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Abstract. By applying Wei, Li and Wu’s notion (given in ‘Generalizations of
the uniformization theorem and Bochner’s method in p-harmonic geometry’, Comm.
Math. Anal. Conf., vol. 01, 2008, pp. 46–68) and method (given in ‘Sharp estimates
on A-harmonic functions with applications in biharmonic maps, preprint) and by
modifying the proof of a general inequality given by Chen in ‘On isometric minimal
immersion from warped products into space forms’ (Proc. Edinb. Math. Soc., vol. 45,
2002, pp. 579–587), we establish some simple relations between geometric estimates
(the mean curvature of an isometric immersion of a warped product and sectional
curvatures of an ambient m-manifold M̃m

c bounded from above by a non-positive
number c) and analytic estimates (the growth of the warping function). We find a
dichotomy between constancy and ‘infinity’ of the warping functions on complete
non-compact Riemannian manifolds for an appropriate isometric immersion. Several
applications of our growth estimates are also presented. In particular, we prove that
if f is an Lq function on a complete non-compact Riemannian manifold N1 for some
q > 1, then for any Riemannian manifold N2 the warped product N1 ×f N2 does not
admit a minimal immersion into any non-positively curved Riemannian manifold. We
also show that both the geometric curvature estimates and the analytic function growth
estimates in this paper are sharp.

2000 Mathematics Subject Classification. Primary 26D10, 53C42; secondary
31B05, 53C21.

1. Introduction. In [5], B. Y. Chen established a new relationship between extrinsic
quantities and intrinsic quantities of Riemannian manifolds via Nash’s theorem. In
particular, he obtained a necessary condition for an arbitrary isometric immersion of a
warped product N1 ×f N2 into a Riemannian m-manifold Rm(c) of constant sectional
curvature c as follows.

THEOREM 1.1. (Chen [5]) Let φ : N1 ×f N2 → Rm(c) be an isometric immersion of
a warped product N1 ×f N2 into a Riemannian m-manifold Rm(c) of constant sectional
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curvature c. Then the warping function f satisfies

− (n1 + n2)2

4n2
H2 − n1c ≤ �f

f
, (1)

where ni = dim Ni, i = 1, 2 ; H2 is the squared mean curvature of φ ; and �f is the
Laplacian of f on N1 (defined as the divergence of the gradient vector field of f ). The
equality sign in (1) holds if and only if φ is a mixed totally geodesic immersion with trace
h1 = trace h2, where h1 and h2 are the restriction of the second fundamental form h of φ

restricted to N1 and N2, respectively.

On the other hand, S. W. Wei, J. Li and L. Wu extended in [9, 10] the scope
of Lq or q-integrable functions on complete non-compact Riemannian manifolds by
generalising them to ‘p-finite, p-mild, p-obtuse, p-moderate and p-small’ functions that
depend on q and introducing the concepts of their counterparts ‘p-infinite, p-severe,
p-acute, p-immoderate and p-large’ growth.

The purposes of this paper are the following: First, by modifying the proof of
Theorem 1.1 in [5], we prove that the same inequality (1) holds if the ambient space
Rm(c) is replaced by an arbitrary Riemannian m-manifold M̃m

c with sectional curvatures
bounded from above by the constant c. Next, by applying this general inequality and
the method of Wei, Li and Wu, we prove several simple relations between the growth of
the warping function f on a complete non-compact Riemannian manifold N1 and the
squared mean curvature of the isometric immersion φ of N1 ×f N2 into M̃m

c . Finally,
we provide several applications of our growth estimates. In particular, we prove that
if f is an Lq function on a complete non-compact Riemannian manifold N1 for some
q > 1, then for any Riemannian manifold N2 the warped product N1 ×f N2 does not
admit any minimal immersion into any non-positively curved Riemannian manifold.
In the last section, we provide some examples to illustrate that both the geometric
curvature estimates and the analytic function growth estimates in this paper are
sharp.

2. Preliminaries. Let N be a Riemannian n-manifold isometrically immersed
in a Riemannian m-manifold M̃m. We choose a local field of orthonormal frame
e1, . . . , en, en+1, . . . , em in M̃m such that restricted to N, the vectors e1, . . . , en are
tangent to N and en+1, . . . , em are normal to N.

Let K(ei ∧ ej), 1 ≤ i < j ≤ n, denote the sectional curvature of the plane section
spanned by ei and ej. Then the scalar curvature of N is given by

τ =
∑
i<j

K(ei ∧ ej). (2)

Let L be a subspace of TxN of dimension r ≥ 2 and {e1, . . . , er} an orthonormal basis
of L. The ‘scalar curvature τ (L) of the r-plane section L’, introduced in [4], is defined
by

τ (L) =
∑
α<β

K(eα ∧ eβ), 1 ≤ α, β ≤ r. (3)

For a submanifold N in M̃m we denote by ∇ and ∇̃ the Levi-Civita connections
of N and M̃m, respectively. The Gauss and Weingarten formulas are respectively given
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by (see, for instance, [2])

∇̃X Y = ∇X Y + h(X, Y ), (4)

∇̃Xξ = −Aξ X + DXξ (5)

for vector fields X, Y tangent to N and ξ normal to N, where h denotes the
second fundamental form, D the normal connection and A the shape operator of
the submanifold. Let {hr

ij}, i, j = 1, . . . , n, r = n + 1, . . . , m, denote the coefficients of
the second fundamental form h with respect to e1, . . . , en, en+1, . . . , em.

Denote by R and R̃ the Riemann curvature tensor of N and M̃m, respectively.
Then the equation of Gauss is given by

R(X, Y ; Z, W ) = R̃(X, Y ; Z, W ) + 〈h(X, W ), h(Y, Z)〉
− 〈h(X, Z), h(Y, W )〉 (6)

for vectors X, Y, Z, W tangent to N.
The mean curvature vector

−→
H is defined by

−→
H = 1

n
trace h = 1

n

n∑
i=1

h(ei, ei), (7)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TN of N. The
squared mean curvature is given by H2 = 〈−→

H ,
−→
H 〉, where 〈 , 〉 denotes the inner

product. A submanifold N is called minimal in M̃m if the mean curvature vector of N
in M̃m vanishes identically.

Let M be a Riemannian k-manifold and {e1, . . . , ek} be orthonormal frame field
on M. For a smooth function ϕ on M with Levi-Civita connection ∇M , the Laplacian
of ϕ is defined by the divergence of the gradient of ϕ or the trace of the Hessian of ϕ, i.e.

�ϕ =
k∑

j=1

{
ejejϕ − (∇M

ej
ej

)
ϕ
}
. (8)

A C2 function ϕ on M is said to be harmonic, subharmonic or superharmonic if
we have �ϕ = 0, �ϕ ≥ 0 or �ϕ ≤ 0 on M, respectively.

An isometric immersion φ : N1 ×f N2 → M̃m of a warped product N1 ×f N2 into a
Riemannian m-manifold M̃m is called mixed totally geodesic if the second fundamental
form h of φ satisfies h(X, Z) = 0 for any X tangent N1 and Z tangent to N2.

3. A general inequality. By making a minor modification of the proof of
Theorem 1.1 in [5] we have the following

THEOREM 3.1. If M̃m
c is a Riemannian manifold with sectional curvatures bounded

from above by a constant c, then for any isometric immersion φ : N1 ×f N2 → M̃m
c from

a warped product N1 ×f N2 into M̃m
c the warping function f satisfies

− (n1 + n2)2

4n2
H2 − n1c ≤ �f

f
, (9)

where n1 = dim N1 and n2 = dim N2.
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Proof. Put n = n1 + n2 and N = ∇1 ×f N2. If we chose a local orthonormal frame
e1, . . . , en such that e1, . . . , en1 are tangent to N1 and en1+1, . . . , en are tangent to N2,
then we have

−�f
f

=
n1∑

j=1

K(ej ∧ es) (10)

for each s ∈ {n1 + 1, . . . , n}. It follows from the equation of Gauss that the scalar
curvature τ of N and the squared mean curvature H2 of N in M̃m

c satisfy (cf., e.g., [2])

2τ (x) = n2H2(x) − ‖h‖2(x) + 2τ̃ (Tx(N)), (11)

where ‖h‖2 is the squared norm of the second fundamental form h of N in M̃m
c and

τ̃ (Tx(N)) is the scalar curvature of the subspace Tx(N) in M̃m
c as defined in (3).

Let us put

δ = 2τ − 2τ̃ (Tx(N)) − n2

2
H2. (12)

Then (12) becomes

n2H2 = 2δ + 2‖h‖2. (13)

If we choose an orthonormal frame en+1, . . . , em of the normal bundle so that en+1

is in the direction of the mean curvature vector, then we obtain(
n∑

i=1

hn+1
ii

)2

= 2

⎡⎣δ +
n∑

i=1

(
hn+1

ii

)2 +
∑
i �=j

(
hn+1

ij

)2 +
m∑

r=n+2

n∑
i,j=1

(
hr

ij

)2

⎤⎦ , (14)

where hr
ij = 〈

h(ei, ej), er
〉
. Equation (14) is equivalent to

(ā1 + ā2 + ā3)2 = 2

⎡⎣δ + ā2
1 + ā2

2 + ā2
3 + 2

∑
1≤i<j≤n

(
hn+1

ij

)2

+
m∑

r=n+2

n∑
i,j=1

(hr
ij)

2 − 2
∑

2≤j<k≤n1

hn+1
jj hn+1

kk − 2
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt

⎤⎦ , (15)

where ā1 = hn+1
11 , ā2 = hn+1

22 + · · · + hn+1
n1n1

and ā3 = hn+1
n1+1n1+1 + · · · + hn+1

nn .
Applying Lemma 3.1 of [3] to (15) yields∑

1≤j<k≤n1

hn+1
jj hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

tt

≥ δ

2
+

∑
1≤α<β≤n

(
hn+1

αβ

)2 + 1
2

m∑
r=n+2

n∑
α,β=1

(
hr

αβ

)2
. (16)
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From the equation of Gauss and (10), we have the following at point x =
(x1, x2) ∈ N:

−n2�f
f

= τ −
∑

1≤j<k≤n1

K(ej ∧ ek) −
∑

n1+1≤s<t≤n

K(es ∧ et)

= τ − τ̃ (Tx1 (N1)) −
m∑

r=n+1

∑
1≤j<k≤n1

(
hr

jjh
r
kk − (

hr
jk

)2
)

− τ̃ (Tx2 (N2)) −
m∑

r=n+1

∑
n1+1≤s<t<n

(
hr

ssh
r
tt − (

hr
st

)2
)

. (17)

Therefore, by (12), (16) and (17), we obtain

−n2�f
f

≤ τ − τ̃ (Tx(N)) + n1n2 max K̃ −
∑

j∈I1; t∈I2

(
hn+1

jt

)2

− 1
2

m∑
r=n+2

n∑
α,β=1

(
hr

αβ

)2 +
m∑

r=n+2

∑
1≤j<k≤n1

((
hr

jk

)2 − hr
jjh

r
kk

)
+

m∑
r=n+2

∑
n1+1≤s<t<n

((
hr

st

)2 − hr
ssh

r
tt

)
− δ

2

= τ − τ̃ (Tx(N)) + n1n2 max K̃ −
m∑

r=n+1

∑
j∈I1

∑
t∈I2

(
hr

jt

)2

− 1
2

m∑
r=n+2

( ∑
j∈I1

hr
jj

)2
− 1

2

m∑
r=n+2

(∑
t∈I2

hr
tt

)2
− δ

2

≤ τ − τ̃ (Tx(N)) + n1n2 max K̃ − δ

2

= n2

4
H2 + n1n2 max K̃, (18)

where I1 = {1, . . . , n1}, I2 = {n1 + 1, . . . , n} and max K̃(x) denotes the maximum of the
sectional curvatures of M̃m

c restricted to 2-plane sections of the tangent space Tx(N1 ×f

N2) at x ∈ N1 × N2. Since max K̃ ≤ c by the assumption, we obtain inequality (9). �
REMARK 3.1. For the most recent survey on inequalities similar to (9), see [6].

4. Growth of warping function and mean curvature. In the following, assume that
N1 is a complete non-compact Riemannian manifold and B(x0; r) is the geodesic ball
of radius r centred at x0 ∈ N1.

We recall some notions from [7, 9].

DEFINITION 4.1. A function f on N1 is said to have p-finite growth (or, simply, is
p-finite) if there exists x0 ∈ N1 such that

lim
r→∞ inf

1
rp

∫
B(x0;r)

|f |qdv < ∞; (19)

it has p-infinite growth (or, simply, is p-infinite) otherwise (cf. (27) for p = 2 ).
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DEFINITION 4.2. A function f has p-mild growth (or, simply, is p-mild) if there exist
x0 ∈ N1 , and a strictly increasing sequence of {rj}∞0 going to infinity, such that for
every l0 > 0, we have

∞∑
j=
0

(
(rj+1 − rj)p∫

B(x0;rj+1)\B(x0;rj)
|f |qdv

) 1
p−1

= ∞ ; (20)

it has p-severe growth (or, simply, is p-severe) otherwise (cf. (40) for p = 2).

DEFINITION 4.3. A function f has p-obtuse growth (or, simply, is p-obtuse) if there
exists x0 ∈ N1 such that for every a > 0, we have

∫ ∞

a

(
1∫

∂B(x0;r) |f |qdv

) 1
p−1

dr = ∞ ; (21)

it has p-acute growth (or, simply, is p-acute) otherwise (cf. (44) for p = 2).

DEFINITION 4.4. A function f has p-moderate growth (or, simply, is p-moderate) if
there exist x0 ∈ N1, and F(r) ∈ F ,such that

lim sup
r→∞

1
rpFp−1(r)

∫
B(x0;r)

|f |qdv < ∞. (22)

And it has p-immoderate growth (or, simply, is p-immoderate) otherwise, where

F = {F : [a,∞) −→ (0,∞)|
∫ ∞

a

dr
rF(r)

= +∞ for some a ≥ 0} . (23)

(Notice that the functions in F are not necessarily monotone.)

DEFINITION 4.5. A function f has p-small growth (or, simply, is p-small) if there
exists x0 ∈ N1 , such that for every a > 0 ,we have

∫ ∞

a

(
r∫

B(x0;r) |f |qdv

) 1
p−1

dr = ∞; (24)

it has p-large growth (or, simply, is p-large) otherwise.

The above definitions of ‘p-finite, p-mild, p-obtuse, p-moderate, p-small’ and their
counterparts ‘p-infinite, p-severe, p-acute, p-immoderate andp-large’ growth depend on
q, and q will be specified in the context in which the definition is used.

From now on, we assume that N1 is a complete non-compact Riemannian n1-
manifold and f is a C2-function on N1. Denote by M̃m

c a Riemannian m-manifold with
sectional curvatures K̃ ≤ c for some real number c ≤ 0.

We have the following results.

THEOREM 4.1. If f is non-constant and 2-finite for some q > 1, then for any
Riemannian n2-manifold N2 and any isometric immersion φ of the warped product
N1 ×f N2 into any Riemannian manifold M̃m

c with c ≤ 0, the mean curvature H of φ
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satisfies

H2 >
4n1n2|c|

(n1 + n2)2
(25)

at some points.

COROLLARY 4.1. Suppose the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies

H2 ≤ 4n1n2|c|
(n1 + n2)2

(26)

everywhere on N1 ×f N2. Then the warping function f either is a constant or for every
q > 1 has 2-infinite growth; i.e. for every x0 ∈ N1,

lim
r→∞

1
r2

∫
B(x0;r)

|f |qdv = ∞ . (27)

THEOREM 4.2. If f is non-constant and 2-mild for some q > 1, then for any isometric
immersion of N1 ×f N2 into a Riemannian manifold M̃m

c with c ≤ 0 we have (25) at some
points.

COROLLARY 4.2. Suppose that the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies (26) everywhere on N1 ×f N2. Then the warping function
f either is a constant or has 2-severe growth for every q > 1 .

THEOREM 4.3. If f is non-constant and 2-obtuse for some q > 1 , then for any
isometric immersion of N1 ×f N2 into a Riemannian manifold M̃m

c with c ≤ 0 we have
(25) at some points.

COROLLARY 4.3. Suppose the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies (26) everywhere on N1 ×f N2. Then the warping function
f either is a constant or has 2-acute growth for every q > 1 .

THEOREM 4.4. If f is non-constant and 2-moderate for some q > 1, then for any
isometric immersion of N1 ×f N2 into a Riemannian manifold M̃m

c with c ≤ 0 we have
(25) at some points.

COROLLARY 4.4. Suppose the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies (26) everywhere on N1 ×f N2. Then the warping function
f either is a constant or has 2-immoderate growth for every q > 1 .

THEOREM 4.5. If f is non-constant and 2-small for some q > 1, then for any isometric
immersion of N1 ×f N2 into a Riemannian manifold M̃m

c with c ≤ 0 we have (25) at some
points.

REMARK 4.1. The assumption on Theorems 4.1–4.5 cannot be dropped. Otherwise,
we have counter-examples that violate (25) (cf. Remark 7.1).

COROLLARY 4.5. Suppose that the squared mean curvature of the isometric immersion
φ : N1 ×f N2 → M̃m

c satisfies (26) everywhere on N1 ×f N2. Then the warping function
f either is a constant or has 2-large growth for every q > 1 .
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REMARK 4.2. Corollaries 4.1–4.5 lead to a dichotomy between constancy and
‘infinity’ of the warping functions on complete non-compact Riemannian manifolds
for isometric immersions of the warped products.

THEOREM 4.6. Let f be a non-constant, Lq function on N1 for some q > 1; then for
any isometric immersion of N1 ×f N2 into a Riemannian manifold M̃m

c with c ≤ 0 we
have (25) at some points.

5. Proofs of Theorems 4.1–4.6 and Corollaries 4.1–4.5. Let N1 be a complete
non-compact Riemannian n1-manifold. It is well known that for any x0 ∈ N1 and any
pair of positive numbers s, t with s < t there exists a rotationally symmetric Lipschitz
continuous function ψ(x) = ψ(x; s, t) and a constant C1 > 0 (independent of x0, s, t)
with the following properties (cf. [1]):

(i) ψ ≡ 1 on B(x0; s) and ψ ≡ 0 off B(x0; t);

(ii) |∇ψ | ≤ C1
t−s , a.e. on N1;

(iii) 0 ≤ ψ ≤ 1.

Now, we assume that N2 is a Riemannian n2-manifold and that φ : N1 ×f N2 →
M̃m

c is an isometric immersion from N1 ×f N2 into a Riemannian m-manifold M̃m
c with

with sectional curvature K̃ ≤ c ≤ 0.

Proof of Theorem 4.1. Assume on the contrary that the squared mean curvature
of φ: N1 ×f N2 → M̃m

c satisfies (26). Then, Theorem 3.1 implies that the non-constant
warping function f > 0 satisfies �f ≥ 0 . Let ψ ≥ 0 be a standard cut-off as above and
m > 1. Then we have

0 ≤ ψ2f m−1�f = ψ2f m−1div(∇f ) = div(ψ2f m−1∇f ) − 〈∇(ψ2f m−1),∇f
〉
.

Then by integrating this expression over N1 and applying Stoke’s theorem we find

0 ≥
∫

B(t)
〈∇(ψ2 f m−1),∇f 〉dv

≥
∫

B(t)\B(s)
2ψf m−1〈∇ψ,∇f 〉dv +

∫
B(t)

(m − 1)ψ2f m−2|∇f |2dv, (28)

where we have used the fact ψ ≡ 1 on B(s). Hence, by Cauchy–Schwarz inequality and
also condition (ii) on ψ , we have

∫
B(t)

ψ2f m−2|∇f |2dv ≤ 2
m − 1

∫
B(t)\B(s)

ψf m−1|∇ψ | |∇f |dv

≤ 2C1

(m − 1)(t − s)

∫
B(t)\B(s)

ψf m−1|∇f |dv. (29)
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Thus, from (29) and by Cauchy–Schwarz inequality, we obtain∫
B(t)

ψ2f m−2|∇f |2dv

≤ 2C1

(m − 1)(t − s)

(∫
B(t)\B(s)

f mdv

) 1
2
(∫

B(t)\B(s)
ψ2f m−2|∇f |2dv

) 1
2

. (30)

Let {rj} be a sequence of strictly increasing positive numbers and ϕj(x) :=
ψ(x; rj, rj+1) be the cut-off function, and put C̃ = ( 2C1

m−1 )2. Let us define

Aj = 1

r2
j

∫
B(rj)

f mdv, Qj+1 =
∫

B(rj+1)

ϕ2
j f m−2|∇f |2dv. (31)

Then we have ∫
B(rj+1)\B(rj)

f mdv = r2
j+1Aj+1 − r2

j Aj (32)

and ∫
B(rj+1)\B(rj)

ϕ2
j f m−2|∇f |2dv

≤
∫

B(rj+1)
ϕ2

j f m−2|∇f |2dv −
∫

B(rj)
ϕ2

j−1f m−2|∇f |2dv

= Qj+1 − Qj, (33)

since ϕ2
j−1 ≤ 1 = ϕ2

j on B(rj). Combining (30), (32) and (33) gives

Q2
j+1 ≤ C̃

(
r2

j+1Aj+1 − r2
j Aj

(rj+1 − rj)2

)
[Qj+1 − Qj]. (34)

Since the warping function f is non-constant, there exists a real number a > 0
such that f �≡ const. on B(a) . As a consequence of this and (34), we observe that for
any strictly increasing positive sequence {rj} , there exists an integer 
0 > 0 such that

r
0 ≥ a , Qj > Qa :=
∫

B(a)
ϕ2

j f m−2|∇f |2dv > 0,

r2
j+1Aj+1 − r2

j Aj > 0 and Qj+1 − Qj > 0 whenever j > 
0.

(35)

If we choose a positive sequence {rj} satisfying rj+1 ≥ 2rj, then we have

r2
j+1Aj+1 − r2

j Aj

(rj+1 − rj)2
≤ r2

j+1Aj+1

(rj+1 − 1
2 rj+1)2

≤ 4Aj+1. (36)

It follows from (34) and (36) that

Q2
j+1 ≤ 4C̃Aj+1[Qj+1 − Qj] and Qj+1 ≤ 4C̃Aj+1. (37)

https://doi.org/10.1017/S0017089509990012 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089509990012


588 BANG-YEN CHEN AND SHIHSHU WALTER WEI

On the other hand, it follows from assumption ‘lim infr→∞ 1
r2

∫
B(x0;r) f mdv < ∞’

that there exist a constant K > 0 and a sequence {rj}with rj+1 ≥ 2rj such that Aj+1 ≤ K .
From (37) we know that the corresponding sequence {Qj} is bounded from above by
4C̃ · K . So, after summing up (37) over j, we obtain

N∑
j=1

Q2
j+1 ≤ 4C̃K

[
QN+1 − Q1

] ≤ 4C̃KQN+1 ≤ 16C̃2K2 (38)

for each integer N > 1. Therefore, we get Qj → 0 as j → ∞. Consequently, f must be
a constant, which is a contradiction. �

Proof of Theorem 4.2. Assume that (26) holds everywhere on N1 ×f N2. Let a
and Qa := Qa(0) > 0 be as in (35). It then follows from (34) and summing over j from

0 to 
 that for every strictly increasing sequence {rj}∞1 going to infinity and every
r
0 > a, we have


∑
j=
0

(rj+1 − rj)2

r2
j+1Aj+1 − r2

j Aj
≤ C̃


∑
j=
0

[
Qj+1 − Qj

]
Q2

j+1

< C̃
∫ ∞

Qa

1
r2

dr

= C̃
Qa

< ∞. (39)

Letting 
 → ∞ , we get

∞∑
j=
0

(rj+1 − rj)2∫
B(x0;rj+1)\B(x0;rj)

|f |qdv

< ∞ (40)

in which q = m > 1. Thus, f is 2-severe, which is a contradiction. �

Proof of Theorem 4.3. Assume that (26) holds everywhere on N1 ×f N2. Consider
the general term in the finite series (39); we have

rj+1 − rj

r2
j+1Aj+1 − r2

j Aj
≤ C̃

(
Qj+1 − Qj

rj+1 − rj

)
· 1

Q2
j+1

. (41)

Since {rj} is arbitrary in (41), we can set a variable r = rj, let rj+1 → r = rj and
obtain

1
d
dr

(r2Ar)
≤ C̃

d
dr

Qr

Q2
r

(42)
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for r > a a.e., where integrals Qr := Qj and Ar := Aj , with B(r) as their domain of
integrations. Integrating the above inequality over the interval [a, t] yields∫ t

a

(
1

d
dr

(r2Ar)

)
dr ≤ C̃

Qa
< ∞. (43)

Let t → ∞; we get

∫ ∞

a

⎛⎜⎜⎝ 1∫
∂B(x0;r)

|f |qdv

⎞⎟⎟⎠ dr < ∞ (44)

in which q = m > 1 by the Coarea formula. This contradicts the assumption that f is
2-obtuse. �

Proof of Theorem 4.4. Assume that (26) holds everywhere on N1 ×f N2. We
observe that for any sequence {rj = 2j r̃0, r̃0 > 0} and any F(r) > 0,


∑
j=
0

(rj+1 − rj)2

r2
j+1Aj+1 − r2

j Aj
≥ 1

4


∑
j=
0

r2
j+1

r2
j+1Aj+1

≥ 1
8


∑
j=
0

∫ rj+2

rj+1

(
r

r2Ar

)
dr

= 1
8

∫ r
+2

r
0+1

1

rF(r)
(

r2Ar

r2F(r)

)dr. (45)

The second step follows from the mean-value theorem for integrals. Combining (40)
and (45) together and letting 
 → ∞, one gets∫ ∞

r
0+1

1

rF(r)
(

r2Ar

r2F(r)

)dr < ∞.

Since f is assumed to have 2-moderate growth for q = m > 1, there exist constants
C > 0 , a < r and F ∈ F such that

∞ = 1
C

∫ ∞

a

1
rF(r)

dr <

∫ ∞

a

1

rF(r)
(

r2Ar

r2F(r)

)dr < ∞,

which is a contradiction. �

Proof of Theorem 4.5. Assume that (26) holds everywhere on N1 ×f N2. By
assumption f has 2-small growth for q = m > 1 and some a > 0 . Thus, if we
define F0(r) = ( r2Ar

r2

)
, i.e. r2Ar

r2F0(r) = 1 , we would have
∫ ∞

a
1

rF0(r) dr = ∞, i.e., F0(r) ∈
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F . In view of Theorem 4.4, this would lead to 1 = lim supr→∞
1

r2F0(r) r
2Ar = ∞, a

contradiction. �

Proof of Corollaries 4.1–4.5. Follows at once from Theorem 9 and respectively
from Theorems 4.1–4.5. �

Proof of Theorem 4.6. This follows from the fact that every Lq-function has 2-
finite, 2-mild, 2-obtuse, 2-moderate, 2-small growth for the same q (cf. [9]) and any one
of Theorems 4.1–4.5. Remark 4.2. For the most recent survey on the growth related to
(19)–(24), see [11]. �

6. Some applications and remarks.

THEOREM 6.1. Suppose q > 1 and the warping function f is one of the following:
2-finite, 2-mild, 2-obtuse, 2-moderate and 2-small. If N2 is compact, then there does not
exist an isometric minimal immersion from N1 ×f N2 into any Euclidean space.

Proof. Suppose the contrary; then inequality (26) would be true. Hence by
Corollaries 4.1–4.5, f would be a constant. It follows from Theorem 3.1 that φ would
be mixed totally geodesic and hence a product of minimal immersion (see [5]),

φ = (φ1, φ2) : N1 × N2 → �m1 × �m2 = �m.

This would contradict the fact that there is no compact minimal submanifold N2 in
the Euclidean space �m2 . �

Finally, from Theorem 4.6 we have the following.

THEOREM 6.2. If f is an Lq function on N1 for some q > 1, then for any Riemannian
manifold N2 the warped product N1 ×f N2 does not admit any isometric minimal
immersion into any Riemannian manifold with non-positive sectional curvature.

Proof. This follows immediately from Theorem 4.6. �

7. Remarks.

REMARK 7.1. In views of our results, it is interesting to point out that there do
exist isometric minimal immersions from a warped product N1 ×f N2 into M̃m

c with
c ≤ 0 such that the warping function f is 2-infinite, 2-severe, 2-acute, 2-immoderate
and 2-large for any q > 1.

A simple example of this is the warped product R ×ex �n−1 (or R ×e−x �n−1) of
constant sectional curvature −1 which can be isometrically immersed in Hn+1(−1) as
a totally geodesic (hence minimal) submanifold.

REMARK 7.2. Inequality (25) (resp. inequality (26)) on H2 as the assumption for
Theorems 4.1–4.5 (resp. assumption of Corollaries 4.1–4.5) is sharp. This can be seen
from the following two examples (cf. [2]).

First, let us regard the Euclidean 2k-space �2k as the warped product �k ×f �k

with a constant warping function f . Then �k ×f �k can be isometrically immersed in
H2k+1(−1) as a totally umbilical hypersurface with H2 = 1. Since n1 = n2 = k, the
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right-hand side of (26) is also equal to 1. Thus, this example satisfies the equality case
of (26). For the case k ≤ 2 , this example also shows that the non-constant assumption
on Theorems 4.1–4.5 cannot be dropped.

The second example is the warped product R ×cosh bx R of constant negative
curvature −b2. This warped product admits an isometric immersion in H3(−1) as
totally umbilical surface, for 0 < b < 1. The squared mean curvature of the immersion
satisfies

H2 = 1 − b2 <
4n1n2|c|

(n1 + n2)2
= 1 and H2 → 1 as b → 0.

The warping function cosh bx with 0 < b < 1 is a non-constant and non-harmonic
function which is 2-infinite, 2-severe, 2-acute, 2-immoderate and 2-large for any q > 1.

REMARK 7.3. Let ϕ be the function on R defined by ϕ(x) = 1 for |x| ≤ 1 and
ϕ(x) = x2 for |x| > 1. Denote by f the smooth-out function of ϕ at ±1. Then f is a
subharmonic function on R which is 2-finite, 2-mild, 2-obtuse, 2-moderate and 2-small
for any q ≤ 1; but it is 2-infinite, 2-severe, 2-acute, 2-immoderate and 2-large for q > 1.

The sectional curvature K of the warped product N = R ×f �n−1 with this
subharmonic warping function f satisfies K ≤ 0. Let M̃n+1

0 = R × N denote the
Riemannian product of the real line and N. Clearly, the sectional curvatures of M̃n+1

0 is
bounded above by 0 and the warped product N can be trivially isometrically imbedded
in M̃n+1

0 as a totally geodesic hypersurface. This isometric imbedding of N in M̃n+1
0

satisfies H2 = c = 0, which shows that the condition ‘q > 1’ given in Theorems 4.1–4.5
and Corollaries 4.1–4.5 is sharp as well.

REMARK 7.4. The assumption on the warping function f given in Theorem
6.1 cannot be dropped, since there do exist minimal hypersurfaces in �n+1 which
are isometric to some warped products N1 ×f N2 with compact N2. A simple such
example is the hypercaternoid in �n+1 (cf. [5]). The hypercaternoid is isometric to
a warped product R ×f Sn−1 with compact N2 = Sn−1 whose warping function is
2-infinite, 2-severe, 2-acute, 2-immoderate and 2-large for any q > 1 according to
Theorem 6.1.
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