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ON THE RING OF QUOTIENTS AT A PRIME 
IDEAL OF A RIGHT NOETHERIAN RING 

A. G. H E I N I C K E 

1. Introduction. J. Lambek and G. Michler [3] have initiated the study of 
a ring of quotients RP associated with a two-sided prime ideal P in a right 
noetherian ring R. The ring RP is the quotient ring (in the sense of [1]) associ­
ated with the hereditary torsion class r consisting of all right .R-modules M for 
which Hom^ikf, ER(R/P)) = 0, where ER(X) is the injective hull of the 
i?-module X. 

In the present paper, we shall study further the properties of the ring RP. 
The main results are Theorems 4.3 and 4.6. Theorem 4.3 gives necessary and 
sufficient conditions for the torsion class associated with P to have property 
(7"), as well as some properties of RP when these conditions are indeed satisfied, 
while Theorem 4.6 gives necessary and sufficient conditions for R to satisfy 
the right Ore condition with respect to & (P). 

2. Background. Throughout, R will denote a right noetherian ring with 
unity, and ''module" will mean a unital right module. Also, P will denote a 
two-sided prime ideal of R. The hereditary torsion class associated with P will 
be denoted by r, and the corresponding idempotent topologizing filter of right 
ideals will be denoted by 3)P. One of the results of [3] is that 3)P consists of 
those right ideals I oi R for which r~lI C\ ^ (P) ^ 0, where 

r~lI = {x e R\rx G / } . 

We will denote by Q(M) the "module of quotients" of an i^-module M with 
respect to r, and by T\M the associated i^-homomorphism from M to Q{M). (See 
[1] for the construction of Q.) Q can be regarded as a covariant left exact functor 
from Mod-jR to Mod-i?, and rj as a natural transformation from the identity 
functor on Mod-i^ to Q. Also, Q(R) is a ring, r)R is a ring homomorphism, and 
Q(M) has a Q(R)-module structure extending the i^-module structure. Denot­
ing the ring Q(R) by RP, Q can be regarded as a left exact functor from Mod-i? 
to Mod-i^p. Theorem 4.1 of [1] shows that the following are equivalent: 

(i) Every i?P-module is r-torsion-free as an i^-module. 
(ii) Every i^P-module is r-torsion-free and r-injective as an i^-module. 

(iii) Q is right exact and commutes with direct sums. 
(iv) Q is equivalent to the functor — ®RRP. 

(v) For each I in 3P, yB(I)RP = RP. 
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We say that r has property (T) if these conditions are in fact satisfied. 
(In [3], condition (v) is called the ''Walkers' Condition".) If r has property 
(P), then yR is a right localization (as denned in [5]), and so RP will also be 
right noetherian. 

It was shown in [3] that r(R) is contained in P , and that the quotient ring 
RP is the same as the ring R'P> obtained from the ring R! = R/r(R) by 
"localizing" at the prime Pf = P/r(R). I t is easy to see that the corresponding 
filter &'P> of right R! ideals consists of those ideals I/T{R) for which I Ç 2)P 

and (using (v)) that the torsion class r in Mod-P has property (T) if and only 
if the torsion class r ' in Mod-R' has property (T). Similarly, Proposition 5.5 
of [3] shows that R has the right Ore condition with respect to *$ (P) if and 
only if R! has the right Ore condition with respect to & (P'). 

In each proof that follows, we shall assume that r(R) = 0. Bearing the remarks 
of the previous paragraph in mind, the reader should have no difficulty in 
verifying that the statements of the results presented here are valid whether 
T(R) = 0 or not. The sole exception is Proposition 3.1, for which the modifi­
cation required is clear. 

3. General results. From what has been said above, we see that we have 
the following commutative diagram of right P-modules: 

0 0 0 

-> P -* R •> R/P •> 0 

VP VR 

0 
Q(i) + Q(P)-^-^ RP- ew, 

VR/P 

• Q{R/P) 

and all rows and columns are exact. In what follows, we shall regard the mono-
morphisms as inclusions. 

PROPOSITION 3.1. Let Rbe a right noetherian ring, P a two-sided prime ideal in 
R, and let Q and £iïP have the meanings defined above. Then, if T(R) = 0, 

(1) < 2 ( P ) H P = P ; 
(2) <2(P) = {q e RP\qI Ç P for some I 6 9P) ; 
(3) Q(P) is the largest R-submodule X of RP for which X C\ R Ç P . 

Proof. (1): Clearly P C Q(P) D R. Now, if x Ç Q(P) C\ R, then, from the 
construction of Q(P) as described in [1], there is an / in 2$P such that xi C P . 
But I H ^ ( P ) 9* 0, so xc e P for some c £ ^ ( P ) , and this implies that 
x G P . 

(2): Denote the right hand side of (2) by C1(P). The construction of 
Q(P) shows that Q(P) C CI (P). Now, if y 6 C1(P), y I C P for some I G 2 P. 
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Then QW)\y\I = 0, so Q(ir)[y] G r(Q(R/P)) = 0. Therefore 

y G Kernel ((2 (TT)) = 0 (P ) . 

(3): If X is an P-submodule of RP, and X Pi R Q P, then for each 
x in A", x O ^ P ) ç X p | P £ P . But x ^ P G ^ P , so x G C1(P) = Q(P). 

Since Q(P) is the kernel of Q(TT), there is a monomorphism from RP/Q(P) 
into Q(R/P). The next result shows that this can be regarded as the imbedding 
of a r-torsion free module into its module of quotients. 

PROPOSITION 3.2. With assumptions and notation as above, Q{R/P) is iso­
morphic to Q(RP/Q(P)). 

Proof. From [1, §3], it suffices to show that Q(R/P)/Image(Q(T)) is a 
r-torsion module. But, for any x in Q(R/P), there is an / in 3)P such that 
xl C R/P. Then xl C Image (7]R/PT) = Image (Q(ir) r)B) C Image (CO)), as 
desired. 

In what follows we shall denote R/P by P , and the coset r + P will be 
denoted f for any r in R. Any P-module ikf can be given a natural P-module 
structure by defining m*r to be mf. Let <2ci(P) be the classical quotient ring of 
P . Then Qci(R) will be an essential extension (as an P-module) of P , so we have 
R Q Qd(R) Q EB(R). For any a _in Qcl(R) there is a c G ^ ( P ) such that 
gc G P . Therefore g*(<;P + P ) C P , and, as is shown in [3], cR + P G i^p. 
Therefore ( ) c l (P) /P is a r-torsion module, and is contained in r(ER(R)/R) = 
Q(R)/R. Thus Çci(P) is contained in Q(R). 

PROPOSITION 3.3. @ci(P) = AnnQ(^)(P). 

Proof. Clearly the P-module Qci(R) is annihilated by P . Conversely, 
AnnQ(^)(P) has a natural P-module structure. As such, it is an essential 
extension of P , since Q(R) is an essential (P-module) extension of P . Therefore 
Anng (^)(P) is contained in ER(R) = Qei(R). 

If we regard RP/Q(P) as a submodule of Q(R), we see that Q(R) has P-sub-
modules as represented in the following diagram: 

Q(R) 

Rp/Q(P) 0.1 (*) 

R 
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We identify the submodule (R + Q(P))/Q(P) of RP/Q(P) with 

R/(RHQ(P)) = R/P = R. 

Recall that, for any right ideal B in a ring 5, the idealizer of B in S (denoted 
3(B)) is {s Ç S\sB C 5}. This is the largest subring of 5 which contains B as a 
two-sided ideal. 

PROPOSITION 3.4. TF^A definitions and notations as above, 3(Q(P)), the 
idealizer of Q(P) in RP, satisfies 

S(Q(P))/Q(P) = <2c(£) n (RP/Q(P)) 

Proof. First of all, note that, for any q G RP, qQ(P) Q Q(P) if and only if 
qP Ç Q(P). The proof one way is trivial, so suppose that q G i? P and 
qP £ <2(P). For any p in Ç(P), p-»P is in 9P (Proposition 3.1) and qp(p~lP) Q 
qP QQ(P). Thus Q(jr)[qP] G r(Q(R)) = 0, so qP € Kernel ( 0 0 0 ) = Q(P). 

Now we turn to the result in question. For q Ç RP, denote by q the coset 
q + Q(P), an element of RP/Q(P) Ç Q(R). For any such g, we have 

2 € <2ci(-K) H (RP/Q(P)) ^ qP = 0 (by Proposition 3.3) 

« î P ç <2(P) 

^<z<2CP)£<2CP) 

« g f 3 ( e ( P ) ) 

« 3 € 3 « 2 ( P ) ) / < 2 ( P ) . 

This completes the proof of the proposition. 

We wish to examine the conditions under which Q(P) is a two-sided ideal of 
RP. In order to do this, it is useful to examine the concept of primeness. In [3], 
a right ideal B of a ring 5 was said to be a prime right ideal if, whenever 
sSt Ç B, for 5 and t in 5, then one of s or t is in B. On the other hand, in [5], 
a right 5-module M is said to be a prime module if Anns(JkT) = Ann^ikT) for 
each nonzero submodule M' of M. These two notions are compatible, for it is 
not difficult to verify (when 5 has a unity) that B is a prime right ideal of 6* if 
and only if S/B is a prime module. 

PROPOSITION 3.5. If P is a two-sided ideal in a right noetherian ring R, Q(P) 
is a prime right ideal in RP, whence RP/Q(P) is a prime right RP-module. 

Proof. Suppose that qiRPq2 £ Q(P) for gi, q2 in RP. Then 

q^qr'R) • q2(q2-1R) Q Q(P) H R = P, 

and each qi(qi~
1R) is a right ideal of R. Since P is prime, either qi(qi~1R) or 

q2(q2~lR) is in P , and so, by Proposition 3.1, either q\ or q2 is in Q(P). 

Remark. The annihilator of any prime module is a two-sided prime ideal. 
In particular, AnnRp(RP/Q(P)) is a prime ideal in RP. This ideal, which we 
will denote by P , is the largest two-sided ideal of RP conained in the right ideal 
Q(P). 

https://doi.org/10.4153/CJM-1972-066-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-066-2


RING OF QUOTIENTS 707 

The next result tells us when Q(P) is itself a two-sided ideal of RP. 

THEOREM 3.6. Let P be a two-sided prime ideal in the right noetherian ring F. 
Then the following are equivalent: 

(1) Q(P) = AnnBp(RP/Q(P)); 
(2) Q(P) is a two-sided ideal of RP; 
(3) RPP^Q(P); 
(4) RP/Q(P)CQC1(R/P); 
(5) RP/Q(P) is a prime R-module. 

Proof. The implications (1) <=̂> (2) =» (3) are trivial, and the first paragraph 
of the proof of Proposition 3.4 shows (3) implies (2). Clearly (2) and (4) are 
equivalent by Proposition 3.4. Since P is the annihilator of any non-zero 
P-submodule of Qcl(R/P) we see that (4) implies (5). The fact that P anni­
hilates theP-submodule (R + Q(P))/Q(P) of P P / Q ( P ) guarantees that, when 
(5) holds, P annihilates all of RP/Q(P) so (3) follows. 

In the situation described by the following commutative diagram with exact 
rows and columns, 

0 

-* P 

0 

-> R 

0 

-> R •> 0 

VP VR VR 

0 + QÇP)m*iFQQQw 
it is tempting to ask when Q(R) can be made into a ring so that rj^ is a ring 
homomorphism. The next result answers this question. 

THEOREM 3.7. Let P be a two-sided prime ideal in the right noetherian ring R. 
Then the following are equivalent: 

(1) Q(R) is a prime R-module; 
(2) PQArmR(Q(R)); 
(3) Q(R) = Qel(R); 
(4) Q(R) has a ring structure for which TJR is a ring homomorphism; 
(5) Q(R) has a ring structure for which Q(ir) is a ring homomorphism; 
(6) Q(P) = AnnBp(Q(R)); 
(7) Q(R) is a prime right RP-module, and Q(P) is a two-sided ideal of RP. 

Proof. Since P annihilates the jR-submodule R of Q(R), (1) implies (2). 
Conversely, if (2) holds, then, since Q(R) is an essential extension of the R-
module R, for W a nonzero i^-submodule of Q(R)y 

P £ AnnB(Q(R)) ÇZ AnnR(W) C AnnR(W H R) = AnnB(R) = P , 

so AnnR(W) = AnnR(Q(R)) = P , and Q(R) is indeed a prime P-module. 
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We now give a cyclical proof of the equivalence of (2) through (7). 
If (2) holds, then Q(R) = AnnQiR)(P) = Qcl(R), by Proposition 3.3, 

proving (3). Also, (3) clearly implies (4). 
Suppose (4) holds, and that * is the multiplication in Q(R). For qi and q2 in 

RP, denote by w the element Q(ir)[qi\ * G M f e ] — QMinify]* Then, setting 
I = q2~~1R (an element of 2iï P), we see wl = 0, so w G r(Q(P)) = 0. Thus 
Q(T) will be a ring homomorphism, and (4) implies (5). 

If (5) holds, then Q(P) = Kernel(Q(T)) is a two-sided ideal of RP. Since 
Q(ir) is always a homomorphism of RP modules, the fact that it is in this case 
a ring homomorphism as well guarantees that Q(P) will annihilate Q(R). On 
the other hand, AnnRpQ((R)) C AnnRp(RP/Q(P)) = P ç 0 ( P ) . Thus (5) 
implies (6). 

To show that (6) implies (7), note that (6) certainly implies tha tQ(P) is a 
two-sided ideal of RP. From Proposition 3.2, Q(R) is essential over RP/Q(P) 
as an P-module, and, a fortiori, as an PP-module. Thus, for any nonzero 
PP-submodule Y of Q(R), Q(P) = AnnRp(Q(R)) Q AnnRp(Y) C Ann f ip 

( F H (RP/Q(P)) = (Proposition 3.5) AnnRp(RP/Q(P)) = P C Q(P). Thus 
Anni2P(F) = Q(P), so Q(i^) is a prime PP-module. 

Finally, assume (7). Then AnnRp(Q(R)) = A n n B p ( P P / e ( P ) ) = <?(P), 
so AnnB(QCR)) = P O AnnPp(<2(P)) = P O Q(P) = P , which proves (2). 

4. Proper ty (T) . 

LEMMA 4.1. Let P be a two-sided prime ideal in the right noetherian ring R, and 
let r, 2? P, and RP be the hereditary torsion class, idempotent filter, and ring of 
quotients associated with P respectively. Denote R/P by R, and suppose that X 
and Y are R-modules such that X is an essential submodule of Y. Then X and Y 
are, in a natural way, R-modules, and the R-module Y/X is r-torsion. 

Proof. For any y £ Y, J = {f 6 R\yr £ X] is an essential right ideal of the 
prime noetherian r ingP, and so, by a well-known result of Goldie, /contains a 
regular element of P . Thus, regarding X and Y as P-modules, y~1X = 
{r Ç R\yr £ X) contains an element c of ^ ( P ) . Therefore y~1X 3 cR + P , 
and (see [3]) cR + P is in S> P. 

LEMMA 4.2. With the same notation as above, Q(R) is isomorphic to ®ni=iXu 

where the XJs are mutually isomorphic uniform R-modules {and RP-modules), 
and n = Goldie dimension of the ring P . 

Furthermore, if r has property (P), each Xt is an irreducible RP-module. 

Proof. The ring R is prime and right noetherian. As is well known, for any 
non-zero uniform right ideal U of P , there are uniform right ideals W\ = U, 
W2, Wz, . . . Wn of P such that W = X)l=i Wt is essential, and the sum is 
direct. By Lemma 4.1, R/W is r-torsion, so Q(R) 9É Q(W) ^ 0 l = i Q(Wt). 

For any i and j , WtWj ^ 0 (since R is prime) so wWj 9^ 0 for some w £ Wt. 
The P-map \w:Wj —> W{ denned by \w(x) = wx is one-to-one, as a well-
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known argument of Goldie shows. Applying the left exact functor Q to the 
exact sequence 

0-+Wjhwi-> Wt/wWj -> 0 

of i^-modules, and noting that Wi/wWj is r-torsion, we see that Q(\w) is an 
i^p-isomorphism. Each Q{Wi) is uniform since it is an essential extension of the 
uniform jR-module Wt. 

Finally, suppose r has property (T), and let X be any nonzero i?P-submodule 
of Q(Wi). Then Q(Wi)/X is an i^-module homomorphic image of Q(W\)/ 
(X n Wi), and the latter is an extension of Wi/(X fl Wx) by QÇWO/Wi. 
Since Q(Wi)/Wi is always r-torsion, and Wi/(X H W\) is r-torsion (by 
Lemma 4.1), it follows that Q(Wi)/(X f) W{) and Q(Wi)/X are r-torsion. But 
Q(Wi)/X is an i?P-module, and property (T) guarantees that it is also r-torsion 
free. Therefore QiW^/X = 0, and Q(Wi) is irreducible. 

Suppose that Q(R) is a semisimple RP module. (This is true, for example, 
when r has property (T), as Lemma 4.2 shows.) From Proposition 3.2, Q(R) 
is an essential i?P-extension of RP/Q(P), and therefore Q(R) = RP/Q(P). 
Therefore Q(P) is a semimaximal right ideal of RP, that is, Q(P) is a finite 
intersection Ol=i -&f * of maximal right ideals of RP. From Lemma 4.2, it follows 
that Rp/Mt ^ Rp/Mj for all i and j . Denote by P the two-sided JRP-ideal 
AnnBp(RP/Mi) = AnnRp(RP/Q(P)), the two-sided prime associated with the 
prime right ideal Q(JP) of RP. One can form the hereditary torsion class a 
in Mod-Rp determined by RP/Mi (equivalently, by RP/Q(P)_ = Q(R)). This 
consists of all i?P-modules X for which HornRp(X, EBp(Q(R))) = 0. Since 
the i^-module Q(R) is r-torsion free, so is its i?-module injective hull 
I = ER(Q(R)). Then I = Q(I), so I has an i^P-module structure, and we have 
Q(R) Q I Q EBp(Q(R)). Furthermore, since I is an i?P-module which is 
r-torsion free as an i^-module, Hom#p(X, I) = Homp(X, I) for all X in 
Mod-RP. (For if a:X —> / is an R-map and q 6 RP, then w = a(x)q — a(xq) 
is annihilated by the right R ideal q~lR, a member of &P, so w Ç r(I) = 0 . ) 
In particular, any i^P-module X in a satisfies Hom#(X, I) = HomP p(X, 7) C 
Hom B p (Z, ERp(Q(R))) = 0._Thus such an X satisfies H o m ^ X , I) = 0, 
where 7 = ER(Q(R)) = ER(R), and X, as an i?-module, is in r. In particular, 
if r has property (T), then X, being both r-torsion and r-torsion free, would be 
0, so or would be the zero torsion class. These observations lead us to the next 
result. 

THEOREM 4.3. Let Rbe a right noetherian ring, and P a two-sided prime ideal 
in R. Then the torsion class r determined by P has property (T) if and only if the 
following are true: 

(i) RP has only one isomorphism class of irreducible module, and 
(ii) The socle of the RP module Q(R/P) is nonzero. 
Furthermore, if T(R) = 0 and r does have property (T), then Q(P) = PRPt 

and this is a semimaximal right ideal of RP. The ring RPis right noetherian and its 
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Jacobson radical is P , the two-sided prime associated with PRP. This is a unique 
maximal two-sided ideal of RP. In particular, either PRP = P or RPPRP = RP. 

Proof. Suppose first that (i) and (ii) are satisfied. Then there is a simple 
PP-module V which is r-torsion free as an P-module. By (i). ERp{V) is a 
cogenerator for Mod-PP , so any PP-module can be embedded into a product of 
copies of ERp(V). We claim that ERp(V) is r-torsion free as an P-module. 
For if T = T (ERp ( V) ) is not zero, then TRP 2 V, and any v in V can be written 
v = hqi + t2q2 + . . . + tkqk, where each tt £ T and each qt Ç RP. For 
I = Pi 1-1 q^R 6 &p, vl Ç T so vl is r-torsion. Therefore vl = 0, and 
^ r ( F ) = 0 , a contradiction. Thus ERp(V) is r-torsion free as an P-module. 

Since any PP-module can be embedded into a product of r-torsion free 
modules, any i?P-module is r-torsion free as an i^-module, and property (T) 
holds. 

Conversely, suppose r has property (T). Then Q(P) = PRPj and it follows 
from Lemma 4.2 that this is semimaximal. Since in this case RP/Q(P) = 
Q(R/P), (ii) follows. Suppose that PRP = Pll=i Mu where each Mt is maximal 
in RP. From the remarks preceding this theorem, the torsion class in Mod-i?P 

determined by each RP/Mt (equivalently, by R/PRP) is the zero torsion class. 
Thus (see [2]) any i?P-module can be embedded into a product of copies of 
ERp{RP/M\). In particular, any irreducible i^P-module is isomorphic to 
RP/Mi, and (i) is established. Also J(RP), the intersection of the annihilators 
of all irreducible i?P-modules, coincides with 

Ann Bp(RP/M!) = AnnRp(RP/PRP) = P. 

Any proper two-sided ideal I of RP is contained in P. To see this, note that / 
is contained in some maximal right PP-ideal, say Z Ç [/, Then RP/U is 
irreducible, and I Q AnnRp(RP/U) = J(RP) = P. 

The last statement is evident. 

When r has property (T), the remarks preceding Theorem 4.3 show that the 
zero torsion class in Mod-RP is, in one sense, a torsion class determined by the 
ideal P of R. Since, in this case, RP is right noetherian, there is another torsion 
class in Mod-i?P related to P , namely the torsion class /x determined by the 
two-sided prime P of P P . The next result determines when these two torsion 
classes coincide. This occurs, for example, if PRP = P , since Lemma 4.2 shows 
condition (2) below is satisfied. However, Example 4.5 below shows these 
classes do not always coincide. 

It wTas Arthur Chatters who pointed out to the author that condition (4) 
can be included in this result. 

PROPOSITION 4.4. Let P be a two-sided prime ideal in the right noetherian ring 
R, and suppose r has property (T). Let P ( = J(RP)) be the two-sided prime in RP 

associated with the prime right ideal PRP, and let JJL be the torsion class in Mod-P P 

determined by P . Then the following are equivalent: 

https://doi.org/10.4153/CJM-1972-066-2 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1972-066-2


RING OF QUOTIENTS 711 

(1) /x is the zero torsion class; 

(2) Rp/P has non-zero socle {and hence is a simple artinian ring) ; 
(3) RPP H & (P) = 0, where & (P) is the set of elements of RP which are 

regular modulo P ; 
(4) The elements of & (P) are units in RP. 

Proof. T o see t ha t (1) implies (2), let / be any right ideal of RP containing P. 
T h e n / = Rporl H & (P) = 0 , f o r i f c £ IH &(P), then I ^cRP + P = RP, 
the la t ter equali ty due to the fact t ha t cRP + P is in the filter of ideals associ­
ated with fi. T h u s no proper r ight ideal I/P of RP/P contains a regular element. 
By a theorem of Goldie, since RP/P is prime and noetherian, RP/P has no 
proper essential ideals, so it is simple art inian. 

T h a t (2) implies (4) follows easily from the fact that , if (2) holds, elements 
of fê (P) are units modulo P, and thus (since P = J(RP)) are in fact units in 
RP. 

Since every member of the filter 3)r
P associated with \x contains an element of 

^ ( P ) , (4) implies t ha t 9P = {RP}, so (1) follows. 
(4) implies (3), for otherwise we would have PRP = RP. If (3) holds, then 

PRP/P is not an essential right ideal of RP/P. If X is a right ideal of RP/P, 
intersecting PRP/P in 0, then X lies in the socle of RP/P, since X is isomorphic 
to a submodule of the completely reducible module RP/PRP. T h u s (3) implies 
(2). 

Example 5.9 of [3] gives an instance where r has property (T), yet PRP is 
not an ideal in RP. In t ha t example, RP/J(RP) is a simple art inian ring. W e 
give new an example of a case where r has property (T), PRP is not an ideal of 
RP, and RP/J(RP) is not simple art inian. This example is taken from § 7 of [4]. 

Example 4.5. Let F be a field of characteristic zero, and let S be the ring 
^ M M i where xy — yx = 1. Any element a in S can be writ ten in the form 
voiy) + xviiy) + • • • ockak(y), where each 0^(3/) is a polynomial in y. For a £ S, 
xa — ax = dcr/dy. The ring 5 is a simple hereditary right and left noetherian 
domain, and A = xS is a maximal right ideal. Let R be the subring -304) = 
F + xS. I t follows from § 4 of [4] t ha t R is also right and left hereditary and 
noetherian. Fur thermore , A is the only nonzero two-sided ideal of R, for if C 
is any nonzero ideal of R, C 5 ^4(^4 = x(SCxS) = xS = A, and A is clearly 
maximal. Also, the ^ -module 5 is essential over R, so R and S are orders in the 
same division ring D. 

W e shall examine the localization a t the prime ideal A of the ring R. Since R 
is r ight hereditary and right noetherian, the torsion class r has property (T) 
(see [1]), and R is r-torsion free since R is a domain. I t follows from [4] t h a t 
both S/R and R/A are irreducible ^-modules , and these are not isomorphic 
since x annihilates R/A, bu t (since y2x = xy2 — 2y (£ R) x does not annihilate 
S/R. Therefore HomR(S/R, ER(R/A)) = 0, whence S/R is r-torsion. Since 
R ^ S ^ D = EB(R), S<^RA. For any two-sided ideal I of RA, either 
5 O I — 0 (whence I = 0) or 5 O I = 5, in which case / contains 1 so / = RA. 
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Therefore RA is a simple ring. If RA( = RA/J(RA)) were artinian, then RA = D, 
so ARA = D, and A = R H ARA = P , a contradiction. 

For a two-sided prime ideal P in a right noetherian ring P , we say that P 
satisfies the right Ore condition with respect to ^ (P) if, for any x in R and c in 
^ ( P ) , there exist x' in R and c' in të (P) such that xc' = ex'. Proposition 5.5 
of [3] shows that, when T(R) = 0, the right Ore condition with respect to *$ (P) 
holds if and only if every element in fâ (P) is a unit in RP. 

Our final result is really an addition to Theorem 5.6 of [3]. 

THEOREM 4.6. Let P be a two-sided prime ideal in the right noetherian ring R. 
Let P* = R/T(R) and P* = P/T(R). Then the following are equivalent: 

(1) R has the right Ore condition with respect to *$ (P); 
(2) P* has the right Ore condition with respect to ^ ( P * ) ; 
(3) r has property (T) and RPP*RP ^ P P ; 
(4) P*RP = J(RP) and RP/P*RP is simple artinian; 
(5) RPP*RP 9^ RP, P*RP is a semimaximal right ideal of P P , and RP has 

only one isomorphism type of irreducible module. 

Proof. (1) and (2) are equivalent by Lemma 5.1 of [3]. Therefore, without 
loss of generality, we assume T(R) = 0 and drop the *. 

Clearly (4) implies (5). Now assume that (5) holds. Then RP/Q(P) is a 
homomorphic image of RP/PRP, so the PP-socle of RP/Q(P) is not zero. That 
(3) is satisfied follows now from Theorem 4.3, so (5) implies (3). Also, 
Theorem 4.3 shows (3) implies (4), and the equivalence of (1) and (4) is 
shown in the proof of Theorem 5.6 of [3]. 
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