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Abstract. In most organs, depending on the scale, the nature of the heart pump, the geometry and topology
of the organ, some of the blood vessels tend to exhibit sinuous trajectories. We describe a part of this sinuous
behavior, including partial biological and strong physical effects in a global physical framework. We will
voluntarily focus on physical and topological effects. This study is performed on the vitelline membrane
of the chicken embryo. Crossing angles, sinuosity, and the oscillation amplitude of the vascular system are
analyzed. Surprisingly, the equation of river meandering dynamics is found to model the sinuosities in the
vascular system, and an extension of this equation to non planar case is able to explain the effect of tissue
global curvature on the vascular system. Results of this study could lead to a new understanding of the
interplay between biological signaling and physical effects in determining the vascular pattern in different
tissues.

PACS. 87.18.La Morphogenesis – 87.19.Rr Mechanical properties of tissues and organs – 87.19.St
Movement and locomotion

1 Introduction

Blood vessels are a complex network of tubes that carry
oxygenated blood and nutrients, but also evacuate cellu-
lar waste and exchange thermal energy throughout our
bodies. The process of growing new blood vessels, known
as angiogenesis [1], is a fundamental biological mecha-
nism that results in serious disease when it is not func-
tioning properly. Angiogenesis is an essential process dur-
ing both development and the restoration of blood flow
to injured tissues. This process is regulated by interplay
of growth factors, inhibitors, shear stress and transmural
pressure [2–4]. It is also involved in tumor growth.

Nevertheless, the structure of the vascular system
should have a major influence on the biological activity of
the cells nourished by the blood circulating in the network.
For example, the spatial structure of coronaries (Fig. 1A)
exhibits sinuosities that will have strong consequences on
both the blood flow and the atheromatous plaques ac-
cumulation within the artery. Furthermore, some organs
having strong global curvature seem to have a strong os-
cillatory vascular structure. So, curvature may be an im-
portant (among others) parameter acting on blood ves-
sel sinuosity. Surprisingly, the sinuosities of the vascular
structure have not yet been investigated, even though the
geometry of the vascular structure will have strong con-
sequences on the blood flow, the tissues irrigation and
the physical properties of the biological tissue. Therefore,
characterizing and understanding some of the mechanisms
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involved in this oscillatory-like behavior, could lead to in-
teresting models as well as a better understanding of vas-
cular behavior.

In this paper, we give a physical framework to the os-
cillatory like behavior of the vascular system, by including
both the physical and the biological effects that act on it.
The study is performed on the membrane surrounding the
chicken embryo, the vitelline membrane [5]. Crossing an-
gles, sinuosity, and amplitude of oscillation of the vascular
system are analyzed. The equation of river meandering
dynamics is found to model very well the sinuosities of
the vascular system. Finally, the effect of global curvature
of the vitelline membrane on the blood vessels is inves-
tigated. The extension of the river meandering dynamics
equation to non planar space is partially able to explain
the effect of global curvature on the vascular system.

2 First experiment

In brief, the embryo development [5] can be described as
follow: during the first two days of incubation the em-
bryo develops, generating a capillary plexus, i.e. capillar-
ies without blood flow, on the vitelline membrane. Around
35 h after incubation the heart begins to beat, and a com-
plete new vascular system is created on the vitelline mem-
brane. This study is focused on this new vascular system.

Experiments began 35 h after incubation, at 37 ◦C, by
the removal of 5 ml of eggs white and a part of the shell.
In order to avoid drying of the eggs, 5 ml of Phosphate
Buffered Saline (PBS) with calcium and magnesium were
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Fig. 1. A X-ray photo of a coronary. B Photo of the vascu-
lar structure of the vitelline membrane of the chicken embryo
(main vascular structures visible are in the zona opaca vascu-
losa and sinus terminalis) and D photo of the vascular structure
near the head of the chicken embryo (in the zona pellucida). C
and E results of the numerical procedure for photos B and D.

added to the egg, and the removed shell was replaced by
transparent adhesive paper. All eggs were studied between
approximatively 35 and 96 h. After 96 h new processes
take place, such as the change of yolk structure [5], which
could add artifacts to the study. The experiment was per-
formed on 70 eggs.

The first kind of experiment consisted in a continu-
ous imaging of the vitelline membrane. Analysis was per-
formed on the pictures taken between the first heart beat
and 90 h after incubation. To each blood vessel first ap-
pearance was associated its first geometry, not all blood
vessels just after the heart begins to beat are straight
lines, and the time at which its evolution has been stud-
ied. Imaging was performed using a CCD captor put on a
microscope.

3 Numerical analysis

Representative pictures of the vascular system that can
be treated by the numerical procedure are given in Fig-
ures 1B, 1D. Our interest is focused on the large blood
vessels which are clearly visible on the images. All images
were converted into black and white images. All treat-
ments (Fig. 2) were done in MATLAB. Each image was
sharpened a first time, and then the contrast was en-
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Fig. 2. Schema of the image treatment program.

hanced. The algorithm of contrast enhancement was the
one used in Image J [6]. Contrast enhancement was made
with 10% of saturated pixel, and the histogram of pixel
brightness was equalized. Major part of the background
was then removed using the rolling ball algorithm devel-
oped by Sternberg [7] with a 25 pixel radius. Then the im-
age was “thresholded”. The minimum part of the thresh-
old was not changed, only the upper part was adjusted
in order to get most of the vascular network. After this
thresholding, the Sobel Find Edges algorithm was used.
The result was then cleaned with a denoising algorithm
and solitary white pixels were removed. At the end of this
procedure, the edges of the capillary network were known.
Most of vascular structures extracted by this procedure
(Figs. 2C, 2E) had the same size, which was not an issue
for this study as vascular width was not the main object
of the study. By filling the edge result with white pixels,
corresponding to the inner parts of the blood vessels, and
then skeletonizing it, the topology of the network was ex-
tracted. The vertexes were easily extracted, as they were
points with at least three neighbors. To extract angles be-
tween blood vessels the direction of blood circulation were
added to the network. The angle was therefore defined by
blood circulation, without any uncertainty. Finally, the
angle was extracted as the angle of the curves tangent
to the blood vessel at the vertex. We define the sinuos-
ity of a curve as the ratio of the curved distance between
the vertexes (distance along the trajectory of the vessel),
and the distance between the extrapolated Bezier curve
(second order) between each vertex. The use of Bezier
curves allows the comparison of several different parts of
the vitelline membrane and eliminate some global motions
of the blood vessels. The sinuosity takes values superior
or equal to 1, high values of sinuosity indicate a tortuous
trajectory. Finally, the amplitude of sinuosities are the
local maximum deviation between the blood vessel and
the extrapolated Bezier curve joining two vertices, and its
extraction is performed with a mean squared derivative
algorithm is used.

In some cases, for angle detection or sinuosity measure-
ments, the algorithms were not able to give a reasonable
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A
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Fig. 3. Results of the first experiment. All histogram values
are divided by the global number of data considered N . A His-
togram of crossing angles of blood vessels (N = 9844). B His-
togram of sinuosity (N = 11003), in Blue the fit extracted from
the equation of vascular motion. C Histogram of the amplitude
of sinuosity, in Blue the fit extracted simulation (N = 11003).

result, therefore, theses angles or sinuosity were removed
from the statistics. It adds a small error to the results,
but we found that for angle measurements, there is an
error every 150 angles measurements, and for sinuosity
measurement there is an error every 100 measures.

4 Results and model

The first result extracted from numerical treatments
was the statistic of angle crossing between blood vessels
(Fig. 3A). Significant angle values are found between 30◦
and 140◦, and angles mean value is 73◦ with a standard
deviation of 26◦. It is a wide repartition of angle. One of
its consequences is to reduce possible instabilities in blood
repartition [8], which could lead to under oxygenation and
underfeeding of some parts of the biological tissues. Fur-
thermore, from direct analysis of the motion of the red
blood cells, the flow can be immediately extracted, and
one might notice that at vascular crossing the flow is not
shared equally between the two new vessels, because of
the constant changes in diameter and flow rate. Finally,
at this scale and at these times of the embryo develop-
ment, it will be interesting to investigate [9] whether this
vascular network minimizes the global resistance to flow
with respect to neither the volume nor the surface of the
network [8].

As it can be seen in Figures 1B, 1D, blood vessels tend
to oscillate around a mean trajectory. In Figure 3B, the
statistic of sinuosity can be seen. Sinuosity mean value is
1.07±0.005. Furthermore, almost 20% of the blood vessels
have a sinuosity superior to 1.25 ± 0.005, which means a
strong lateral space extension. This sinuosity should play
a major role in tissue irrigation, by allowing single blood
vessels to cover more area.
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Fig. 4. Example of blood vessels trajectory evolution. The
image is 1.7 mm by 0.4 mm. A–D are direct images of the
blood vessels; the first image was taken at 40 h, and then other
images were taken every 8 h after the first one. E-H are results
from the numerical procedure. I–L Only one of the blood vessel
skeleton is displayed.

In order to describe the behavior of the blood vessel, it
is modeled as an infinitely thin string of length L, and its
motion is bidimensional. Furthermore, its motion is con-
sidered to be the deviation from the Bezier curves used
to extract data from experiments. The evolution of this
string is described with curved coordinates (coordinates
along the trajectory), s, so its position is defined by r̂ (s),
and usual moving basis of vectors [Ŝ, N̂ ] where Ŝ is the
unit vector tangent to the string, and N̂ is the unit vec-
tor normal to Ŝ. We focus here on the evolution of the
trajectory of the blood vessel, which is modeled by the
string. Therefore, only the motion of the resulting string
from the numerical analysis procedure of the blood vessels
is analyzed.

The first step in describing the blood vessel behavior is
the local observation of its trajectory. An example of evo-
lution may be seen in Figures 4A–4L. From direct analysis
of the evolution of the local deviation of the Bezier trajec-
tories of the blood vessels in the vitelline membrane ex-
tracted from the numerical procedure, and for low in-plane
curvature κ (s), the rate of normal migration (migration
along N̂) of the blood vessel trajectory can be expressed
by the relationship:

Msts = ακ (s) , (1)

where α is not considered here to be a function of s. We
stress here that this relation is extracted from experimen-
tal data. It is a function of biological activity and of sev-
eral physical interactions such as constrains and stresses.
In fact, even with the Bezier curve procedure it may still
be a function of s. Yet, as a first attempt of modeling,
α is considered to be a constant. So, with this hypoth-
esis the analysis of the data has been performed again
and optimized for a constant α. Therefore the description
of the sinuosity dynamics will give global general results
averaging result from different vitelline area not having
the exact same dynamics. Furthermore, because the ex-
perimental recording can be considered to be relatively
short, α is considered to be time independent. Neverthe-
less, it is sure (and for most vascular structure of organs)
that α may have significant variation with time. Thus,
blood vessel changing size or having a higher blood flow,
with a straightening dynamics may also be modeled by
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the diminution of α, even the negativity of α. Finally,
this relation is an approximation of the true relation; nev-
ertheless as the string is continuous, locally smooth and
never exhibits any sharp changes, this migration can be
written as a series of power of κ (s). We may therefore
consider Msts expression as a first order approximation
with curvature. The zeroth order approximation is a rate
of migration Msts is equal here to 0 (because of the Bezier
deviation). Therefore, the relation above summarizes the
effect of local biological and physical activity that act on
the blood vessel trajectory within the description of this
model.

Interestingly, there is a similarity here with the local
meandering dynamics of rivers [11–13]. The physical pro-
cess underlying the meandering of the river channel is an
outbalance equilibrium of erosion and deposition from the
sides of the channel. The erosion and deposition are sup-
posed to be proportional to the normal velocity of the
water on the edge of the channel. Furthermore, the flow
in the river has high Reynolds number [11,12], and so its
velocity in the channel u can be approximated by writing:

u(n) ≈ C (1 + nκ (s)) , (2)

where C is a constant, and n is the coordinate along N̂ .
Therefore, the rate of normal migration of the channel is
also proportional to the local planar curvature. It is just
an interesting comparison, there are no erosion-deposition
dynamics in the cells motion. In the model used to study
the blood vessel sinuosity motion we are just dealing with
a string dynamics.

If this migration term was the only one, or even with
an added noise migration, blood vessels will tend to have
divergent trajectories. A small variation of the planar cur-
vature κ (s) will be indefinitely amplified. During blood
vessel migration, several mechanical stresses act on en-
dothelial cells. Therefore, the response of the string model
to physical stresses can be included in the minimizing of
this free energy F :

F [r] =
∫

ds |κ (s)|2 . (3)

Furthermore, experiments show that blood vessels have
smooth trajectories with no sharp changes. The minimiza-
tion of F and the smoothness of trajectories can be in-
cluded in another rate of migration term [10]:

MFss = β

(
∂2κ (s)

∂s2
− κ3 (s)

)
, (4)

where β is modeled to be not a function of s. β is modeled
in the same way than α, i.e. β is a function of biological
and physical activity, nevertheless we chose to model it as
a constant. This migration is the consequence of strong
global physical considerations. Finally, all other parame-
ters local or global, that we did not modeled or linked to
true biological noise, are inserted into a Gaussian noise:

Mnoise = χ(s, t). (5)

The noise is chosen to be Gaussian as a hypothesis. The
standard deviation D may also be a function of time, bi-
ological and physical activity, yet it is modeled to be con-
stant.

An other remark can be made in order to get the equa-
tion of motion of the blood vessel: in the same way than
in river meandering dynamics the dominant local velocity
of motion is the one in the normal (N̂) direction. Thus,
as this equation is dealing with a noise term, the tangen-
tial velocity (along Ŝ) of the curve can be replaced by its
average value, which leads to the meandering river equa-
tion [11]:

∂r

∂t
= −α

∂2r

∂s2
− β

∂4r

∂s4
+ χ (s, t)−〈∫ s

0

dsoκ (so)
(

ακ (so) + β

(
∂2κ (so)

∂s2
− κ3 (so)

)

+ χ(so, t)
)〉

Ŝ. (6)

Interestingly, this equation is able to model both the ef-
fects of high Reynolds number flow on river meandering
dynamics, and the effects of low Reynolds number flow on
the endothelial cells and so on the trajectories of blood
vessels. Nevertheless, a major difference between the two
physical processes is that in meandering river dynamics,
small-wavelength meander bends tend to decay due to the
Bernoulli shear [13]. In the vascular system all wavelengths
are authorized and they are no specific processes acting
on small-wavelength bends. Another major differences be-
tween the two dynamics is that there are no endothelial
cells detachment and migration inside the blood vessel.
Furthermore, the model does not comment at all the mo-
tion of endothelial cells close to the blood vessel.

In order to model both the sinuosity statistics and
the sinuosity amplitude statistics, we have implemented
a program to solve the equation of motion of the blood
vessel curve. The statistics of length observed in the bio-
logical samples were added to the program to adjust the
length of the string. Furthermore, the initial geometry of
the non straight blood vessel at initial time of recording
were added also to the numerical statistic calculation. The
number of iterations was scaled to the time of experimen-
tal measurements, for each blood vessel. As all blood ves-
sels are not visible at the same time, experiments give
access to a statistic of recording times. A large number
of simulations were performed, and result was extracted
after a spatial rescaling (Figs. 3B, 3C). The correlation be-
tween experimental results and simulations is good, and
the distribution of meandering amplitude seems to fol-
low a Gaussian like statistics. Nevertheless, it should be
pointed out that there are three parameters in the equa-
tion of motion: α, β, D, where D is the standard deviation
of the noise and that clearly the solution extracted here is
not unique and some values of the parameters give similar
results. Nevertheless, results of the model give quantita-
tive results and further experimental work will give more
results and help find the exact relations linking the param-
eters to both physical and biological data. Furthermore,
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experimental work should be focus to give three parame-
ters value to specific zone of the vitelline membrane and
specific zone of the chicken embryo and watch the relation
between these zones.

In this numerical treatment the blood vessels cross-
ing problem has been voluntarily avoided. In the simula-
tion, a probability of crossing could have been added and
then the decomposition of the first string into two new
ones could have been modeled. Nevertheless, because this
problem does not deal with river meandering dynamics,
such assumptions can not easily be made. Complex bi-
ological rules govern the connection properties of blood
vessels, especially about artery-vein differentiation. Com-
plete theory is not known but a very promising one known
as the “go with the flow” [14,15] seems to give very good
experimental results. Therefore, and because of this com-
plexity, we have chosen to add a length distribution to the
program.

5 Second experiment and extension
of the model

The second experiment, was performed to investigate
global curvature effects on the vascular structure, it began
46 h after incubation. The purpose was to give an almost
constant global curvature to the vitelline membrane, in
order to study its effect on the vascular structure. Several
balls of glass, of different sizes, were designed. They were
washed successively with bleach, alcohol and water to be
finally exposed to UV light for 15 min. All this procedure
was performed in order to diminish the risks of infections
of the vitelline membrane. Half of the balls were put di-
rectly on the vitelline membrane, the other half, under this
membrane by pushing the yolk. Imaging was continuously
performed between 48 h and 75 h after incubation. There
are different kinds of issues for these two experiments: in
the first kind, there is the risk of injuring the membrane,
in the second kind, injuring the yolk will cause the quick
death of the embryo. All experiments were performed far
from the embryo itself, so on the external parts of the
vitelline membrane.

The global tissue curvature was investigated, because
several biological tissues having a non negligible curvature
tend to have a strongly oscillating vascular structure. In
this study, the vascular network was on a planar field,
which was in three dimensional spaces. It is important to
see the effect of global curvature on blood vessel dynamics
for a better understanding of the vascular structures on
the surface of some organs such as the heart. Evolution
of the mean value of sinuosity with the variation of the
curvature is exposed in Figure 5. A clear increase in the
sinuosity is observed with the rise of curvature. Results of
statistics of amplitude (an example is exposed in Fig. 6)
showed modifications and distortions that did not seemed
to be well fitted using modified values of the couple (α, β).
There is an intrinsic effect of the change of curvature, it
is the change of metric. Derivation in curved space is not
similar to derivation in flat space [16]. Therefore, In order

Fig. 5. Results of the second experiment. The histogram val-
ues are divided by the global number of data considered N .
Evolution of the mean value of sinuosity versus global curva-
ture (N = 4532), in Blue the fit of the modified equation of
vascular motion, where the normal derivatives have been re-
placed by their covariant equivalent.
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Fig. 6. Example of statistics of amplitude of sinuosity for a
global curvature of 1 cm. The green curve is a fit obtained by
varying the couple of parameters α and β. The blue curve is a
fit obtained with the same value of α and β than in the first
part of this paper but with the covariant derivatives.

to model the effect of the global curvature of the vitelline
membrane, we focused on the effect of the change of the
space metric. All derivatives used in equation (5) were
replaced by their curved space equivalent:

∇jr =
(

∂ri

∂xj
+ rkΓ i

jk

)
ei, (7)

where Γ i
jk are the Christoffel’s symbols [16], ei are the

local unit vectors, xj are the local coordinates, and where
we have used implicit summation notation.

Replacing the classic derivatives with covariant deriva-
tives modifies the local in-plane values of κ (s) and so
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modifies the dynamics of the blood vessel motion. Simula-
tions were performed with the same three parameters α, β,
D used to fit the first experiment data (Figs. 3B, 3C). The
result is exposed in Figure 5. We see that for small global
curvature the fit is in good agreement with experimental
data. Clearly, for these curvatures there is only a pure met-
ric effect, that acts locally on the curve of the blood vessel
by changing κ (s). We can see a difference between the fit
and experimental data growing with the rise of the global
curvature. Clearly, other biological processes are acting on
the system due to the geometry modifications, and to the
mechanical constrains that act on the vitelline membrane.
These experimental observations seem in good agreement
with the surface vascular structures and in fact with the
global vascular structure observed in many organs such as
the heart, the liver or the kidney, all three of them having
a complex curved geometry.

6 Conclusion

In this paper we focused our analysis on the unusual sub-
ject of sinuosities in the vascular system. We developed
an image analysis procedure, allowing the direct study of
the evolution of the vascular structure. The equation of
river meandering dynamics has been able to model the
statistics of both sinuosity and amplitude of sinuosity of
the embryo vascular system. The model has been used to
globally model the sinuous behavior of the blood vessel,
leading to a general description of the meandering dynam-
ics of the vitelline membrane. Furthermore, it has been
shown that for small global curvature, the rise of sinuos-
ity of the blood vessel network is mainly the consequence
of the change of space metric.

Finally, in this paper we have focused the study on
physical effects. A development of the model should inves-
tigate the dependency of the three parameters α, β and D
with biological and physical activity. The equation found
to model this behavior can be extended and developed in
order to better match new discoveries in angiogenesis re-
search. Clearly, studying the structure and properties of
the vascular system will lead to a better understanding of
the function and structure of some organs.
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