APPROXIMATIONS TO THE NORM OF THE SINGULAR PART OF A MEASURE

by LOUIS PIGNO

(Received 6th August 1974)

Let G be a non-discrete LCA group with dual group Γ . Denote by M(G) the usual convolution algebra of bounded Borel measures on G and $M_a(G)$ those $\mu \in M(G)$ which are absolutely continuous with respect to m_G —the Haar measure on G.

The Fourier-Stieltjes transform $\hat{\mu}$ of a measure $\mu \in M(G)$ is defined by

$$\hat{\mu}(\gamma) = \int_{G} (-x, \gamma) d\mu(x) \quad (\gamma \in \Gamma).$$

A closed subset \mathcal{R} of Γ is called a Riesz (or small) set if whenever supp $\hat{\mu} \subset \mathcal{R}$ then $\mu \in M_a(G)$. In this paper we pursue a line of research originated by R. Doss in (3) and subsequently explicated by him in (5).

Suppose $p(x) = \sum_{n} a_n(-x, \gamma_n)$ is a trigonometric polynomial on G with $\|p\|_{\infty} \leq 1$. We shall concern ourselves with calculating the "limit" of $\sum_{n} a_n \hat{\mu}(\gamma_n)$ off the Riesz set \mathcal{R} . We need to make our idea for taking such a limit precise:

For any subset $\mathscr{G} \subset \Gamma$ denote by $P_{\mathscr{G}}$ the set of all trigonometric polynomials on \mathbb{G} of the form $p(x) = \sum_{n} a_n(-x, \gamma_n)$ with $||p||_{\infty} \leq 1$ and $\gamma_n \notin \mathscr{G}$. Define

$$\|\mu\|_{\mathscr{S}} = \sup_{p \in P_{\mathscr{S}}} |\sum_{n} a_{n}\hat{\mu}(\gamma_{n})|.$$

Then by the limit of $\sum_{n} a_n \hat{\mu}(\gamma_n)$ off \mathscr{S} we mean

$$\lim_{K\to\infty} \|\mu\|_{\mathscr{G}\cup K} = \inf_{K} \|\mu\|_{\mathscr{G}\cup K} \quad (K \text{ compact in } \Gamma).$$

For \mathcal{R} , a Riesz set, put

$$\lim_{\mathfrak{A}\to\infty} \|\mu\|_{\mathfrak{A}} = \inf_{\mathfrak{A}} \|\mu\|_{\mathfrak{A}}.$$

Note that in this general setting the methods of (5) are not available. Our main result now follows; the proof is pleasantly simple.

Theorem 1. Let $\mu \in M(G)$ and let $\mu = \mu_a + \mu_s$ be the canonical Lebesgue decomposition of μ with $\mu_a \in M_a(G)$ and μ_s singular with respect to m_G . Then

$$\lim_{\mathfrak{A}\to\infty}\|\mu\|_{\mathfrak{A}}=\lim_{K\to\infty}\|\mu\|_{\mathfrak{A}\cup K}=\|\mu_s\|.$$

LOUIS PIGNO

Proof. Let \mathscr{R} be any Riesz set. Then

$$\parallel \mu \parallel_{\mathscr{R}} \leq \parallel \mu_s \parallel + \parallel \mu_a \parallel_{\mathscr{R}}$$

and since $\lim \|\mu_a\|_{\Re} = 0$ (this is easy to check), we gather

$$\lim_{\mathfrak{B} \to \infty} \| \mu \|_{\mathfrak{B}} \leq \| \mu_s \|.$$
 (1)

To prove the opposite inequality we obtain via Proposition 2 and the Main Theorem of (4) a measure $\lambda_{\mathscr{R}} \in M(G)$ such that

$$\hat{\lambda}_{\mathscr{R}} = \hat{\mu} \quad \text{off } \mathscr{R} \tag{2}$$

and

$$\|\lambda_{\mathscr{R}}\| \leq \|\mu\|_{\mathscr{R}}.$$
(3)

Observe that the identity

$$\mu_s + \mu_a - (\mu - \lambda_{\mathcal{R}}) = \lambda_{\mathcal{R}}$$

when combined with (2) yields the inequality

$$\|\mu_s\| \leq \|\lambda_{\mathcal{R}}\|.$$

By (3) we must have $\| \mu_s \| \leq \| \mu \|_{\mathscr{B}}$. Thus

 $\| \mu_s \| \leq \| \mu \|_{\mathscr{R}} \quad \text{for all Riesz sets } \mathscr{R}. \tag{4}$

Hence (1) and (4) give

 $\lim_{\mathfrak{A}\to\infty} \| \mu \|_{\mathfrak{A}} = \| \mu_s \|.$

Finally, let K be any compact subset of Γ . We claim that $\mathscr{R} \cup K$ is a Riesz set. For suppose supp $\widehat{v} \subset \mathscr{R} \cup K$, $v \in M(G)$. Then there is an $f \in L^1(G)$ such that $\widehat{f}(K) = 1$. Since $v - f * v \in M_a(G)$, this implies $v \in M_a(G)$. We conclude therefore, by (4), that

 $\| \mu_s \| \leq \| \mu \|_{\mathscr{R} \cup K}.$

Since $\lim_{K\to\infty} ||\mu_a||_{\mathscr{R}\cup K} = 0$, it follows that $\lim_{K\to\infty} ||\mu||_{\mathscr{R}\cup K} = ||\mu_s||$ and the theorem is proved.

Corollary 1. A measure $\mu \in M(G)$ is absolutely continuous if and only if

$$\lim_{\mathbf{K}\to\infty} \|\mu\|_{\mathscr{R}\cup\mathbf{K}} = 0.$$

Corollary 2. A measure $\mu \in M(G)$ is singular if and only if

$$\lim_{\mathbf{K}\to\infty} \parallel \mu \parallel_{\mathscr{R}\cup\mathbf{K}} = \parallel \mu \parallel.$$

Next we give an extension of a Theorem of I. Glicksberg (6, p. 419):

Theorem 2. Let \mathscr{G} be any closed subset of Γ such that $\mathscr{G} \cap (\gamma - \mathscr{G})$ has finite Haar measure for a dense subset of $\gamma \in \Gamma$ and let $\mu_i \in M(G)$ $i \in \{1, 2\}$. Suppose

$$\lim_{\mathbf{K}\to\infty} \parallel \mu_i \parallel_{\mathscr{S}\cup\mathbf{K}} = 0.$$

https://doi.org/10.1017/S0013091500015789 Published online by Cambridge University Press

70

Then $\mu_1 * \mu_2$ is absolutely continuous with respect to m_G .

Proof. Given $\varepsilon > 0$, there correspond compact $K_{i\varepsilon}$ such that for all trigonometric polynomials of the form $p(x) = \sum_{n} c_n(-x, \gamma_n)$ with $||p||_{\infty} \le 1$ and $\gamma_n \notin \mathscr{S} \cup K_{is}$ the inequality

$$|\Sigma c_n \hat{\mu}_i(\gamma_n)| < \varepsilon \tag{5}$$

71

(6)

obtains.

Now (5), Proposition 2 and the Main Theorem of (4) give a measure $\mu_{i,e} \in M(G)$ such that

and

$$\hat{\mu}_i = \hat{\mu}_{i\epsilon} \quad \text{off } \mathscr{G} \cup K_{i\epsilon} \tag{6}$$

$$\| \mu_{i\iota} \| \leq \varepsilon.$$
 (7)

Recall that there exist $f_i \in L^1(G)$ such that $\hat{f}_i(K_{ie}) = 1$. Observe that

$$\sup \{(\mu_i - \mu_{i\epsilon}) - f_i * (\mu_i - \mu_{i\epsilon})\}^{\wedge} \subset \mathscr{S}$$

which implies by Glicksberg's Theorem that

$$\{(\mu_1 - \mu_{1e}) - f_1 * (\mu_1 - \mu_{1e})\} * \{(\mu_2 - \mu_{2e}) - f_2 * (\mu_2 - \mu_{2e})\} \in M_a(G).$$

Thus

$$(\mu_1 - \mu_{1\epsilon}) * (\mu_2 - \mu_{2\epsilon}) \in M_a(G).$$
(8)

Let $\varepsilon \to 0$ in (8). From (7) we infer that $\mu_1 * \mu_2 \in M_a(G)$. This completes the proof.

Remarks. (1) Theorem 1 and proof (with obvious modification) holds true for compact groups (i.e. not necessarily abelian).

(2) To obtain Doss' results in (3) and (5), it suffices to take \mathcal{R} compact in Theorem 1.

(3) For some interesting examples of Riesz sets when G = T the reader is referred to (1) and (7).

(4) Using the same technique as in Theorem 2, one can give the following extension of a Theorem of Doss (2, p. 81):

Suppose G is a locally compact abelian group whose dual Γ is ordered, $\mu \in M(G)$ and $\lim \|\mu\|_{\mathscr{P} \cup K} = 0$ where \mathscr{P} is the positive cone of Γ . Then K→∞ $\hat{\mu}_s$ is of analytic type and $\hat{\mu}_s(0) = 0$.

(5) Let -N be the negative integers and S any set of integers $\{n_k\}$ where $\lim (n_{k+p} - n_k) = 0.$ Suppose $k \rightarrow \infty$

$$\lim_{K\to\infty} \|\mu\|_{-N\cup S\cup K} = 0.$$

Then it can be shown that the p+1 convolution power $\mu^{p+1} \in M_a(T)$ (see (8)).

The author takes pleasure in thanking Sadahiro Saeki for helpful conversations.

LOUIS PIGNO

REFERENCES

(1) R. DRESSLER and L. PIGNO, On strong Riesz sets, Colloq. Math. 29 (1974), 157-158.

(2) R. Doss, On the Fourier-Stieltjes transforms of singular or absolutely continuous measures, Math. Z. 97 (1967), 77-84.

(3) R. Doss, On the transform of a singular or absolutely continuous measure, *Proc. Amer. Math. Soc.* 19 (1968), 361-363.

(4) R. Doss, Approximations and representations for Fourier transforms, Trans. Amer. Math. Soc. 153 (1971), 211-221.

(5) R. Doss, Harmonic analysis of oscillations, J. London Math. Soc. 7 (1973), 41-47.

(6) I. GLICKSBERG, Fourier-Stieltjes transforms with small supports, *Illinois J.* Math. 9 (1965), 418-427.

(7) Y. MEYER, Spectres des mesures et mesures absolument continues, Studia Math. 30 (1968), 87-99.

(8) L. J. WALLEN, Fourier-Stieltjes transforms tending to zero, Proc. Amer. Math. Soc. 24 (1970), 651-652.

KANSAS STATE UNIVERSITY