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The purpose of this paper is to prove the following result.

THEOREM. Let 2 be the set of symbols 1,2, -+« -, n. Let & be a doubly
transttive group on 2 of order 6n(n — 1) not confaining a regular normal subgroup
and let & be the stabilizer of the set of symbols 1 and 2. Assume that & is cyclic
and independent, i.e., R N G'RG =1 or K for every element G of ®&. Then & is
isomorphic to either PGL(2,7) or PSL(2,13).

We use the standard notation;

C4(®): the centralizer of a subset T in a group ¥
Ng(®): the normalizer of T in ¥

{+++>: the subgroup generated by- - -

|Z|: the number of elements in T

[¥:9]: the index of a subgroup 9 in X

T¢: GG where G ¥X.

Proof of Theorem

1. Let $ be the stabilizer of the symbol 1. & is of order 6 and it

is generated by a permutation K whose cyclic structure has the form (1)(2)

Since ® is doubly transitive on £, it contains an involution I with

the cyclic structure (1,2): + - which is conjugate to K3 Then we have the
following decomposition of &;
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® =9+ DHI9.

Since I is contained in Ng(®), it induces an automorphism of & and (i)
K’ = K i.e. <K,I)> is abelian or (ii) K’ = K™ i.e. <(K,I) is dihedral. If an
element H'IH of a coset HIH of $ is an involution, then I(HH')I = (HH')™
is contained in ®. Hence, in case (i) the coset $/H contains just two in-
volutions, namely H-'/H and H'K‘IH, and, in case (ii) it contains just six
involutions, namely H'K'IH for K’ € & Let g(2) and £(2) denote the num-
bers of involutions in & and §, respectively. Since the number of cosets
of  in HIH is n — 1, we have

(1) 9(2) = h(2) + a(n — 1).
where a« =2 and 6 for cases (i) and (ii), respectively.

2. Let & keep i(i =2) symbols of 2, say 1,2, - -+, i, unchanged. By
the assumption of the independence of £, K has neither 2-cycle nor 3-cycle
in its cyclic decomposition, i.e., it has only 1-cycles and 6-cycles and
Ns® = Cy(K?). Put I={1,2,-+-,i}. Then by a theorem of Witt ([9, Th.
9. 4]), Ng®/® can be considered as a doubly transitive permutation group
on J. Since every permutation of Nyg®/® distinct from & leaves by the
definition of & at most one symbol of J fixed, Ny®/® is a complete Frobe-
nius group on J. Therefore i equals a power of a prime number, say »™,
and the orders of Ng® and $ N Ny® are equal to 6i(¢ —1) and 6(: — 1),
respectively. By the double transitivity of &, any involution in ® which
leaves at least two symbols in @ fixed is conjugate to K* and the number
of such involutions is equal to n(n —1)/i(i —1). Similarly, any involution
in § which leaves at least two symbols in £ fixed is conjugate to K3 in $
and its number is equal to n —1/i — 1.

At first, let us assume that #» is odd. Let A4*2) be the number of
involutions in § leaving only the symbol 1 fixed. Then from (1) and the
above argument the following equality is obtained;

(2) 2+ nln — 1)/i(i —1) = B*Q2) + (n — 1)/(i —1) + a(n — 1).

Since i is less than #, it follows from (2) that 2%2) << e.
Now we shall prove that if A%*2)+ 0 and K’ = K-!, then A*2)=3. Let
¢ be any involution in & which leaves only one symbol of 2 fixed and
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assume that Cg(¢) contains an element @ of order 3. At first we shall show
that Q leaves only one symbol of @ fixed. If Q leaves at least two symbols
of @ fixed, then, since ® is doubly transitive on £, there exists an element
G in ® such that Q%= K2 and &% = (1,2) - - is contained in Ng<K?%. Since
KI,K? is dihedral, <% K%» must be dihedral. In fact, since %, { and A*(2)
are dependent on only ® and independent of the choice of I=(1,2)---,
from (2) so is «. But <& Q) is abelian, a contradiction. Thus if |Cg(&)| is
divisible by 3, then 3 is a factor of n —1. Therefore [Cy({)| and n are
relatively prime and hence [&: Cg()] is divisible by 3n. Even if [Cy(0)] is
not divisible by 3, |Cg(()| and n are relatively prime and hence the same
conclusion is obtained. On the other hand, the number of involutions in
® which leaves only one symbol of £ fixed is equal to #*2).-n and £A*2)
< a =6, hence we obtain A*2) = 3.

Furthermore, in the same way as in [6, 2. 2] A*(2) =1. (By the way,
note that the core of ® is identy 1.) Thus there are three cases;

(A) a—h*2)=2 (B) a—h*2)=3 and (C) a— k*2)=6.

The following equalities are obtained from (2) for cases (A), (B) and (C),

respectively.

(A) n=i(2 —1) = p™2p™ — 1) (p: odd),
(B) n=1i3i—2)=p"3p™ —2) (p: odd),
and

(C) n =1i(6i —5) = p™(6p™ — 5) (p: odd).

Next let us assume that » is even. Let g*2) be the number of invo-
lutions in ® leaving no symbol of 2 fixed. Then corresponding to (2) the
following equality is obtained from (1);

(3) 9*2)+nn—1ii —1)=n—1/i — 1+ a(n — 1).
Let J be an involution in & leaving no symbol of @ fixed. Assume

that |Cg(J)| is divisible by a prime factor ¢ of » —1. Then Cg(J) contains

a permutation @ of order ¢ and @ leaves at least two symbols of 2 fixed.
Hence ¢ =3 and the common prime factor of # — 1 and [Cg(J)| is 3. Next

assume that [Cg(J)| is divisible by 32. Let  be a Sylow 3-subgroup of
Cy(J). Since n is not divisible by 3, B leaves just one symbol of 2 fixed.
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Since J leaves no symbol of 2 fixed, this is a contradiction. Thus [&: Cg(/)]
is divisible by #» —1 and hence g*2) is so. On the other hand, it follows
from (3) that ¢*Q2) < a(n —1). Thus we have # =i(8i —pg+1), where
B=a—g*2)/n—1. Since n is even, ; must be even and ;i = 2™,

3. Case (A) for p+3. Let P be a Sylow p-subgroup of Ng®. Since
the group of automorphisms of & is of order 2, we may assume that P is
a Sylow p-subgroup of Cg®. Then, since Ng®/® is a complete Frobenius
group of degree p™, P is elementary abelian and normal in Ng®. In this
case, P is also a Sylow p-subgroup of &. Let the orders of NgPB and CgB
be 6p™(p™ —1)x and 6p™y, respectively. If 2 =1, then from Sylow’s theorem
it should hold that [®&: NgB]= (2p™ —1)(2p™ + 1)=1 (mod. p), which, since
p is odd, is a contradiction. Thus « is greater than one. If y =1, then
CeP = & x P and & would be normal in NgPB, and this would imply that
# =1. Thus y is greater than one. Let & be a Sylow 2-subgroup of CgB.
Since any permutation (# 1) of P leaves no symbol of @ fixed, & must leave
at least two symbols of 2 fixed and hence & is conjugate to <K*. Thus
y is odd. If y is divisible by 3, then let ® be a Sylow 3-subgroup of CgP.
From the cyclic structure of K n —i = 2i(i —1) is divisible by 6 and so =
is not divisible by 3. Hence, as above, & is conjugate to <K?)>. Thus y is
relatively prime to 2, 3 and p. Therefore y is a factor of » and hence of
2p™—1. P has a normal p-complement A of order 6y in CyP and & has
a normal complement 9 of order ¥y in A. Then 9 is normal even in NyB.
Any permutation (#1) of 9 does not leave any symbol of 2 fixed. Put
B=9N Ng®. Then 8 is contained in Ng¥. Assume that 8 contains a
permutation V of a prime order g which is commutative with a permutation
Y(#1) of 9. Since V fixes at least two symbols of 2, ¢ =2 or 3. If ¢g=2,
then V is conjugate to K3. Since |Cy(K?®)| and y are relatively prime, this is
a contradiction. Thus g+ 2. Similarly, ¢#3. Thus every permutation
(#+1) of 8 is not commutative with any permutation (1) of 9. This
implies that y is not less than |8| +1=6p™ —5, which is a contradiction,
for y is a factor of 2p™ — 1. Thus there exists no group satisfying the con-
ditions of the theorem in Case (A) for p+ 3.

4, Case (A) for p=3. Let B be a Sylow 3-subgroup of Cyz® con-
taining K2 It is also a Sylow 3-subgroup of Ng&® and ®. Let Q be a

https://doi.org/10.1017/5S0027763000013258 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000013258

DOUBLY TRANSITIVE PERMUTATION GROUPS 29

subgroup of Ng® containing & such that Q/® is a regular normal subgroup
of Ng®/®. Then P is normal in O = P& and so in Ng®. Clearly Ng&® 2
Cy(K?) 2 CyB. Let 3™(m’ =1) be the order of the center of P, Z(B). Then
we shall prove that |[CgB| =2.3™*+""(m’" >0). Since Ng®/® is Frobenius
group on J with Frobenius kernel ©/® and a complement $ N Ng&/®,
every permutation (+ &) of Q/8 is not commutative with any permutation
(= &) of H N Ny®/® and hence C¢B N (H N Ng®) = &.  Since CgP is normal
in Ne®, CeB SO or CBo29D. If CeB2D, (9N Ne®)CoB = Ne® and
|CsB/®R] =3™. Thus we have [CyB| =2-3™*""(m'' =0). If m"”” =0 then
CsP is the direct product of <K3> and Z(P) and <(K? is normal in NgP.
Hence Ng® = NgB and from Sylow’s theorem it should hold that [&: NgPB1=
(2:3™—1)(2:3"+1) =1 (mod. 3), which is a contradiction. Thus it is
obtained that |C¢P| =2-3™*+™" (m'" >0). Let B’ be a Sylow 3-subgroup of
CeB. Since P'B/P is isomorphic to P'/Z(P), PP is a 3-subgroup of Nf.
Further, since $ is a normal Sylow 3-subgroup of Ng®, BB <P and so
P'<cP. Hence P’ < CyP NP =Z(P), which is contradictory to those

orders. Thus there exists no group satisfying the conditions of the theorem
in Case (A) for p =3.

5. Case (B) and (C). We shall examine a Sylow 2-subgroup of &.
Since K’ = K-! in these cases, [Ny®: Cy®] =2 and |Ce®/®| = i(i —1)2. If
[CeR/®| is even, then there exists an involution -8 in Cgz®/®. Since Ng®/®
is a Frobenius group of order i(i —1), a Sylow 2-subgroup of Ng®/® con-
tains only one involution. Hence «® is conjugate to I® in Ng®/®. This
contradicts that K = K-'. Thus |Cg®/®] is odd and i —1=2-(odd num-
ber).

In Case (B) n—1={3(i —1)+4} (i —1) = 4- (0odd number) and hence
|®] =6n(n —1) =8 (odd number). Let & be a Sylow 2-subgroup of &
containing (K3 I). Then & is neither abelian nor quaternion since |Ng®|=
|Cy(K?)| =4+ (odd number). Thus & is dihedral. Similarly, in Case (C)
|®] = 4- (odd number) and a Sylow 2-subgroup of & is dihedral. Therefore,
by [2] in both cases (B) and (C) & is isomorphic to either

a subgroup of PI'L(2,q) containing PSL(2,q), ¢ odd,
or
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the alternating group A;.

But by [8, Satz 1, p. 422], in both cases (B) and (C) the former cannot
happen and hence ® must be isomorphic to A4;. In Case (C) [&]=4-(odd
number) and this is imposible. Thus there exists no group satisfying the
conditions of the theorem in Case (C). Since in Case (B) #*2) =3, ® has
at least two conjugate classes of involutions. But all involutions of A; are
conjugate in A;. Thus there exists no group satisfying the conditions of the
theorem in Case (B).

6. Case n is even and <K, I) is dihedral. Let /8 be a Frobenius
kernel of Frobenius group Ng®/® on §. Then Cy® contains £ or is con-

tained in Q. Since I is contained in £ and not contained in Cg®, L con-
tains Cg®. Also, since [Ng®: Cegfl=2 and [Ng&: Q] =2"—1, we have
m=1 and i =2. Therefore, in cases f=3 and 6 ® is a Zassenhaus group
and it can be seen that ® is isomorphic to PGL(2,7) in the case 8= 3 and
that ® is isomorphic to PSL(2,13) in the case g§=6 ([1], [3] and [10]). In

the other cases, since » — i must be divisible by 6, there exists no group
satisfying the conditions of the theorem.

7. Now only the case <K, I) is abelian remain. In this case we may
assume that Ng® = Ce®. In fact, if [Ng®: Cy®] =2, then there exists an
element in a Sylow 2-subgroup of Ng® and so in (D is the same meaning
as in 6.) but in no Cgx®. For the same reason as in 6, O contains Cg®,
which was dealt with in 6. :

Let & be a Sylow 2-subgroup of Ng® containing K® Then, since
0 =88 and Ng® =Cg®, & is a normal Hall subgroup of Q and hence
normal in Ng®. Since |9]| =6(n —1) =2-(odd number), $ contains a sub-
group U of order 3(z —1). Hence $ N Ny® contains a subgroup B=1UNNg&
of order 3(2™ —1). Let B be a Sylow 3-subgroup of ¥ containing K2
Since Ng®/® is a Frobenius group on J, all the Sylow subgroups of B&/®
are cyclic. Therefore B/<K? is cyclic and P is abelian. ‘

Since every permutation (7 &) of S&/® is not commutative with any
permutation (+ &) of BR/® and & contains 7, any element (+ &) of SH/{
is conjugate to I® under BR/®. Hence, noting that &N & = <(K*», every

permutation (+1) of & can be represented in the form K3, IV or IVK3,
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where V is any permutation of 8. Therefore every element (#1) of & is
an involution and & is elementary abelian.
From now on, we use the notations in this paragraph.

8. Case =1 and (X, I) is abelian. Since n—i =2™(2"—1) is divisible
by 6, 3 is a factor of 2™ —1. Hence |B| is not less than 32 and P leaves
only the symbol 1 fixed and NgPB is contained in $. Since <(K® is a Sylow
2-subgroup of CgB, we obtain that NgB = CoB(NsB N Cs(K?). Hence
NgB = CoB(NgB N H N Ny®) = CeB(NegB N&B) = CB(NgBNR). On the other
hand, since 3 is the least prime factor of |B/<(K*| =2 —1 and a Sylow 3-
subgroup BKK? of BKK? is cyclic, Ng <k (B[KK?) = Cg/<rrs (BKK®).
It is easily seen that Ng/<ges (B/KKD) = NgPB N BKK?. Let X be any ele-
ment of NgB N B. Then, X induces trivial automorphisms of <K% and
B/<K?.  Therefore <X> must be a 3-group and (X> <P < Ce®B. Hence
NeB N B < CeB and NgPB=CyB. By the splitting theorem of Burnside P has
a normal complement in ®. Since all the Sylow subgroups different from
Sylow 3-subgroup of B are cyclic, in the same way as in [4, Case CJ], it
can be shown that & has the normal subgroup 9%, which is a complement
of 8. In particular, #NU =D is a normal subgroup of $. Since |[Cy(K?)|=
6:2™2" — 1) and |D| = 2™ + 1 are relatively prime, K? induces a fixed-point-
free automorphism of ® of order 2 and so ® is abelian. N is the product
of ® and a Sylow 2-subgroup of . Hence %, and therefore & is solvable
((5]). Then ® must contain a regular normal subgroup. Thus there exists
no group satisfying the conditions of the theorem in this case.

9. Case =2 and <(K,I) is abelian. In this case & is a Sylow 2-
subgroup of ® and an elementary abelian group of order 2™+!. Since g*(2)=0,
every involution of & is conjugate to K3,

If &% contains K? for some G ®, then 8 =&. In fact, since & is
abelian and normal in Ng® = Cg(K?), &¢ is contained in Ng® and &% = 3.

Thus we have

[@: Cy(K*)] = (2" — 1)[®: Ns€],

namely

[Ng@: Ngf]=2"—1.
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Hence |[Ng&| = 2™*.3(2™ —1)(2™"* — 1) and Ng& contains a subgroup U of
order 3(2™ — 1) (2™*'—1). Put B,=ANSV = ANNg&®. By a theorem of Schur-
Zassenhaus ¥ and B, are conjugate in &8. A Sylow 3-subgroup of %, is
abelian and all the other Sylow subgroups are cyclic. Therefore likewise in
8, it can be shown that 2 has the normal subgroup % of order 2m*! —1.
Since 2™'—1 and |9| =6(n —1) are relatively prime, every permutation
(1) of B leaves no symbol of 2 fixed. If a permutation V of B, leaves
at least two symbol of 2 fixed, then V is conjugate to K2 and |[Cg(V)| is
equal to |Ng®|. This implies that Cg(V)N B =1, for |B| =2"1—1 and
| Ng®| = 27"*1.3(2™ — 1) are relatively prime. Thus every permutation (# 1)
of B is not commutative with any permutation (# 1) of 8,. Hence |8|—1=
2" — 22> |®B,| = 3(2™ —1), a contradiction. Thus there exists no group sa-
tisfying the conditions of the theorem in this case.
Thus Theorem is proved.
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