S. Iwasaki and H. Kimura Nagoya Math. J. Vol. 37 (1970), 25–32

ON SOME DOUBLY TRANSITIVE PERMUTATION GROUPS OF DEGREE N AND ORDER 6n(n-1)

SHIRO IWASAKI AND HIROSHI KIMURA¹⁾

Dedicated to Professor K. Ono on his 60th birthday

The purpose of this paper is to prove the following result.

THEOREM. Let Ω be the set of symbols $1, 2, \dots, n$. Let \mathfrak{G} be a doubly transitive group on Ω of order 6n(n-1) not containing a regular normal subgroup and let \mathfrak{R} be the stabilizer of the set of symbols 1 and 2. Assume that \mathfrak{R} is cyclic and independent, i.e., $\mathfrak{R} \cap G^{-1}\mathfrak{R}G = 1$ or \mathfrak{R} for every element G of \mathfrak{G} . Then \mathfrak{G} is isomorphic to either PGL(2,7) or PSL(2,13).

We use the standard notation;

 $C_{\mathfrak{X}}(\mathfrak{T})$: the centralizer of a subset \mathfrak{T} in a group \mathfrak{X} $N_{\mathfrak{X}}(\mathfrak{T})$: the normalizer of \mathfrak{T} in \mathfrak{X} $\langle \cdots \rangle$: the subgroup generated by \cdots $|\mathfrak{T}|$: the number of elements in \mathfrak{T} $[\mathfrak{X}:\mathfrak{Y}]$: the index of a subgroup \mathfrak{Y} in \mathfrak{X} \mathfrak{T}^{a} : $G^{-1}\mathfrak{T}G$ where $G \in \mathfrak{X}$.

Proof of Theorem

1. Let \mathfrak{H} be the stabilizer of the symbol 1. \mathfrak{R} is of order 6 and it is generated by a permutation K whose cyclic structure has the form (1)(2) \cdots . Since \mathfrak{G} is doubly transitive on Ω , it contains an involution I with the cyclic structure $(1, 2) \cdots$ which is conjugate to K^3 . Then we have the following decomposition of \mathfrak{G} ;

Received November 18, 1968

¹⁾ This work was supported by The Sakkokai Foundation.

$$\mathfrak{G} = \mathfrak{H} + \mathfrak{H}\mathfrak{H}.$$

Since I is contained in $N_{\circledast}(\Re)$, it induces an automorphism of \Re and (i) $K^{I} = K$ i.e. $\langle K, I \rangle$ is abelian or (ii) $K^{I} = K^{-1}$ i.e. $\langle K, I \rangle$ is dihedral. If an element H'IH of a coset $\Im IH$ of \Im is an involution, then $I(HH')I = (HH')^{-1}$ is contained in \Re . Hence, in case (i) the coset $\Im IH$ contains just two involutions, namely $H^{-1}IH$ and $H^{-1}K^{3}IH$, and, in case (ii) it contains just six involutions, namely $H^{-1}K'IH$ for $K' \in \Re$. Let g(2) and h(2) denote the numbers of involutions in \mathfrak{G} and \mathfrak{H} , respectively. Since the number of cosets of \mathfrak{H} in $\mathfrak{H}\mathfrak{H}$ is n-1, we have

(1)
$$g(2) = h(2) + \alpha(n-1).$$

where $\alpha = 2$ and 6 for cases (i) and (ii), respectively.

2. Let \Re keep $i(i \ge 2)$ symbols of Ω , say 1, 2, \cdots , *i*, unchanged. By the assumption of the independence of \Re , K has neither 2-cycle nor 3-cycle in its cyclic decomposition, i.e., it has only 1-cycles and 6-cycles and $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}(K^{\mathfrak{s}})$. Put $\mathfrak{F} = \{1, 2, \dots, i\}$. Then by a theorem of Witt ([9, Th. 9. 4]), N_{GR} and be considered as a doubly transitive permutation group Since every permutation of N_{\otimes} \Re distinct from \Re leaves by the on J. definition of \Re at most one symbol of \Im fixed, $N_{\otimes} \Re/\Re$ is a complete Frobenius group on \Im . Therefore *i* equals a power of a prime number, say p^m , and the orders of N_{\otimes} and $\mathfrak{H} \cap N_{\otimes}$ are equal to 6i(i-1) and 6(i-1), respectively. By the double transitivity of S, any involution in S which leaves at least two symbols in Ω fixed is conjugate to K^3 and the number of such involutions is equal to n(n-1)/i(i-1). Similarly, any involution in \mathfrak{H} which leaves at least two symbols in \mathfrak{Q} fixed is conjugate to $K^{\mathfrak{g}}$ in \mathfrak{H} and its number is equal to n - 1/i - 1.

At first, let us assume that n is odd. Let $h^{*}(2)$ be the number of involutions in \mathfrak{H} leaving only the symbol 1 fixed. Then from (1) and the above argument the following equality is obtained;

(2)
$$h^{*}(2)n + n(n-1)/i(i-1) = h^{*}(2) + (n-1)/(i-1) + \alpha(n-1).$$

Since *i* is less than *n*, it follows from (2) that $h^*(2) < \alpha$.

Now we shall prove that if $h^*(2) \neq 0$ and $K^I = K^{-1}$, then $h^*(2) = 3$. Let ζ be any involution in \mathfrak{G} which leaves only one symbol of Ω fixed and

assume that $C_{\mathfrak{G}}(\zeta)$ contains an element Q of order 3. At first we shall show that Q leaves only one symbol of Ω fixed. If Q leaves at least two symbols of Ω fixed, then, since \mathfrak{G} is doubly transitive on Ω , there exists an element G in \mathfrak{G} such that $Q^{\mathfrak{G}} = K^2$ and $\zeta^{\mathfrak{G}} = (1,2) \cdots$ is contained in $N_{\mathfrak{G}}\langle K^2 \rangle$. Since $\langle I, K^2 \rangle$ is dihedral, $\langle \zeta^{\mathfrak{G}}, K^2 \rangle$ must be dihedral. In fact, since n, i and $h^*(2)$ are dependent on only \mathfrak{G} and independent of the choice of $I = (1,2) \cdots$, from (2) so is α . But $\langle \zeta, Q \rangle$ is abelian, a contradiction. Thus if $|C_{\mathfrak{G}}(\zeta)|$ is divisible by 3, then 3 is a factor of n-1. Therefore $|C_{\mathfrak{G}}(\zeta)|$ and n are relatively prime and hence $[\mathfrak{G}: C_{\mathfrak{G}}(\zeta)]$ is divisible by 3n. Even if $|C_{\mathfrak{G}}(\zeta)|$ is not divisible by 3, $|C_{\mathfrak{G}}(\zeta)|$ and n are relatively prime and hence the same conclusion is obtained. On the other hand, the number of involutions in \mathfrak{G} which leaves only one symbol of Ω fixed is equal to $h^*(2) \cdot n$ and $h^*(2) < \alpha = 6$, hence we obtain $h^*(2) = 3$.

Furthermore, in the same way as in [6, 2. 2] $h^*(2) \neq 1$. (By the way, note that the core of \mathfrak{G} is identy 1.) Thus there are three cases;

(A)
$$\alpha - h^*(2) = 2$$
, (B) $\alpha - h^*(2) = 3$ and (C) $\alpha - h^*(2) = 6$.

The following equalities are obtained from (2) for cases (A), (B) and (C), respectively.

(A)
$$n = i(2i - 1) = p^m (2p^m - 1)$$
 (p: odd),

(B)
$$n = i(3i - 2) = p^m(3p^m - 2)$$
 (p: odd),

and

(C)
$$n = i(6i - 5) = p^m(6p^m - 5)$$
 (p: odd).

Next let us assume that n is even. Let $g^{*}(2)$ be the number of involutions in \mathfrak{G} leaving no symbol of Ω fixed. Then corresponding to (2) the following equality is obtained from (1);

(3)
$$g^{*}(2) + n(n-1)/i(i-1) = n - 1/i - 1 + \alpha(n-1).$$

Let J be an involution in \mathfrak{G} leaving no symbol of Ω fixed. Assume that $|C_{\mathfrak{G}}(J)|$ is divisible by a prime factor q of n-1. Then $C_{\mathfrak{G}}(J)$ contains a permutation Q of order q and Q leaves at least two symbols of Ω fixed. Hence q = 3 and the common prime factor of n-1 and $|C_{\mathfrak{G}}(J)|$ is 3. Next assume that $|C_{\mathfrak{G}}(J)|$ is divisible by 3^2 . Let \mathfrak{P} be a Sylow 3-subgroup of $C_{\mathfrak{G}}(J)$. Since n is not divisible by 3, \mathfrak{P} leaves just one symbol of Ω fixed. Since *J* leaves no symbol of Ω fixed, this is a contradiction. Thus [\mathfrak{G} : $C_{\mathfrak{G}}(J)$] is divisible by n-1 and hence $g^*(2)$ is so. On the other hand, it follows from (3) that $g^*(2) < \alpha(n-1)$. Thus we have $n = i(\beta i - \beta + 1)$, where $\beta = \alpha - g^*(2)/n - 1$. Since *n* is even, *i* must be even and $i = 2^m$.

3. Case (A) for $p \neq 3$. Let \mathfrak{P} be a Sylow *p*-subgroup of $N_{\mathfrak{P}}\mathfrak{R}$. Since the group of automorphisms of \Re is of order 2, we may assume that \Re is a Sylow p-subgroup of $C_{\mathfrak{G}}\mathfrak{R}$. Then, since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a complete Frobenius group of degree p^m , \mathfrak{P} is elementary abelian and normal in $N_{\mathfrak{G}}\mathfrak{R}$. In this case, \mathfrak{P} is also a Sylow *p*-subgroup of \mathfrak{G} . Let the orders of $N_{\mathfrak{G}}\mathfrak{P}$ and $C_{\mathfrak{G}}\mathfrak{P}$ be $6p^m(p^m-1)x$ and $6p^my$, respectively. If x=1, then from Sylow's theorem it should hold that $[\mathfrak{G}: N_{\mathfrak{G}}\mathfrak{P}] = (2p^m - 1)(2p^m + 1) \equiv 1 \pmod{p}$, which, since p is odd, is a contradiction. Thus x is greater than one. If y = 1, then $C_{\mathfrak{G}}\mathfrak{P}=\mathfrak{R}\times\mathfrak{P}$ and \mathfrak{R} would be normal in $N_{\mathfrak{G}}\mathfrak{P}$, and this would imply that x = 1.Thus y is greater than one. Let \mathfrak{S} be a Sylow 2-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$. Since any permutation $(\neq 1)$ of \mathfrak{P} leaves no symbol of \mathfrak{Q} fixed, \mathfrak{S} must leave at least two symbols of Ω fixed and hence \mathfrak{S} is conjugate to $\langle K^3 \rangle$. Thus y is odd. If y is divisible by 3, then let \Re be a Sylow 3-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$. From the cyclic structure of K n - i = 2i(i - 1) is divisible by 6 and so n is not divisible by 3. Hence, as above, \Re is conjugate to $\langle K^2 \rangle$. Thus y is relatively prime to 2, 3 and p. Therefore y is a factor of n and hence of $2p^{m} - 1$. \mathfrak{P} has a normal *p*-complement \mathfrak{A} of order 6y in $C_{\mathfrak{G}}\mathfrak{P}$ and \mathfrak{R} has a normal complement \mathfrak{Y} of order y in \mathfrak{A} . Then \mathfrak{Y} is normal even in $N_{\mathfrak{G}}\mathfrak{P}$. Any permutation $(\neq 1)$ of \mathfrak{Y} does not leave any symbol of \mathfrak{Q} fixed. Put $\mathfrak{V} = \mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}.$ Then \mathfrak{V} is contained in $N_{\mathfrak{G}}\mathfrak{Y}$. Assume that \mathfrak{V} contains a permutation V of a prime order q which is commutative with a permutation Since V fixes at least two symbols of Ω , q = 2 or 3. If q = 2, $Y(\neq 1)$ of \mathfrak{Y} . then V is conjugate to K³. Since $|C_{(0)}(K^3)|$ and y are relatively prime, this is a contradiction. Thus $q \neq 2$. Similarly, $q \neq 3$. Thus every permutation $(\neq 1)$ of \mathfrak{V} is not commutative with any permutation $(\neq 1)$ of \mathfrak{Y} . This implies that y is not less than $|\mathfrak{B}| + 1 = 6p^m - 5$, which is a contradiction, for y is a factor of $2p^m - 1$. Thus there exists no group satisfying the conditions of the theorem in Case (A) for $p \neq 3$.

4. Case (A) for p = 3. Let \mathfrak{P} be a Sylow 3-subgroup of $C_{\mathfrak{G}}\mathfrak{R}$ containing K^2 . It is also a Sylow 3-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ and \mathfrak{G} . Let \mathfrak{Q} be a

subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ containing \mathfrak{R} such that $\mathfrak{Q}/\mathfrak{R}$ is a regular normal subgroup of $N_{\otimes} \Re/\Re$. Then \mathfrak{P} is normal in $\mathfrak{Q} = \mathfrak{P}\mathfrak{R}$ and so in $N_{\otimes}\mathfrak{R}$. Clearly $N_{\otimes}\mathfrak{R} \supseteq$ $C_{\mathfrak{G}}(K^2) \supseteq C_{\mathfrak{G}}\mathfrak{P}$. Let $3^{m'}(m' \ge 1)$ be the order of the center of \mathfrak{P} , $Z(\mathfrak{P})$. Then we shall prove that $|C_{\otimes}\mathfrak{P}| = 2 \cdot 3^{m'+m''}(m'' > 0)$. Since $N_{\otimes}\mathfrak{R}/\mathfrak{R}$ is Frobenius group on \mathfrak{F} with Frobenius kernel $\mathfrak{Q}/\mathfrak{R}$ and a complement $\mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$, every permutation $(\neq \Re)$ of Ω/\Re is not commutative with any permutation $(\neq \Re)$ of $\mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ and hence $C_{\mathfrak{G}}\mathfrak{P} \cap (\mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}) = \mathfrak{R}$. Since $C_{\mathfrak{G}}\mathfrak{P}$ is normal in $N_{\mathfrak{G}}\mathfrak{R}$, $C_{\mathfrak{G}}\mathfrak{P} \subseteq \mathfrak{O}$ or $C_{\mathfrak{G}}\mathfrak{P} \supseteq \mathfrak{O}$. If $C_{\mathfrak{G}}\mathfrak{P} \supseteq \mathfrak{O}$, $(\mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}) C_{\mathfrak{G}}\mathfrak{P} = N_{\mathfrak{G}}\mathfrak{R}$ and $|C_{\mathfrak{G}}\mathfrak{P}/\mathfrak{R}| = 3^{m}$. Thus we have $|C_{\mathfrak{G}}\mathfrak{P}| = 2 \cdot 3^{m'+m''}(m'' \ge 0)$. If m'' = 0 then $C_{\mathfrak{G}}\mathfrak{P}$ is the direct product of $\langle K^3 \rangle$ and $Z(\mathfrak{P})$ and $\langle K^3 \rangle$ is normal in $N_{\mathfrak{G}}\mathfrak{P}$. Hence $N_{\mathfrak{G}}\mathfrak{P} = N_{\mathfrak{G}}\mathfrak{P}$ and from Sylow's theorem it should hold that $[\mathfrak{G}: N_{\mathfrak{G}}\mathfrak{P}] =$ $(2 \cdot 3^m - 1)(2 \cdot 3^m + 1) \equiv 1 \pmod{3}$, which is a contradiction. Thus it is obtained that $|C_{\mathfrak{G}}\mathfrak{P}| = 2 \cdot 3^{m'+m''} (m'' > 0)$. Let \mathfrak{P}' be a Sylow 3-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$. Since $\mathfrak{P}'\mathfrak{P}/\mathfrak{P}$ is isomorphic to $\mathfrak{P}'/\mathbb{Z}(\mathfrak{P})$, $\mathfrak{P}'\mathfrak{P}$ is a 3-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$. Further, since \mathfrak{P} is a normal Sylow 3-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$, $\mathfrak{P}'\mathfrak{P} \subseteq \mathfrak{P}$ and so 𝔅' ⊆ 𝔅. Hence $\mathfrak{P}' \subseteq C_{\mathfrak{G}}\mathfrak{P} \cap \mathfrak{P} = Z(\mathfrak{P})$, which is contradictory to those orders. Thus there exists no group satisfying the conditions of the theorem in Case (A) for p = 3.

5. Case (B) and (C). We shall examine a Sylow 2-subgroup of \mathfrak{G} . Since $K^{I} = K^{-1}$ in these cases, $[N_{\mathfrak{G}}\mathfrak{R}: C_{\mathfrak{G}}\mathfrak{R}] = 2$ and $|C_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}| = i(i-1)/2$. If $|C_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}|$ is even, then there exists an involution $\tau\mathfrak{R}$ in $C_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$. Since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a Frobenius group of order i(i-1), a Sylow 2-subgroup of $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ contains only one involution. Hence $\tau\mathfrak{R}$ is conjugate to $I\mathfrak{R}$ in $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$. This contradicts that $K^{I} = K^{-1}$. Thus $|C_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}|$ is odd and $i-1=2 \cdot (\text{odd number})$.

In Case (B) $n-1 = \{3(i-1)+4\}(i-1) = 4 \cdot (\text{odd number})$ and hence $|\mathfrak{G}| = 6n(n-1) = 8 \cdot (\text{odd number})$. Let \mathfrak{S} be a Sylow 2-subgroup of \mathfrak{G} containing $\langle K^3, I \rangle$. Then \mathfrak{S} is neither abelian nor quaternion since $|N_{\mathfrak{G}}\mathfrak{R}| = |C_{\mathfrak{G}}(K^3)| = 4 \cdot (\text{odd number})$. Thus \mathfrak{S} is dihedral. Similarly, in Case (C) $|\mathfrak{G}| = 4 \cdot (\text{odd number})$ and a Sylow 2-subgroup of \mathfrak{G} is dihedral. Therefore, by [2] in both cases (B) and (C) \mathfrak{G} is isomorphic to either

a subgroup of $P\Gamma L(2, q)$ containing PSL(2, q), q odd, or

the alternating group A_7 .

But by [8, Satz 1, p. 422], in both cases (B) and (C) the former cannot happen and hence \mathfrak{G} must be isomorphic to A_7 . In Case (C) $|\mathfrak{G}|=4 \cdot (\text{odd}$ number) and this is imposible. Thus there exists no group satisfying the conditions of the theorem in Case (C). Since in Case (B) $h^*(2) = 3$, \mathfrak{G} has at least two conjugate classes of involutions. But all involutions of A_7 are conjugate in A_7 . Thus there exists no group satisfying the conditions of the theorem in Case (B).

6. Case *n* is even and $\langle K, I \rangle$ is dihedral. Let \mathbb{Q}/\Re be a Frobenius kernel of Frobenius group $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ on \mathfrak{F} . Then $C_{\mathfrak{G}}\mathfrak{R}$ contains \mathfrak{Q} or is contained in \mathfrak{Q} . Since *I* is contained in \mathfrak{Q} and not contained in $C_{\mathfrak{G}}\mathfrak{R}$, \mathfrak{Q} contains $C_{\mathfrak{G}}\mathfrak{R}$. Also, since $[N_{\mathfrak{G}}\mathfrak{R}: C_{\mathfrak{G}}\mathfrak{R}] = 2$ and $[N_{\mathfrak{G}}\mathfrak{R}: \mathfrak{Q}] = 2^m - 1$, we have m = 1 and i = 2. Therefore, in cases $\beta = 3$ and 6 \mathfrak{G} is a Zassenhaus group and it can be seen that \mathfrak{G} is isomorphic to PGL(2,7) in the case $\beta = 3$ and that \mathfrak{G} is isomorphic to PSL(2,13) in the case $\beta = 6$ ([1], [3] and [10]). In the other cases, since n - i must be divisible by 6, there exists no group satisfying the conditions of the theorem.

7. Now only the case $\langle K, I \rangle$ is abelian remain. In this case we may assume that $N_{\otimes} \Re = C_{\otimes} \Re$. In fact, if $[N_{\otimes} \Re : C_{\otimes} \Re] = 2$, then there exists an element in a Sylow 2-subgroup of $N_{\otimes} \Re$ and so in $\mathbb{Q}(\mathbb{Q})$ is the same meaning as in 6.) but in no $C_{\otimes} \Re$. For the same reason as in 6, \mathbb{Q} contains $C_{\otimes} \Re$, which was dealt with in 6.

Let \mathfrak{S} be a Sylow 2-subgroup of $N_{\mathfrak{G}}\mathfrak{R}$ containing K^3 . Then, since $\mathfrak{Q} = \mathfrak{R}\mathfrak{S}$ and $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}\mathfrak{R}$, \mathfrak{S} is a normal Hall subgroup of \mathfrak{Q} and hence normal in $N_{\mathfrak{G}}\mathfrak{R}$. Since $|\mathfrak{P}| = 6(n-1) = 2 \cdot (\text{odd number})$, \mathfrak{P} contains a subgroup \mathfrak{U} of order 3(n-1). Hence $\mathfrak{P} \cap N_{\mathfrak{G}}\mathfrak{R}$ contains a subgroup $\mathfrak{V} = \mathfrak{U} \cap N_{\mathfrak{G}}\mathfrak{R}$ of order $3(2^m - 1)$. Let \mathfrak{P} be a Sylow 3-subgroup of \mathfrak{V} containing K^2 . Since $N_{\mathfrak{G}}\mathfrak{R}/\mathfrak{R}$ is a Frobenius group on \mathfrak{F} , all the Sylow subgroups of $\mathfrak{V}\mathfrak{R}/\mathfrak{R}$ are cyclic. Therefore $\mathfrak{P}/\langle K^2 \rangle$ is cyclic and \mathfrak{P} is abelian.

Since every permutation $(\neq \Re)$ of $\Im \Re/\Re$ is not commutative with any permutation $(\neq \Re)$ of $\Im \Re/\Re$ and \mathfrak{S} contains *I*, any element $(\neq \Re)$ of $\Im \Re/\Re$ is conjugate to $I\mathfrak{R}$ under $\mathfrak{N}\mathfrak{R}/\mathfrak{R}$. Hence, noting that $\mathfrak{S} \cap \mathfrak{R} = \langle K^3 \rangle$, every permutation $(\neq 1)$ of \mathfrak{S} can be represented in the form K^3 , I^{ν} or $I^{\nu}K^3$,

30

where V is any permutation of \mathfrak{B} . Therefore every element $(\neq 1)$ of \mathfrak{S} is an involution and \mathfrak{S} is elementary abelian.

From now on, we use the notations in this paragraph.

Case $\beta = 1$ and $\langle K, I \rangle$ is abelian. Since $n - i = 2^m (2^m - 1)$ is divisible 8. by 6, 3 is a factor of $2^m - 1$. Hence $|\mathfrak{P}|$ is not less than 3^2 and \mathfrak{P} leaves only the symbol 1 fixed and $N_{\mathfrak{G}}\mathfrak{P}$ is contained in \mathfrak{H} . Since $\langle K^3 \rangle$ is a Sylow 2-subgroup of $C_{\mathfrak{G}}\mathfrak{P}$, we obtain that $N_{\mathfrak{G}}\mathfrak{P} = C_{\mathfrak{G}}\mathfrak{P}(N_{\mathfrak{G}}\mathfrak{P} \cap C_{\mathfrak{G}}(K^3))$. Hence $N_{\mathfrak{G}}\mathfrak{P} = C_{\mathfrak{G}}\mathfrak{P}(N_{\mathfrak{G}}\mathfrak{P} \cap \mathfrak{H} \cap N_{\mathfrak{G}}\mathfrak{R}) = C_{\mathfrak{G}}\mathfrak{P}(N_{\mathfrak{G}}\mathfrak{P} \cap \mathfrak{R}\mathfrak{R}) = C_{\mathfrak{G}}\mathfrak{P}(N_{\mathfrak{G}}\mathfrak{P} \cap \mathfrak{R}). \quad \text{On the other}$ hand, since 3 is the least prime factor of $|\mathfrak{B}/\langle K^2 \rangle| = 2^m - 1$ and a Sylow 3subgroup $\mathfrak{P}/\langle K^2 \rangle$ of $\mathfrak{P}/\langle K^2 \rangle$ is cyclic, $N_{\mathfrak{P}/\langle K^2 \rangle}(\mathfrak{P}/\langle K^2 \rangle) = C_{\mathfrak{P}/\langle K^2 \rangle}(\mathfrak{P}/\langle K^2 \rangle)$. It is easily seen that $N_{\mathfrak{B}/\langle K^2 \rangle}(\mathfrak{P}/\langle K^2 \rangle) = N_{\mathfrak{B}}\mathfrak{P} \cap \mathfrak{P}/\langle K^2 \rangle$. Let X be any element of $N_{\oplus}\mathfrak{P} \cap \mathfrak{P}$. Then, X induces trivial automorphisms of $\langle K^2 \rangle$ and Therefore $\langle X \rangle$ must be a 3-group and $\langle X \rangle \subseteq \mathfrak{P} \subseteq C_{\mathfrak{G}}\mathfrak{P}$. $\mathfrak{B}/\langle K^2 \rangle$. Hence $N_{\mathfrak{G}}\mathfrak{P}\cap\mathfrak{P}\subseteq C_{\mathfrak{G}}\mathfrak{P}$ and $N_{\mathfrak{G}}\mathfrak{P}=C_{\mathfrak{G}}\mathfrak{P}$. By the splitting theorem of Burnside \mathfrak{P} has a normal complement in S. Since all the Sylow subgroups different from Sylow 3-subgroup of \mathfrak{B} are cyclic, in the same way as in [4, Case C], it can be shown that \mathfrak{G} has the normal subgroup \mathfrak{N} , which is a complement of \mathfrak{B} . In particular, $\mathfrak{N} \cap \mathfrak{U} = \mathfrak{D}$ is a normal subgroup of \mathfrak{H} . Since $|C_{\mathfrak{G}}(K^3)| =$ $6 \cdot 2^m (2^m - 1)$ and $|\mathfrak{D}| = 2^m + 1$ are relatively prime, K^3 induces a fixed-pointfree automorphism of \mathfrak{D} of order 2 and so \mathfrak{D} is abelian. \mathfrak{R} is the product of \mathfrak{D} and a Sylow 2-subgroup of \mathfrak{G} . Hence \mathfrak{N} , and therefore \mathfrak{G} is solvable ([5]). Then & must contain a regular normal subgroup. Thus there exists no group satisfying the conditions of the theorem in this case.

9. Case $\beta = 2$ and $\langle K, I \rangle$ is abelian. In this case \mathfrak{S} is a Sylow 2-subgroup of \mathfrak{S} and an elementary abelian group of order 2^{m+1} . Since $g^{*}(2)=0$, every involution of \mathfrak{S} is conjugate to K^{3} .

If \mathfrak{S}^{g} contains $K^{\mathfrak{s}}$ for some $G \in \mathfrak{G}$, then $\mathfrak{S}^{g} = \mathfrak{S}$. In fact, since \mathfrak{S} is abelian and normal in $N_{\mathfrak{G}}\mathfrak{R} = C_{\mathfrak{G}}(K^{\mathfrak{s}})$, \mathfrak{S}^{g} is contained in $N_{\mathfrak{G}}\mathfrak{R}$ and $\mathfrak{S}^{g} = \mathfrak{S}$. Thus we have

$$[\mathfrak{G}: C_{\mathfrak{G}}(K^3)] = (2^{m+1} - 1) [\mathfrak{G}: N_{\mathfrak{G}}\mathfrak{S}],$$

namely

$$[N_{\mathfrak{G}}\mathfrak{S}: N_{\mathfrak{G}}\mathfrak{R}] = 2^{m+1} - 1.$$

Hence $|N_{\mathfrak{G}}\mathfrak{S}| = 2^{m+1} \cdot 3(2^m - 1)(2^{m+1} - 1)$ and $N_{\mathfrak{G}}\mathfrak{S}$ contains a subgroup \mathfrak{A} of order $3(2^m - 1)(2^{m+1} - 1)$. Put $\mathfrak{B}_1 = \mathfrak{A} \cap \mathfrak{S}\mathfrak{B} = \mathfrak{A} \cap N_{\mathfrak{G}}\mathfrak{R}$. By a theorem of Schur-Zassenhaus \mathfrak{B} and \mathfrak{B}_1 are conjugate in $\mathfrak{S}\mathfrak{B}$. A Sylow 3-subgroup of \mathfrak{B}_1 is abelian and all the other Sylow subgroups are cyclic. Therefore likewise in 8, it can be shown that \mathfrak{A} has the normal subgroup \mathfrak{B} of order $2^{m+1} - 1$. Since $2^{m+1} - 1$ and $|\mathfrak{S}| = 6(n-1)$ are relatively prime, every permutation $(\neq 1)$ of \mathfrak{B} leaves no symbol of \mathfrak{Q} fixed. If a permutation V of \mathfrak{B}_1 leaves at least two symbol of \mathfrak{Q} fixed, then V is conjugate to K^2 and $|C_{\mathfrak{G}}(V)|$ is equal to $|N_{\mathfrak{G}}\mathfrak{R}|$. This implies that $C_{\mathfrak{G}}(V) \cap \mathfrak{B} = 1$, for $|\mathfrak{B}| = 2^{m+1} - 1$ and $|N_{\mathfrak{G}}\mathfrak{R}| = 2^{m+1} \cdot 3(2^m - 1)$ are relatively prime. Thus every permutation $(\neq 1)$ of \mathfrak{B} is not commutative with any permutation $(\neq 1)$ of \mathfrak{B}_1 . Hence $|\mathfrak{B}| - 1 = 2^{m+1} - 2 \ge |\mathfrak{B}_1| = 3(2^m - 1)$, a contradiction. Thus there exists no group satisfying the conditions of the theorem in this case.

Thus Theorem is proved.

References

- W. Feit, On a class of doubly transitive permutation groups, Ill. J. Math., 4 (1960), 170–186.
- [2] D. Gorenstein and J.H. Walter, The characterization of finite groups with dihedral Sylow 2-subgroups, I, II, III, J. Alg., 2 (1965), 85-151, 218-270, 334-393.
- [3] N. Ito, On a class of doubly transitive permutation groups, I11. J. Math., 6 (1962), 341-352.
- [4] —, On doubly transitive groups of degree n and order 2(n-1)n, Nagoya Math. J., 27 (1966), 409-417.
- [5] O. Kegel, Produkte nilpotenter Gruppen, Arch. Math., 12 (1961), 90-93.
- [6] H. Kimura, On doubly transitive permutation groups of degree n and order 4(n-1)n, J. Math. Soc. Japan (to appear).
- [7] _____, On some doubly transitive permutation groups of degree n and order $2^{i}(n-1)n$, (to appear).
- [8] H. Lüneburg, Charakterisierungen der endlichen desarguesschen Ebenen, Math. Z. 85 (1964), 419–450.
- [9] H. Wielandt, Finite permutation groups, Academic Press, New York, 1964.
- [10] H. Zassenhaus, Kennzeichnung endlicher linearer Gruppen als Permutationsgruppen, Hamb. Abh., 11 (1936), 17–40.

Mathematical Institute, Hokkaido University