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ON THE RING OF QUOTIENTS AT A PRIME
IDEAL OF A RIGHT NOETHERIAN RING

A. G. HEINICKE

1. Introduction. J. Lambek and G. Michler [3] have initiated the study of
a ring of quotients Rp associated with a two-sided prime ideal P in a right
noetherian ring R. The ring R p is the quotient ring (in the sense of [1]) associ-
ated with the hereditary torsion class 7 consisting of all right R-modules M for
which Homz (M, Eg(R/P)) = 0, where Ex(X) is the injective hull of the
R-module X.

In the present paper, we shall study further the properties of the ring Rp.
The main results are Theorems 4.3 and 4.6. Theorem 4.3 gives necessary and
sufficient conditions for the torsion class associated with P to have property
(T), as well as some properties of R » when these conditions are indeed satisfied,
while Theorem 4.6 gives necessary and sufficient conditions for R to satisfy
the right Ore condition with respect to & (P).

2. Background. Throughout, R will denote a right noetherian ring with
unity, and ‘““module” will mean a unital right module. Also, P will denote a
two-sided prime ideal of R. The hereditary torsion class associated with P will
be denoted by 7, and the corresponding idempotent topologizing filter of right
ideals will be denoted by & p. One of the results of [3] is that & » consists of
those right ideals I of R for which »—!I N % (P) # @, where

r~iI = {x € R|rx € I}.

We will denote by Q(M) the ‘““module of quotients’ of an R-module M with
respect to 7, and by 7, the associated R-homomorphism from M to Q(M). (See
[1] for the construction of Q.) Q can be regarded as a covariant left exact functor
from Mod-R to Mod-R, and 7 as a natural transformation from the identity
functor on Mod-R to Q. Also, Q(R) is a ring, 7z is a ring homomorphism, and
Q(M) has a Q(R)-module structure extending the R-module structure. Denot-
ing the ring Q(R) by Rp, Q can be regarded as a left exact functor from Mod-R
to Mod-Rp. Theorem 4.1 of [1] shows that the following are equivalent:

(i) Every Rp-module is 7-torsion-free as an R-module.
(i) Every Rp-module is 7-torsion-free and 7-injective as an R-module.

(iii) Q is right exact and commutes with direct sums.

(iv) Q is equivalent to the functor — @R p.

(v) Foreach I'in Dp, ng(I)Rp = Rp.
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We say that = has property (T') if these conditions are in fact satisfied.
(In [3], condition (v) is called the “Walkers’ Condition”.) It 7 has property
(T), then 5z is a right localization (as defined in [5]), and so R will also be
right noetherian.

It was shown in [3] that 7(R) is contained in P, and that the quotient ring
Rp is the same as the ring R’p obtained from the ring R’ = R/7(R) by
“localizing”” at the prime P’ = P/7(R). It is easy to see that the corresponding
filter &’ p+ of right R’ ideals consists of those ideals I/7(R) for which I ¢ & »
and (using (v)) that the torsion class 7 in Mod-R has property (7) if and only
if the torsion class 7’ in Mod-R’ has property (7°). Similarly, Proposition 5.5
of [3] shows that R has the right Ore condition with respect to € (P) if and
only if R’ has the right Ore condition with respect to € (P’).

In each proof that follows, we shall assume that r(R) = 0. Bearing the remarks
of the previous paragraph in mind, the reader should have no difficulty in
verifying that the statements of the results presented here are valid whether
7(R) = 0 or not. The sole exception is Proposition 3.1, for which the modifi-
cation required is clear.

3. General results. From what has been said above, we see that we have
the following commutative diagram of right R-modules:

0 0 0
Y . Y Y
0 > P 23R T » R/P — 0
np Nr NRr/P
Y . Y Y
Q) Q ()
0 —>Q(P) > Rp > Q(R/P)

and all rows and columns are exact. In what follows, we shall regard the mono-
morphisms as inclusions.

ProrositioN 3.1. Let R be a right noetherian ring, P a two-sided prime ideal in
R, and let Q and & p have the meanings defined above. Then, if T(R) = 0,

(1) QPYNR = P;

(2) Q(P) = {q € RplgI C P for some I € & p};

(8) Q(P) is the largest R-submodule X of Rp for which X N\ R C P.

Proof. (1): Clearly P C Q(P) N R. Now, if x € Q(P) N R, then, from the
construction of Q(P) as described in [1], there is an I in & p such that xI C P.
But IN % (P) # 0, so xc ¢ P for some ¢ € € (P), and this implies that
x € P.

(2): Denote the right hand side of (2) by C1(P). The construction of
Q(P) shows that Q(P) C CI(P). Now, ify € CI(P),yI C Pforsomel € Dp.
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Then Q(m)[y]I = 0, so Q(x)[y] € 7(Q(R/P)) = 0. Therefore

y € Kernel(Q(r)) = Q(P).

(3): If X is an R-submodule of Rp, and X N R C P, then for each
xin X, x(x ' R) SCXNRCP.Butx'R € Dp,s0x € CI(P) = Q(P).

Since Q(P) is the kernel of Q(r), there is a monomorphism from R»/Q(P)
into Q(R/P). The next result shows that this can be regarded as the imbedding
of a 7-torsion free module into its module of quotients.

ProrosiTiON 3.2. With assumptions and notation as above, Q(R/P) 1s iso-
morphic to Q(Rp/Q(P)).

Proof. From [1, § 3], it suffices to show that Q(R/P)/Image(Q(r)) is a
7-torsion module. But, for any x in Q(R/P), there is an I in & » such that
xI € R/P. Then xI C Image(ng,pm) = Image(Q{m)nz) C Image(Q(x)), as
desired.

In what follows we shall denote R/P by R, and the coset » + P will be
denoted 7 for any 7 in R. Any R-module M can be given a natural R-module
structure by defining msr to be m7. Let Q.1 (R) be the classical quotient ring of
R. Then Q.;(R) will be an essential extension (as an R-module) of R, so we have
R C Q0a(R) € Ex(R). For any g in Q¢ (R) there is a ¢ € € (P) such that
gt € R. Therefore gx(cR + P) C R, and, as is shown in [3], cR + P € D p.
Therefore Q.1 (R)/R is a 7-torsion module, and is contained in 7 (Ex(R)/R) =
Q(R)/R. Thus Q.1(R) is contained in Q(R).

PrOPOSITION 3.3. Q1 (R) = Ann g (P).

Proof. Clearly the R-module Q. (R) is annihilated by P. Conversely,
Ann g (P) has a natural R-module structure. As such, it is an essential
extension of R, since Q(R) is an essential (R-module) extension of R. Therefore
Ann g (P) is contained in Ez(R) = Qo (R).

If we regard Rp/Q(P) as a submodule of Q(R), we see that Q(R) has R-sub-
modules as represented in the following diagram:

Q(R)

R»/Q(P) Qer(R)

=i
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We identify the submodule (R + Q(P))/Q(P) of Rp/Q(P) with
R/(RNQ(P)) = R/P = R.

Recall that, for any right ideal B in a ring S, the idealizer of B in S (denoted
J(B)) is {s € S[sB C S}. This is the largest subring of S which contains B as a
two-sided ideal.

ProposiTiON 3.4. With definitions and notations as above, I(Q(P)), the
idealizer of Q(P) in Rp, satisfies

JQ@P)/QP) = Qu(R) N (R2/Q(P))

Proof. First of all, note that, for any ¢ € Rp, ¢Q(P) € Q(P) if and only if
gP C Q(P). The proof one way is trivial, so suppose that ¢ € Rp and
gP C Q(P).Forany pin Q(P), p*Pisin & p (Proposition 3.1) and ¢p (p~1P) C
gP C Q(P). Thus Q(w)[ge] € 7(Q(R)) = 0, s0 gp € Kernel(Q(r)) = Q(P).

Now we turn to the result in question. For ¢ € Rp, denote by ¢ the coset

g + Q(P), an element of Rp/Q(P) C Q(R). For any such g, we have

G € Qai(R) N (Rp/Q(P)) < GP = 0 (by Proposition 3.3)
= qP S Q(P)
< qQ((P) C Q(P)
=q € JQWP))
e g€ 3JQWP))/QWP).

This completes the proof of the proposition.

We wish to examine the conditions under which Q () is a two-sided ideal of
Rp. In order to do this, it is useful to examine the concept of primeness. In [3],
a right ideal B of a ring S was said to be a prime right ideal if, whenever
sSt C B, for s and ¢ in S, then one of s or ¢ is in B. On the other hand, in [5],
a right S-module M is said to be a prime module if Anng(M) = Anng(M’) for
each nonzero submodule M’ of M. These two notions are compatible, for it is
not difficult to verify (when .S has a unity) that B is a prime right ideal of S if
and only if .S/B is a prime module.

ProrosiTioN 3.5. If P is a two-sided ideal in a right noetherian ring R, Q(P)
is a prime right ideal in R p, whence Rp/Q(P) is a prime right R p-module.

Proof. Suppose that ¢1Rpg: C Q(P) for g1, g2 in Rp. Then
q1(@i'R) - ¢2(¢27'R) S Q(P) N R = P,
and each ¢;(¢;7'R) is a right ideal of R. Since P is prime, either ¢1(¢:"'R) or
g2(gs"1R) is in P, and so, by Proposition 3.1, either ¢; or ¢z is in Q(P).
Remark. The annihilator of any prime module is a two-sided prime ideal.
In particular, Anng,(Rp/Q(P)) is a prime ideal in Rp. This ideal, which we
will denote by P, is the largest two-sided ideal of R » conained in the right ideal

().
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The next result tells us when Q(P) is itself a two-sided ideal of Rp.

THEOREM 3.6. Let P be a two-sided prime ideal in the right noetherian ring F.
Then the following are equivalent:

(1) Q(P) = Anng,(Rp/Q(P));

(2) Q(P) s a two-sided ideal of Rp;

(3) RpP C Q(P);

(4) Rp/Q(P) € Qcr(R/P);

5) Rp/Q(P) is a prime R-module.

Proof. The implications (1) < (2) = (3) are trivial, and the first paragraph
of the proof of Proposition 3.4 shows (3) implies (2). Clearly (2) and (4) are
equivalent by Proposition 3.4. Since P is the annihilator of any non-zero
R-submodule of Q;i(R/P) we see that (4) implies (5). The fact that P anni-
hilates the R-submodule (R + Q(P))/Q(P) of Rp/Q(P) guarantees that, when
(5) holds, P annihilates all of Rp/Q(P) so (3) follows.

In the situation described by the following commutative diagram with exact
rows and columns,

np nr MR

{r - Y 47
0 —0(7)—2%5 2, 2@, o)

it is tempting to ask when Q(R) can be made into a ring so that 7z is a ring
homomorphism. The next result answers this question.

TaEOREM 38.7. Let P be a two-sided prime ideal in the right noetherian ring R.
Then the following are equivalent:

(1) Q(R) is a prime R-module;

(2) P C Annp(Q(R));

3) 0@®) = 0u(R);

(4) Q(R) has a ring structure for which ngz 1s a ring homomorphism;

(5) Q(R) has a ring structure for which Q(x) is a ring homomorphism;

(6) Q(P) = Anng,(Q(R));

(7) Q(R) is a prime right R p-module, and Q(P) is a two-sided ideal of R p.

Proof. Since P annihilates the R-submodule R of Q(R), (1) implies (2).
Conversely, if (2) holds, then, since Q(R) is an essential extension of the R-
module R, for W a nonzero R-submodule of Q(R),

P C Anng(Q(R)) € Anng(W) C Anng(W N\ R) = Anng(R) = P,
so Annz (W) = Anngz(Q(R)) = P, and Q(R) is indeed a prime R-module.
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We now give a cyclical proof of the equivalence of (2) through (7).

If (2) holds, then Q(R) = Anngm (P) = Q(R), by Proposition 3.3,
proving (3). Also, (3) clearly implies (4).

Suppose (4) holds, and that # is the multiplication in Q(R). For ¢; and ¢; in
Rp, denote by w the element Q(w)[g1] * Q(w)[q2] — Q(m)[q1gz]). Then, setting
I = ¢, 'R (an element of &), we see wl = 0, so w € 7(Q(R)) = 0. Thus
Q(x) will be a ring homomorphism, and (4) implies (5).

If (6) holds, then Q(P) = Kernel(Q(w)) is a two-sided ideal of Rp. Since
Q(w) is always a homomorphism of R modules, the fact that it is in this case
a ring homomorphism as well guarantees that Q(P) will annihilate Q(R). On
the other hand, Anngz,Q((R)) € Anng,(Rp/Q(P)) = P S Q(P). Thus (5)
implies (6).

To show that (6) implies (7), note that (6) certainly implies that Q(P) isa
two-sided ideal of Rp. From Proposition 3.2, Q(R) is essential over R p/Q(P)
as an R-module, and, @ fortiori, as an Rp-module. Thus, for any nonzero
Rp-submodule ¥ of Q(R), Q(P) = Anng,(Q(R)) S Anng,(¥) € Anng,
(Y N (Rp/Q(P)) = (Proposition 3.5) Anng,(Rp/Q(P)) = P C Q(P). Thus
Anng,(Y) = Q(P), so Q(R) is a prime Rp-module.

Finally, assume (7). Then Anng,(Q(R)) = Anng,(Rp/Q(P)) = Q(P),
so Annz(Q(R)) = R N Anng,(Q(R)) = R N Q(P) = P, which proves (2).

4. Property (T).

LemwmA 4.1. Let P be o two-sided prime ideal in the right noetherian ring R, and
let T, D p, and Rp be the hereditary torsion class, idempotent filter, and ring of
quotients associated with P respectively. Denote R/P by R, and suppose that X
and Y are R-modules such that X is an essential submodule of Y. Then X and ¥
are, m a natural way, R-modules, and the R-module Y /X is r-torsion.

Proof. For any y € ¥V, J = {7 € R|yr € X} is an essential right ideal of the
prime noetherian ring R, and so, by a well-known result of Goldie, J contains a
regular element of R. Thus, regarding X and ¥ as R-modules, y~X =
{r € Rlyr € X} contains an element ¢ of % (P). Therefore y'X D ¢R + P,
and (see [3]) cR + Pisin Zp.

LeMMA 4.2. With the same notation as above, Q(R) is isomorphic to @1 X4,
where the X's are mutually isomorphic uniform R-modules (and R p-modules),
and n = Goldie dimension of the ring R.

Furthermore, if v has property (T), each X ; is an irreducible R p-module.

Proof. The ring R is prime and right noetherian. As is well known, for any
non-zero uniform right ideal U of R, there are uniform right ideals W; = U,
Wi, Wi, ... W, of R such that W = 3%_; W, is essential, and the sum is
direct. By Lemma 4.1, R/W is r-torsion, so Q(R) = Q(W) = @’i_1 Q(W,).

For any ¢ and j, W,W, % 0 (since R is prime) so wW; # 0 for somew € W,.
The R-map \,:W,;— W, defined by \,(x) = wx is one-to-one, as a well-
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known argument of Goldie shows. Applying the left exact functor Q to the
exact sequence

0— W, 2 W, - W./w,—0

of R-modules, and noting that W,;/wW, is 7-torsion, we see that Q()\,) is an
R p-isomorphism. Each Q(W,) is uniform since it is an essential extension of the
uniform R-module W,.

Finally, suppose 7 has property (7°), and let X be any nonzero R p-submodule
of Q(W;). Then Q(W1)/X is an R-module homomorphic image of Q(W;)/
(X N W,), and the latter is an extension of Wi/(X N Wi) by Q(W,)/W..
Since Q(W.)/W; is always r-torsion, and Wyi/(X N Wi) is r-torsion (by
Lemma 4.1), it follows that Q(W1)/(X N W1) and Q(W,)/X are r-torsion. But
Q(W1)/X isan R p-module, and property (7°) guarantees that it is also r-torsion
free. Therefore Q(W;)/X = 0, and Q(W) is irreducible.

Suppose that Q(R) is a semisimple R module. (This is true, for example,
when 7 has property (7"), as Lemma 4.2 shows.) From Proposition 3.2, Q(R)
is an essential Rp-extension of Rp/Q(P), and therefore Q(R) = Rp/Q(P).
Therefore Q(P) is a semimaximal right ideal of Rp, that is, Q(P) is a finite
intersection M1 M ; of maximal right ideals of R p. From Lemma 4.2, it follows
that Rp/M ;= Rp/M; for all 4 and j. Denote by P the two-sided R p-ideal
Anng,(Rp/M;) = Anng,(Rp/Q(P)), the two-sided prime associated with the
prime right ideal Q(P) of Rp. One can form the hereditary torsion class o
in Mod-Rp determined by Rp/M; (equivalently, by R»/Q(P) = Q(R)). This
consists of all Rp-modules X for which Homg, (X, Ez,(Q(R))) = 0. Since
the R-module Q(R) is r-torsion free, so is its R-module injective hull
I = Ez(Q(R)). Then I = Q(I), so I has an Rp-module structure, and we have
Q(R) € I CZ Exp(Q(R)). Furthermore, since I is an Rp-module which is
r-torsion free as an R-module, Homg, (X, I) = Homg(X, I) for all X in
Mod-Rp. (For if @:X — I is an R-map and ¢ € Rp, then w = a(x)qg — a(xq)
is annihilated by the right R ideal ¢~'R, a member of D5, so w € 7(I) = 0.)
In particular, any R p-module X in ¢ satisfies Homz (X, I) = Homg, (X, I) C
Hompg, (X, Ez,(Q(R))) = 0. Thus such an X satisfies Homz (X, I) = 0,
where I = Ez(Q(R)) = Ex(R), and X, as an R-module, is in 7. In particular,
if 7 has property (7°), then X, being both 7-torsion and 7-torsion free, would be
0, so ¢ would be the zero torsion class. These observations lead us to the next
result.

THEOREM 4.3. Let R be a right noetherian ring, and P a two-sided prime ideal
in R. Then the torsion class T determined by P has property (T") if and only if the
Sfollowing are true:

(1) Rp has only one isomorphism class of irreducible module, and

(it) The socle of the R p module Q(R/P) is nonzero.

Furthermore, if 7(R) = 0 and 7 does have property (T'), then Q(P) = PRp,
and this 1is a semimaximal right ideal of Rp. The ring R p is right noetherian and its
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Jacobson radical is P, the two-sided prime associated with PR p. This is a unique
maximal two-sided ideal of R p. In particular, either PRp = P or RpPRp = Rp.

Proof. Suppose first that (i) and (ii) are satisfied. Then there is a simple
Rp-module V' which is r-torsion free as an R-module. By (i). Ez,(V) is a
cogenerator for Mod-R p, so any R p-module can be embedded into a product of
copies of Er,(V). We claim that Eg,(V) is 7-torsion free as an R-module.
Forif I" = 7(Eg,(V)) isnot zero, then TRp 2 V,and any vin V can be written
v = tiq1 + tog2 + ... + gy, where each {; € T and each ¢; € Rp. For
I=Ns1qi'R€E Dp, vICT so vl is r-torsion. Therefore v/ =0, and
v € 7(V) = 0, a contradiction. Thus Eg,(V) is r-torsion free as an R-module.

Since any Rp-module can be embedded into a product of 7-torsion free
modules, any Rp-module is 7-torsion free as an R-module, and property (7)
holds.

Conversely, suppose 7 has property (7'). Then Q(P) = PRp, and it follows
from Lemma 4.2 that this is semimaximal. Since in this case Rp/Q(P) =
Q(R/P), (i) follows. Suppose that PR = (=1 M ;, where each M ; is maximal
in Rp. From the remarks preceding this theorem, the torsion class in Mod-R »
determined by each Rp/M; (equivalently, by R/PR ) is the zero torsion class.
Thus (see [2]) any Rp-module can be embedded into a product of copies of
Eg,(Rp/M1). In particular, any irreducible Rp-module is isomorphic to
Rp/M,, and (7) is established. Also J (R ), the intersection of the annihilators
of all irreducible R p-modules, coincides with

AnnRP<1€p/M1) = ArmRP(Rp/PRp) = ]~).

Any proper two-sided ideal I of Rp is contained in P. To see this, note that I
is contained in some maximal right Rp-ideal, say I C U. Then Rp/U is
irreducible, and I € Anng,(Rp/U) = J(Rp) = P.

The last statement is evident.

When 7 has property (7°), the remarks preceding Theorem 4.3 show that the
zero torsion class in Mod-R p is, in one sense, a torsion class determined by the
ideal P of R. Since, in this case, R p is right noetherian, there is another torsion
class in Mod-Rp related to P, namely the torsion class u determined by the
two-sided prime P of Rp. The next result determines when these two torsion
classes coincide. This occurs, for example, if PRp = P, since Lemma 4.2 shows
condition (2) below is satisfied. However, Example 4.5 below shows these
classes do not always coincide.

It was Arthur Chatters who pointed out to the author that condition (4)
can be included in this result.

ProrosiTION 4.4. Let P be a two-sided prime ideal in the right noetherian ring
R, and suppose v has property (T). Let P(= J(Rp)) be the two-sided prime in R p
assoctated with the prime right ideal PR p, and let u be the torsion class in Mod-R p
determined by P. Then the following are equivalent:
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(1) w is the zero torsion class;

(2) Rp/P has non-zero socle (and hence is a simple artinian ring) ;

(3) RPp N G (P) = 0, where € (P) is the set of elements of Rp which are
regular modulo P ;

(4) The elements of € (P) are units in Rp.

Proof. To see that (1) implies (2), let I be any right ideal of R » containing P.
ThenI = RporI N\ € (P) = @, forifc € I N € (P),then I DcRp + P=R,,
the latter equality due to the fact that cRp 4+ P is in the filter of ideals associ-
ated with u. Thus no proper right ideal I/P of R »/P contains a regular element.
By a theorem of Goldie, since Rp/P is prime and noetherian, Rp/P has no
proper essential ideals, so it is simple artinian.

That (2) implies (4) follows easily from the fact that, if (2) holds, elements
of € (P) are units modulo P, and thus (since P = J(Rp)) are in fact units in
Rp.

Since every member of the filter & 3 associated with u contains an element of
% (P), (4) implies that Z3 = {Rp}, so (1) follows.

(4) implies (3), for otherwise we would have PRp = Rp. If (3) holds, then
PRp/F is not an essential right ideal of Rp/P. If X is a right ideal of Rp/P,
intersecting PR p/P in 0, then X lies in the socle of R /P, since X is isomorphic
to a submodule of the completely reducible module Rp/PR p. Thus (3) implies
(2).

Example 5.9 of [3] gives an instance where 7 has property (1), yet PRp is
not an ideal in Rp. In that example, Rp/J(Rp) is a simple artinian ring. We
give now an example of a case where 7 has property (7°), PR p is not an ideal of
Rp,and Rp/J(Rp) is not simple artinian. This example is taken from § 7 of [4].

Example 4.5. Let F be a field of characteristic zero, and let .S be the ring
Fly][x], where xy — yx = 1. Any element ¢ in .S can be written in the form
oo(y) 4 xo1(y) + . .. x*0;(y), where each ¢;(y) is a polynomial in y. For ¢ € .S,
x0 — ox = da/9y. The ring S is a simple hereditary right and left noetherian
domain, and 4 = xS is a maximal right ideal. Let R be the subring J(4) =
F + x5. It follows from § 4 of [4] that R is also right and left hereditary and
noetherian. Furthermore, 4 is the only nonzero two-sided ideal of R, for if C
is any nonzero ideal of R, C D ACA = x(SCxS) = xS = A4, and 4 is clearly
maximal. Also, the R-module S is essential over R, so R and .S are orders in the
same division ring D.

We chall examine the localization at the prime ideal 4 of the ring R. Since R
is right hereditary and right noetherian, the torsion class 7 has property (7°)
(see [1]), and R is 7-torsion free since R is a domain. It follows from [4] that
both S/R and R/A are irreducible R-modules, and these are not isomorphic
since x annihilates R/A4, but (since y2x = xy*> — 2y ¢ R) x does not annihilate
S/R. Therefore Homz(S/R, Ex(R/A)) = 0, whence S/R is r-torsion. Since
RCSCD=EgR), SCR, For any two-sided ideal I of R,, either
SNI=0(whencel =0)orS NI =S, inwhichcaselcontainslsol = R,.
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Therefore R 4 isa simplering. If R, (= R,/J(R,)) were artinian, then R, = D,
so ARy, = D,and 4 = RN\ AR, = R, a contradiction.

For a two-sided prime ideal P in a right noetherian ring R, we say that R
satisfies the right Ore condition with respect to € (P) if, for any x in R and ¢ in
% (P), there exist &’ in R and ¢’ in % (P) such that xc’ = cx’. Proposition 5.5
of [3] shows that, when 7(R) = 0, the right Ore condition with respect to & (P)
holds if and only if every element in % (P) is a unit in Rp.

Our final result is really an addition to Theorem 5.6 of [3].

THEOREM 4.6. Let P be a two-sided prime ideal in the right noetherian ring R.
Let R* = R/7(R) and P* = P/7(R). Then the following are equivalent:

(1) R has the right Ore condition with respect to € (P);

(2) R* has the right Ore condition with respect to € (P*);

(3) 7 has property (I") and RpP*Rp # Rp;

(4) P*Rp = J(Rp) and Rp/P*Rp is simple artinian;

(5) RpP*Rp # Rp, P*Rp is a semimaximal right ideal of Rp, and Rp has
only one isomorphism type of irreducible module.

Proof. (1) and (2) are equivalent by Lemma 5.1 of [3]. Therefore, without
loss of generality, we assume 7(R) = 0 and drop the *.

Clearly (4) implies (5). Now assume that (5) holds. Then Rp/Q(P) is a
homomorphic image of Rp/PRp, so the Rp-socle of Rp/Q(P) is not zero. That
(3) is satisfied follows now from Theorem 4.3, so (5) implies (3). Also,
Theorem 4.3 shows (3) implies (4), and the equivalence of (1) and (4) is
shown in the proof of Theorem 5.6 of [3].
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