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Abstract

Carbon credits from the reducing emissions from deforestation and degradation (REDD+) projects have been
criticized for issuing junk carbon credits due to invalid ex-ante baselines. Recently, the concept of ex-post baseline
has been discussed to overcome the criticism, while ex-ante baseline is still necessary for project financing and risk
assessment. To address this issue, we propose a Bayesian state-spacemodel that integrates ex-ante baseline projection
and ex-post dynamic baseline updating in a unified manner. Our approach provides a tool for appropriate risk
assessment and performance evaluation of REDD+ projects. We apply the proposed model to a REDD+ project in
Brazil and show that it may have had a small, positive effect but has been overcredited. We also demonstrate that the
90% predictive interval of the ex-ante baseline includes the ex-post baseline, implying that our ex-ante estimation can
work effectively.

Impact Statement

Our novel approach estimates deforestation baselines for forest carbon credits, addressing criticisms of junk
carbon credit issued from REDD+ projects and problems of early financing simultaneously. By integrating
ex-ante baseline projection and ex-post dynamic updating, we evaluate ex-ante risks and ex-post project
performance in a unified manner. Our approach can contribute to sound allocation of funds for forest conser-
vation projects with significant positive impacts on climate change action.

1. Introduction

Carbon credit is an incentive scheme to promote projects that have additional benefits for climate change
mitigation, and is expected to play an important role in offsetting the gap from net zero emission after
reduction efforts (Griscom et al., 2020). Reducing deforestation and forest degradation are considered to
be one of the most effective approaches to reduce carbon emission and the reducing emissions from
deforestation and degradation (REDD+) mechanism is a framework to promote such efforts through the
issuance of carbon credit. However, carbon credits from REDD+ have been subject to several criticisms.
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Credits issued for projects without actual positive effects on climate change mitigation are called “junk
carbon credit”, and several studies have showed that many REDD+ projects may have produced junk
carbon credits (e.g., West et al., 2020, 2023; Guizar-Coutiño et al., 2022).

Criticisms to carbon credit are mainly about the validity of ex-ante baseline, that is, a counterfactual
scenario in the absence of a project that is estimated before the project starts. Considering this issue, the
concept of ex-post (or dynamic) baseline has recently been discussed (Verra, 2022a). For example, the use
of synthetic control method (SCM) has been studied in this context (West et al., 2020, 2023). In this
framework, baseline is sequentially updated at every observation of the forest cover after intervention,
allowing for the effects of changes in the external environment to be taken into account.

However, a financing issue still remains as result-based payment means project proponents must wait
several years to obtain the first credit issuance. From an investor perspective, ex-ante baseline projection
is needed to quantify the risk associated with projects for investment decisions (Verra, 2022b).With those
inmind, we can find a need for the integration of both ex-ante baseline forecasting before intervention and
ex-post baseline updating at each observation after intervention.

We propose a new model to address the above problem. First, we introduce a Bayesian state-space
model that naturally integrates the estimation of ex-ante baseline and the dynamic updating of ex-post
baseline. We achieve this by combining state-space modeling for forecasting and SCM for dynamic
updating. Second, we consider covariate balancing in state-space modeling by using the general Bayesian
updating method for valid causal inference. We also address a small sample problem, which often arises in
time-series causal inference, by introducing the regularized Horseshoe prior. Finally, we apply the
proposed model to a REDD+ project in Brazil and show that both ex-ante and ex-post baseline can be
effectively estimated by our model. Our approach would enable appropriate ex-ante risk assessment and
ex-post performance evaluation of forest conservation projects and contribute to the sound allocation of
funds to projects that have significant positive impacts on climate change mitigation.

2. Preliminaries and related work

2.1. VM0007: A REDD+ methodology for emission reduction evaluation

VM0007 (Verra, 2020) is one of the major methodologies that defines the calculation of emission
reductions in a REDD+ project. A key concept of VM0007 is the Reference Region for projecting the
rate of deforestation (RRD), which is equivalent to a control unit in causal inference. The RRD is chosen
to match the project area (PA) as closely as possible in terms of the following variables: deforestation
drivers, landscape factors (e.g. forest types, soil types, elevation, etc.), and socioeconomic variables
(access to infrastructures, policies, and regulations, etc.). For the 10–12 years preceding the implemen-
tation of a project, deforestation rates are aggregated over the RRD and projected as a baseline for the
crediting period. The projectionmethod can be a simple historical average or a predefined linear/nonlinear
model, where the former is often used. After the projection, spatial modeling is applied for certain types of
forest to adjust the baseline.

Several studies have reported that baselines set underVM0007were overestimated because these baselines
failed to consider a counterfactual scenario correctly or to eliminate the effect of external factors, such as
policy changes (West et al., 2020, 2023). As an example, Figure 1 describes the spatial distribution and the
deforestation trends of the PA andRRDof theValparaiso project (Eaton et al., 2014), where the project started
in 2011. The deforestation rates are calculated using MapBiomas Brazil (Souza et al., 2020), which will be
used in the case study in Section 4. The baseline reported in the Project Design Document (PDD) is also
included in the chart. We can see that the baseline (the red dashed line in Figure 1b) might have been
overestimated considering the actual deforestation level in the PA. In addition,we can also see that the baseline
might have failed to capture the change of trends where the deforestation rates in the RRD kept decreasing
from 2002 to 2012 but changed to an upward trend again. The main cause of these changes may be the
implementation and change of Brazil’s National Climate Change Plan (Ferrante and Fearnside, 2019; West
et al., 2019, 2020). The current methodology cannot effectively reflect such impacts to the baseline.
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2.2. Related work

The SCM (Abadie et al., 2010) is one of the most popular methods for causal inference with time-series
data. This method is designed for a case with one treatment unit andmultiple control units, which is suited
for the evaluation of a REDD+ project. Given that the RRD consists of multiple subunits (hereinafter
“control units”), SCM finds an optimal weight to match both preintervention deforestation trends and
covariates of the synthetic control (i.e., the weighted average of control units) to those of the PA. Note that
a baseline estimated by SCM can reflect effects of external factors occurred after intervention while it
cannot forecast the baseline, because it is calculated based on observations after intervention. Causa-
lImpact (Brodersen et al., 2015) is another popular method based on Bayesian state-space models. It has
several ideas in common with SCM, but there are several differences. In contrast to SCM, CausalImpact
can forecast a baseline with a little modification of the original model since it is based on state-space
modeling, while it does not include a covariate balancing mechanism between a treatment and
synthetic controls.

Sparse estimation needs to be considered to deal with small sample problems when applying time-
series causal inference models to REDD+ program evaluations. In these cases, the sample size is the
number of time points of deforestation data before a project starts. Since deforestation data are often
updated annually and available from the 1980s at the earliest, the sample size is usually around 30–40. On
the other hand, a considerable number of control units can be necessary to get a good synthetic control,
which may lead to a larger number of parameters than the sample size. Several studies consider the use of
penalization methods in SCMs in the frequentist perspective (Doudchenko and Imbens, 2016; Abadie,
2021; Ben-Michael et al., 2021). In CausalImpact, the spike-and-slab prior (George and McCulloch,
1993) is employed to select influential samples on the baseline. Although the spike-and-slab prior is a
natural solution to variable/sample selection problems in Bayesian modeling, it leads to substantial
computational costs. The Horseshoe prior is a continuous analogue of the spike-and-slab prior and is
computationally more tractable (Carvalho et al., 2010). If some prior knowledge is available about the
degree of sparsity, it can be incorporated by specifying a prior on the global shrinkage parameter (Piironen
and Vehtari, 2017).

Figure 1. The Valparaiso project.
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In the context of general carbon crediting schemes including REDD+, the issue of junk carbon credit
or overcrediting has been discussed for a long time (e.g., Haya, 2009; Aldy and Stavins, 2012;
Badgley et al., 2022), and one of the sources has been identified to be baseline setting (Bento et al.,
2016; Haya et al., 2020). SCM and CausalImpact have been applied to several studies evaluating REDD
+ projects (Roopsind et al., 2019; Correa et al., 2020; Ellis et al., 2020;West et al., 2020, 2023) and other
forest conservation activities (Sills et al., 2015; Rana and Sills, 2018; Simmons et al., 2018) in
considering a counterfactual scenario. Many of the studies using causal inference methods have reported
some degree of overcrediting. To the best of our knowledge, there is no study in the literature concerning
ex-ante prediction and ex-post evaluation at once.

3. Model

3.1. Bayesian state-space SCM

We propose a Bayesian state-space SCM, leveraging the time-series modeling in CausalImpact and the
covariate balancing in SCM. Consider a REDD+ project that has one PA and whose RRD is divided as
multiple control units. We model the preintervention deforestation rates of the PA and the control units by
the following state-space model with a local linear trend:

yt ¼~z0t β + εt, εt �N 0, σ2y ,
� �

, (1)

zt ¼~zt + et, et �N 0, σ2z I,
� �

, (2)

~zt + 1 ¼~zt + vt + ηt, ηt �N 0, σ~zI,ð Þ, (3)

vt + 1 ¼ vt + ξ t, ξ t �N 0, σ2vI,
� �

, (4)

t¼ 1,…,T0,

where yt is an observed deforestation rate for the PA at time t, zt ¼ z1,t,…,zJ,tð Þ0 is a vector of observed
deforestation rates of the control units at time t, J is the number of the control units, β is a weight to be
applied to the control units defined on the simplex,

β∈ SJ�1 ¼ β j
XJ
j¼1

βj ¼ 1, βj ≥ 0, j¼ 1,…,J

( )
, (5)

~zt ¼ ~z1,t,…,~zJ,tð Þ0 is a latent state vector, and vt ¼ v1,t,…,vJ,tð Þ0 is a vector of slope components of the local
linear trend. Time t¼ 1 denotes the year when observation started and t¼ T0 the previous year before the
intervention. Equations (1)–(2) link the observed data, yt and zt, to the latent state, ~zt: it assumes that for
the control units the deforestation rates are observed as the addition of the latent state and noise, while for
the PA, the deforestation rate is written as the addition of the weighted sum of the latent states of the
control units and noise (Brodersen et al., 2015). The latter relates this model to SCM except for covariate
balancing. Equations (3)–(4) define the temporal evolution of the latent state by the simple local linear
trend model, which enables us to forecast zt, and thus the baseline.

We consider a shrinkage prior on β to select important control units for more interpretable and stable
results. Sparse estimation is needed because the sample size T0 tends to be small due to data availability,
while we need to take a satisfactory number of the control units J into account so that there exists some
weight that well approximates the PA. Here we introduce the regularized Horseshoe prior proposed by
Piironen and Vehtari (2017): for j¼ 1,…,J,
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p βj j λj,τ,c
� �

∝
1

2~λjτ
exp � β2j

2~λ
2
j τ

2

0
@

1
A,

λj �C + 0,1ð Þ, ~λ
2
j ¼

c2λ2j
c2 + τ2λ2j

, c2 � Inv�Gamma 1=2,1=2ð Þ,

τ∣σy�C + 0,τ0ð Þ, τ0 ¼ m0

J�m0

σyffiffiffiffiffi
T0

p ,

(6)

where C + 0,1ð Þ is the standard half-Cauchy distribution, τ is a global shrinkage parameter, λj is a local
shrinkage parameter, and m0 is the effective number of nonzero coefficients in β, which is given as a
hyperparameter from prior knowledge. The global shrinkage parameter shrinks all coefficients toward
zero, while the local shrinkage parameter controls the shrinkage level of each coefficient. Although the
global shrinkage parameter has large impacts on the results, the systematic way of specifying a prior for τ
based on the information about the sparsity has not been well discussed. Piironen and Vehtari (2017)
provide the systematic way of specifying a prior for τ based on prior knowledge of the sparsity. We can
control the number of control units that show significantly large positive weights through the effective
sample size m0.

For covariate balancing, we rely on themethod of general Bayesian updating (Bissiri et al., 2016).With
this, we reflect the distance of the covariates between the PA and synthetic controls as a covariate-
dependent prior on β. Together with (6), we set the prior on β as

p β j xj
� �J + 1

j¼1 , λ,τ,c
� �

∝exp �wL β; xj
� �J + 1

j¼1

� �� �YJ
j¼1

p βj j λj,τ,c
� �

, (7)

where xj is a K × 1 vector of the covariates with j¼ J + 1 for the PA, L is a loss function that measures a
distance between the PA and synthetic controls, and w is a tuning parameter. Here we choose L to be a
SCM-like loss function for covariate balancing:

L β; xj
� �J + 1

j¼1

� �
¼ 1=2 � xJ + 1�X0

0β
� �0

V xJ + 1�X0
0β

� �
, (8)

where X0 ¼ x1,…,xJð Þ0 and V is the inverse of the covariance matrix of X0.
Combining equations (1)–(8), we obtain the full posterior as

p β, utf gT0
t¼1,Σ,λ,τ,c j ztf gT0

t¼1, ytf gT0
t¼1, xj
� �J + 1

j¼1 ,w
� �

∝
YT0

t¼1

f yt,zt,ut j ut�1,β,Σð Þ �p β j xj
� �J + 1

j¼1 ,λ,τ,c
� �

p λ,τ,cð Þp u0ð Þp Σð Þ,
(9)

where f is the density function of the model (1)–(4), ut ¼ ~z’t,v0t
� �0

, and Σ¼ σy,σz,σ~z,σv
� �0

. After the
observation at t¼ T1 ≥T0ð Þ, we can obtain the posterior predictive distribution of the baseline up to the
target period t¼ T2 ≥T1ð Þ as

p ybslt

� �T2

t¼T0 + 1
j ztf gT1

t¼1, ytf gT1
t¼1, xj
� �J + 1

j¼1 ,w
� �

¼
Z YT2

t¼T0 + 1

f ybslt ,zt, ut j ut�1, β,Σ
� �

� p β, utf gT0
t¼1,Σ,λ,τ,c j ztf gT0

t¼1, ytf gT0
t¼1, xj
� �J + 1

j¼1 ,w
� �

�dβ �dΣ �dλ �dτ �dc �
YT2

t¼1

dut �
YT2

t¼T1 + 1

dzt,

(10)

where ybslt

� �T2

t¼T0 + 1
is the estimated baseline of the PA from t¼T0 + 1 to t¼ T2. As the project proceeds,

the baseline can be updated in a unified manner for ex-ante baseline (T1 < t≤T2) and for ex-post baseline
(T0 < t≤ T1). Note that the estimation of β is based on the data up to t¼ T0, because β represents the
relation between the PA and the control units without intervention.
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3.2. Estimation algorithm

In this section, we discuss an efficient Markov chain Monte Carlo (MCMC) algorithm for sampling the
parameters from (9). Although we fit our model using Stan (Stan Development Team, 2016) for
the simplicity of implementation in the empirical example below (Section 4), it would beworth discussing
the structures of the full conditional distributions and the relevant literature. By the construction of the
model, the full conditional distribution of each parameter reduces to a standard distribution, which enables
us to obtain a Gibbs sampler easily, except for the weight β and the parameters regarding the regularized
Horseshoe prior. Therefore, we focus on the sampling from the full conditional distribution of these
parameters.

The model (1) is a Gaussian sparse linear regression model, and if the prior is the basic (without-
regularization) Horseshoe prior the full conditional distribution of β becomes also a Gaussian distribution
and the Gibbs sampler can be derived by using data augmentation techniques (Carvalho et al., 2010;
Bhadra et al., 2019). However, our formulation has two problems: (1) since we consider the regularized
Horseshoe prior, it is hard to find a closed form expression for the full conditional distribution of the
shrinkage parameters, λj j¼ 1,…,Jð Þ and τ and (2) since the weight β is defined on the simplex space, the
full conditional is not a simple Gaussian.

For the first problem, we need to rely on a general sampling algorithm that can be applied densities
without a closed form, e.g., HamiltonianMonte Carlo (HMC) and LangevinMonte Carlo methods (Neal,
2011). For the second problem, we can refer to the literature of the sampling from truncated Gaussian
distributions. It is known that sampling from a Gaussian distribution defined on the simplex SJ�1 reduces
to sampling from certain truncated Gaussian distribution on ℝJ�1 (Altmann et al., 2014). In our
formulation, the covariate balancing term in (7) can be incorporated in this framework because the choice
of the quadratic loss function in (8) makes the full conditional distribution have also a Gaussian kernel:

p β j �ð Þ ∝ exp � 1
2σ2y

β�A�1b
� �0

A β�A�1b
� � !

, β∈ SJ�1, (11)

where

A¼ ~Z0~Z
0
0 +wσ

2
yX0VX

0
0 +D, D¼ diag ~λ

�2
1 ,…,~λ

�2
p

� �
=τ2,

b¼ ~Z
0
0y+wσ

2
yx

0
J + 1VX

0
0, ~Z0 ¼ ~z1,…,~zT0ð Þ0, y¼ y1,…,yT0

� �0
:

Equation (11) indicates that the full conditional distribution of β is the Gaussian N A�1b,σ2yA
�1

� �
constrained by the linear constraint β∈ SJ�1, which reduces to a truncated normal distribution on ℝJ�1.

To sample from a truncated Gaussian distribution, we may use the exact Hamiltonian Monte Carlo
(EHMC)method (Pakman and Paninski, 2014). A traditional approach to this problem is the combination
of the Gibbs sampling from aGaussian and the rejection of samples that are outside of the domain, but it is
known to be inefficient, particularly in a case of high dimension. On the other hand, Pakman and Paninski
(2014) propose an efficient HMC algorithm for sampling from amultivariate Gaussian that is defined on a
constrained space by linear and quadratic inequalities (or products thereof). In this special case, their
algorithm achieves a hundred percent acceptance rate, while HMC methods in general need to reject a
proposed sample with some small probability.

In Stan, we implement the following variable transformation so that β is contained in the simplex SJ�1:

~βj ¼ αj �~λj � τ, βj ¼ ~βj=
XJ
j0¼1

~βj0 , j¼ 1,…,J,

where αj is defined as a non-negative scalar. In this formulation, α is sampled based on the full posterior
(9) and then transformed into β. We use a truncated normal distribution as the prior for α.
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4. Case study

We apply the proposed model to the Valparaiso project (Eaton et al., 2014) to demonstrate the perform-
ance of the model. The Valparaiso project, implemented in the state of Acre, Brazil, is a REDD+ project
with the main objective of avoiding unplanned deforestation, such as illegal logging or the conversion of
forest to agricultural land. Since 2011, the project has implemented several countermeasures against
deforestation. These include community outreach and employing local community members as forest
guards or in other project staff roles.

To monitor deforestation, we use MapBiomas Brazil (collection 6) (Souza et al., 2020), which is a
landcover data estimated from Landsat satellite imagery, and convert it to a 0–1 forest map at 250 m
resolution from 1995 to 2020. We followed West et al. (2020) for preprocessing of the data. Figure 2
illustrates the progress of deforestation around the PA between 2000 and 2020. We can see that between
2000 and 2010 the deforestation area approached the PA, especially between two boundaries. Our focus is
to evaluate how much deforestation would have occurred within the PA after 2011 in the absence of the
project.

Given that deforestation is caused by different drivers (Laurance et al., 2011; Busch and Ferretti-
Gallon, 2017), we consider the following covariates into our model to find control units with similar
deforestation risks to the PA: elevation from FABDEM (Hawker et al., 2022), (pixel-based Euclidean)
distance to road, and annual deforestation rates in the 20 km buffer area around the boundary before the
project started. The last covariate is considered to express the risk of deforestation surging to the area.
Since the selection of covariates would affect the accuracy of the model, we carry out covariate selection
based on the predictive performance within the preproject period. As a result, in addition to distance to
road and elevation, we include the annual deforestation rate in the buffer area in 2010 (one year prior to the
project implementation). See Appendix A for details on covariate selection.

For the boundary of control units, we use the forest district polygon called CAR (Cadastro Ambiental
Rural),1 which is a georeferenced property organized by Brazil’s Rural Environmental Registry. For each
control unit, deforestation rates and covariates are aggregated over a CAR polygon, while for the PA, they
are aggregated over the project boundary found in the project registry2. To reduce the pool size of CARs,
we query them where the historical average of the deforestation rates between 1999 and 2010
(i.e., 12 years prior to the intervention) are close to the PA both in the boundary (from 0.0% to 0.2%)
and in the 20 km buffer area (from 0.0% to 0.4%), obtaining 57 CARs. Figure 3 describes the spatial
distribution and the deforestation rate of the PA and the selected CARs.

We fit the model using Stan (Stan Development Team, 2016). We obtain 3000 MCMC samples where
the first 1000 samples are discarded as warm-up. The default setting in Stan is used for prior specifications
except for the ones described in Section 3. For the interpretability of results, we set the effective number of
nonzero parameters m0 as 4. This may also depend on the sample size of the data. If the sample size is
limited, one may consider a smaller number as m0. We need to fine-tune w for covariate balancing. We
adjust it so that the balanced covariates become close enough to the result by SCM, and setw¼ 100 to get
the following results.

Figure 4 shows the result of the estimated baseline. Our baseline is much smaller than the one by the
project developer (see Figure 1b). Given that the our baseline is naturally continuous with the preproject
trend, it would be more reasonable than the one by the project developer. Comparing Figure 4a–c
(respectively), we can find that the 90% interval of the ex-ante baseline includes the posterior mean of the
ex-post baseline at least up to three years forward, implying that our ex-ante estimation worked to some
extent. Looking at the ex-post baseline at 2019 (Figure 4c), we can see that the project had no effect during
the first 4 years (2011–2014), but then gradually started to have a small positive effect after 2015. This
may be because the baseline was lifted by the upward trend over Brazil since 2012 (Ferrante and
Fearnside, 2019; West et al., 2019), while the PA was protected from that trend. Figure 4 also includes

1 https://www.car.gov.br/publico/imoveis/index
2 https://registry.verra.org/app/projectDetail/VCS/1113
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the posterior mean of the estimated baseline without the covariate balancing (i.e., w¼ 0), which is
estimated separately. We can see that the baseline without covariate balancing is generally lower than the
baseline with covariate balancing. This may be because the former underestimated the risk of deforest-
ation that is approaching to the PA,which can be represented by deforestation rate in the 20 kmbuffer area.
This would imply the importance of the covariate balancing in the baseline estimation.

Table 1 shows themean of the covariates for the PA and the synthetic control, where the synthetic control
is evaluated by the posterior mean of β. We can see that the synthetic control is closer to the PA than the
simple average ofCARs in terms of the similarity in covariates. This suggests that the risk of deforestation to
the PA is better approximated by the synthetic control rather than by the simple average of CARs.

We also compare the proposed approach with two popular methods, SCM (Abadie et al., 2010) and
CausalImpact (Brodersen et al., 2015). We run these models using the R packages Synth (version 1.1-8)
(Abadie et al., 2011) and CausalImpact (version 1.3.0) (Brodersen et al., 2015) respectively. We use the
same set of covariates for SCM, while using no covariates for CausalImpact because it cannot consider
covariate balancing. In addition, since these two methods do not consider the prediction of deforestation
rates of control units, we only compare ex-post results atT1 ¼ 2019. Figure 5 shows the estimated baseline
results from SCM and CausalImpact, along with the result of the proposed method with w¼ 100.

Figure 2. Forest transition map calculated from MapBiomas Brazil (Forest area: green, Nonforest
areas: white, deforested area during 2000–2010: yellow, deforested area during 2010–2020: red, PA
boundary: blue).

(a) Spatial distribution of the PA (red)
and the CARs (blue)

(b) Annual deforestation rates in the
PA (red) and CARs (gray)

Figure 3. Spatial distribution and deforestation rate of the PA and all the CARs used in analysis.
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In comparison with SCM the proposed method yielded a similar baseline after the ex-post data is
observed. It may imply that the proposed method can be regarded as a natural extension of SCM in
terms of the capability of ex-ante prediction. On the other hand, the baseline estimated by CausalImpact
remained around zero. This may be explained by the fact that CausalImpact cannot include covariates and
fit the weight parameter only by minimizing the error in annual deforestation rates. Therefore, it might
underestimate the deforestation risk of PA. This would show the importance of introducing the covariate-
dependent prior as in Eq. (7).

(a) Pre-intervention (T1 = 2010) (b) 5 years after intervention (T1 = 2015)

(c) 9 years after intervention (T1 = 2019)

Figure 4. Estimated ex-ante and/or ex-post baseline for the Valparaiso project (x-axis: year; y-axis:
annual deforestation rate; dotted vertical line: the time when the intervention started (2011); solid line
(black): the observed deforestation rate; solid line (blue): the posterior mean of the estimated baseline;
blue area: the 90% credible interval of the estimated baseline; dashed line (black): the posterior mean of
the estimated baseline without the covariate balancing (i.e., w¼ 0); throughout (a)–(c), T0 ¼ 2010 and
T2 ¼ 2020).

Table 1. Comparison of covariates

PA RRD: Synthetic RRD: Average

Distance to road [km] 41.745 41.584 49.329
Elevation [m] 201.216 202.630 219.040
Deforestation rate in buffer area in 2010 [%] 0.132 0.131 0.0739
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5. Discussion and limitations

Our results suggested that the baseline set under VM0007 might be overestimated in the Valparaiso
project, while the project had small, positive effects on reducing deforestation. The implementation of
dynamic baseline updating would lead to more reasonable baseline estimates because it could reflect the
effects of policy changes as noted in Ferrante and Fearnside (2019) and West et al. (2019). Our results
were qualitatively consistent with Guizar-Coutiño et al. (2022) (i.e., small, positive impacts), but there are
some differences in the magnitude of the effects. One reason for this may be that the unit of our analysis is
CAR while theirs is pixels. Our analysis followed West et al. (2020) in the sense that the unit of their
analysis is CAR and they concluded that the baselines were overestimated. However, their results are
more negative about the additionality of the project than ours. One reason for this difference could lie in
the difference of the covariates considered in the model. In particular, distance to deforestation edge is
considered to be an important covariate (Laurance et al., 2011; Busch and Ferretti-Gallon, 2017), and the
fact that we included the deforestation rate in a buffer area as a proxy variable for it may lead to the
difference in the estimated weights.

Although we assumed that all covariates, except for deforestation rate in the 20 km buffer area, are
constant over time, it is also important to consider them as time-series, especially for socioeconomic
covariates. For example, distance to road is known to be an important driver; indeed, the background of
the Valparaiso project is to stop deforestation accelerated by the road development. Given the limited
update frequency of public data, the monitoring and/or modeling of covariate growth using, e.g., remote
sensing would be necessary. As for the modeling, we can consider many different extensions. One
possible way would be to consider spatial correlation between control units by introducing a transition
matrix in the system equation (3), which would reduce error in estimation.

Finally, we should mention the technical report published in January 2023 by Verra (Verra, 2023).
In the report, Verra criticized West et al. (2020, 2023) for several reasons3. Here we discuss two of their
arguments in relation to the present paper. First, they claim that the synthetic controls were constructed
“by looking at only a small set of superficial physical characteristics such as initial forest cover, slope, and
proximity to state capitals, while excluding the key determinants of deforestation such as forest type,
agricultural practices, and in fact any socioeconomic factors whatsoever.” This may be partly true.
However, if the effects of the key determinants are reflected in proxy variables that are directly linked to

Figure 5. Comparison of baseline estimates between different methods (proposed method: solid blue;
SCM: dashed green; CausalImpact: dash-dotted orange).

3 They also criticized Guizar-Coutiño et al. (2022) and an article by Britain’s Guardian, but here we focus onWest et al.’s studies
in terms of proximity to the present study.
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the deforestation risk, such as deforestation rate in the buffer area, then the resulting synthetic control
would not underestimate the deforestation risk. Furthermore, regardless of how a baseline is estimated, it
should be continuous with the preproject deforestation level to some extent. At least, the fact that the
official baseline considers those key determinants would not justify the substantial differences from the
observed deforestation level in the PA/RRD as in Figure 1. In this sense, we think SCM-type approaches,
including the proposed method in the paper, are effective in evaluating REDD+ projects.

Second, Verra argues that the use of satellite imagery can be helpful for deforestation estimation, but it
can be problematic to depend too heavily on it. Deforestation or landcover data estimated from satellite
imagery, including MapBiomas, often yield inconsistent results with survey data or visual inspection.
Besides, the result is sensitive to the way it is preprocessed and/or at which resolution it is evaluated.
Therefore, it needs to be handled carefully before used for REDD+ project assessment. We agree on these
points. In fact, we can observe that deforestation trends differ depending on datasets in the Valparaiso
project. Figure 6 compares the annual deforestation trends calculated by MapBiomas and TMF
(Vancutsem et al., 2021) for the RRD, showing that there is a significant difference between them.
Considering this point, we do not argue our results are a definitive judgment on the effectiveness of the
project. Nonetheless, we still think that the substantial discrepancies observed between the official
baseline, West et al.’s estimates, and our own, cannot solely be attributed to errors inherent in satellite-
based products, and further discussions are needed toward more reliable carbon credits.
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