that anomalous asym-
metry may be potential susceptibility markers of the disease. The
significant association between altered hemispheric asymmetry
and schizophrenia-related risk genes indicate a vulnerability
imaging marker regulated by schizophrenia-related risk genes.
These risk genes are also involved in signal transduction, neural
development, neuron structure and calcium signalling pathways.
These specific alterations to the white matter structural network
of whole brain in people with schizophrenia largely relate to the
neuropathologic features of the disorder. Our findings provide
new insights into asymmetry regulated by risk genes and provide
a better understanding of the genetic–neural pathological underpin-
nings of schizophrenia.
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