A NEW CONSTRUCTION FOR REGULAR SEMIGROUPS WITH QUASI-IDEAL ORTHODOX TRANSVERSALS

XIANGJUN KONG[™] and XIANZHONG ZHAO

(Received 25 November 2006; accepted 12 December 2007)

Communicated by M. G. Jackson

Abstract

In any regular semigroup with an orthodox transversal, we define two sets R and L using Green's relations and give necessary and sufficient conditions for them to be subsemigroups. By using R and L, some equivalent conditions for an orthodox transversal to be a quasi-ideal are obtained. Finally, we give a structure theorem for regular semigroups with quasi-ideal orthodox transversals by two orthodox semigroups R and L.

2000 *Mathematics subject classification*: primary 20M10. *Keywords and phrases*: regular semigroup, inverse transversal, orthodox transversal, quasi-ideal.

1. Introduction and preliminaries

The concept of inverse transversal of a regular semigroup was first introduced by Blyth and McFadden in 1982 [3]. Since then, this class of regular semigroups has attracted several authors' attention and a series of important results have been obtained [1-3, 8-11]. If *S* is a regular semigroup, then an inverse transversal of *S* is an inverse subsemigroup S^o such that S^o meets V(a) precisely once for each $a \in S$ (that is, $|V(a) \cap S^o| = 1$), where $V(a) = \{x \in S \mid axa = a \text{ and } xax = x\}$ denotes the set of inverses of *a*. The intersection of V(a) and S^o is denoted by $V_{S^o}(a)$ and the unique element of $V_{S^o}(a)$ is denoted by a^o . It is well known that the sets $I = \{e \in S \mid ee^o = e\}$ and $\Lambda = \{f \in S \mid f^o f = f\}$ are left regular and right regular bands, respectively, and play an important role in the study of regular semigroups with inverse transversals. Other interesting subsets of *S* are $R = \{x \in S \mid x^o x = x^o x^{oo}\}$ and $L = \{x \in S \mid xx^o = x^{oo}x^o\}$. Both *R* and *L* are subsemigroups with *R* left inverse (or \mathcal{R} -unipotent) and *L* right inverse (or \mathcal{L} -unipotent). Moreover, $R \cap L = S^o$ and E(R) = I, $E(L) = \Lambda$, where E(S) denotes the idempotents of *S*. By using *R* and *L*, Saito [9, 10] gave some structure theorems of regular semigroups with inverse

^{© 2009} Australian Mathematical Society 1446-7887/2009 \$16.00

transversals, while Blyth and Almeida Santos [1, 2] classified the inverse transversals and gave some equivalent conditions for the inverse transversal S^o to be a quasiideal (defined below). Orthodox transversals were introduced by Chen [4] as a generalization of inverse transversals, and an excellent structure theorem for regular semigroups with quasi-ideal orthodox transversals was also given. Afterwards, Chen and Guo [5] considered the general case of orthodox transversals and investigated some properties concerning the sets I and Λ . Similarly two sets R and L (defined below) are shown to play an important role in the study of orthodox transversals. In this paper, we investigate some properties concerning R and L, and obtain some results that are parallel to the corresponding results on regular semigroups with inverse transversals. The main objective of this paper is to give a structure theorem for the class of regular semigroups with quasi-ideal orthodox transversals.

In a previous publication [7] we constructed regular semigroups with quasi-ideal orthodox transversals by a formal set (B, R), where R is a regular semigroup with a right ideal orthodox transversal S^o and B a band with a left ideal orthodox (in fact, band) transversal E^o . Evidently, there are different conditions on the structural 'brick' B and R. The present paper corrects this asymmetry by giving a new construction of regular semigroups with quasi-ideal orthodox transversals by way of two regular semigroups R and L. The semigroups R and L share a common orthodox transversal S^o , which is a right ideal of R and a left ideal of L. Many of the conditions on R and L are symmetric and one is weaker than that in [7] (that is, if $x \in S^o$ or $a \in S^o$ then a * x = ax in this paper; instead of if $x \in E^o$ or $e \in E^o$, then e * x = ex in [7]).

Let *S* be a semigroup and S^o a subsemigroup of *S*. Then S^o is said to be an orthodox transversal of *S* if the following conditions are satisfied.

(1.1) For all $a \in S$, $V_{S^o}(a) \neq \emptyset$.

(1.2) If $a, b \in S$ and $\{a, b\} \cap S^o \neq \emptyset$, then $V_{S^o}(a)V_{S^o}(b) \subseteq V_{S^o}(ba)$.

Note that, if S^o is an orthodox transversal of S, then S is a regular semigroup by (1.1) and S^o is an orthodox subsemigroup of S by (1.2).

A subsemigroup S^o of S is said to be a quasi-ideal of S if $S^o S S^o \subseteq S^o$.

The following theorem will be frequently used without further mention.

- (1.3) Let *e* and *f* be \mathcal{D} -equivalent idempotents of a semigroup *S*. Then each element *a* of $R_e \cap L_f$ has a unique inverse *a'* in $R_f \cap L_e$, such that aa' = e and a'a = f.
- (1.4) Let a, b be elements of a semigroup S. Then $ab \in R_a \cap L_b$ if and only if $L_a \cap R_b$ contains an idempotent.

Finally, we list two basic results that are used in this paper.

LEMMA 1.1. [5] Let S^o be a subsemigroup of S and $V_{S^o}(a) \neq \emptyset$ for each $a \in S$. Then the following conditions are equivalent:

- (1) S^{o} is an orthodox transversal of S;
- (2) $IE(S^o) \subseteq I, E(S^o) \Lambda \subseteq \Lambda, E(S^o) I \subseteq E(S), \Lambda E(S^o) \subseteq E(S).$

LEMMA 1.2. [5] Let S^o be an orthodox transversal of S. Then the following conditions are equivalent:

- (1) I is a band;
- (2) $E(S^o)I \subseteq I;$
- (3) $(\forall f \in I) (\exists f^* \in E(S^o), f^*\mathcal{L}f) f^*E(S^o)f \subseteq E(S^o);$
- (4) $(\forall f \in I) (\forall f^* \in E(S^o), f^*\mathcal{L}f) f^*E(S^o)f \subseteq E(S^o).$

We adopt the terminology and notation of [4, 6, 8].

2. Some properties

We begin this section by investigating some elementary properties of the sets R and L. For any result concerning R there is a dual result for L, which we list but omit its proof.

THEOREM 2.1. Let S be a regular semigroup with an orthodox transversal S^{o} . Let

$$R = \{x \in S \mid (\forall x^{o} \in V_{S^{o}}(x)) \ (\exists x^{oo} \in V_{S^{o}}(x^{o})) \ x^{o}x = x^{o}x^{oo}\},\$$

$$L = \{a \in S \mid (\forall a^{o} \in V_{S^{o}}(a)) \ (\exists a^{oo} \in V_{S^{o}}(a^{o})) \ aa^{o} = a^{oo}a^{o}\}.$$

Then

$$R = \{x \in S \mid (\exists y^{o} \in V_{S^{o}}(x), \exists y^{oo} \in V_{S^{o}}(y^{o})) \ y^{o}x = y^{o}y^{oo}\}$$

= $\{x \in S \mid (\exists e^{o} \in E^{o}) \ x\mathcal{L}e^{o}\},$
$$L = \{a \in S \mid (\exists b^{o} \in V_{S^{o}}(a), \exists b^{oo} \in V_{S^{o}}(b^{o})) \ ab^{o} = b^{oo}b^{o}\}$$

= $\{a \in S \mid (\exists f^{o} \in E^{o}) \ a\mathcal{R}f^{o}\}.$

PROOF. It is evident that

$$R = \{x \in S \mid (\forall x^{o} \in V_{S^{o}}(x)) \ (\exists x^{oo} \in V_{S^{o}}(x^{o})) \ x = xx^{o}x^{oo}\}.$$

For the first equation, we only need to show that, for $x \in S$, if there exist $y^o \in V_{S^o}(x)$, $y^{oo} \in V_{S^o}(y^o)$ such that $y^o x = y^o y^{oo}$, then $x \in R$. We notice that $x \mathcal{L} y^o x = y^o y^{oo}$ since $y^o \in V_{S^o}(x)$. For x^o , $y^o \in S^o$, $x \in V(x^o) \cap V(y^o) \neq \emptyset$, by [5, Lemma 2.2] we have $V_{S^o}(x^o) = V_{S^o}(y^o)$, so $y^{oo} \in V_{S^o}(x^o)$. So $x \mathcal{L} y^o y^{oo} \mathcal{L} x^o y^{oo}$ and hence $x = xx^o y^{oo}$. That is, $x \in R$.

For the second equation, if $x \in R$, then $x \mathcal{L}x^o x = x^o x^{oo} \in E(S^o)$. Conversely, if there exists $e^o \in E^o$ such that $x\mathcal{L}e^o$, then for any $x^o \in V_{S^o}(x)$, $x^o \mathcal{R}x^o x\mathcal{L}x\mathcal{L}e^o$, thus $x^o x \in E^o$ by [5, Theorem 2.4]. So $x^o x \mathcal{R}^{S^o} x^o$ and thus there exists $x^{oo} \in V_{S^o}(x^o)$ such that $x^o x = x^o x^{oo}$ since every idempotent in R_{x^o} is of the form $x^o x^{o'}$ for some $x^{o'} \in V_{S^o}(x^o)$. Therefore $x \in R$, and the theorem is proved.

Notice that

$$I = \{e \in E(S) \mid (\exists e^* \in E^o) \ e\mathcal{L}e^*\}, \quad \Lambda = \{f \in E(S) \mid (\exists f^+ \in E^o) \ f\mathcal{R}f^+\},\$$

and by Theorem 2.1, we have the following result.

COROLLARY. Let R and L be as in Theorem 2.1. Then $R \cap L = S^o$ and E(R) = I, $E(L) = \Lambda$.

As we know, *I* and Λ are subbands of *S* if *S*^o is an inverse transversal of *S* (see [11]). But in general, the corresponding result fails to be true if *S*^o is an orthodox transversal of *S* (see [5]). In [5], Chen and Guo proved, in general, that if *S*^o is an orthodox transversal of *S*, then the semibands \overline{I} and $\overline{\Lambda}$ generated by *I* and Λ respectively are bands, and they also gave some equivalent conditions for *I*, Λ to be bands. By *R* and *L*, we obtain an equivalent condition for *I* and Λ to be bands, which is parallel to the result on regular semigroups with inverse transversals.

THEOREM 2.2. Let S be a regular semigroup with an orthodox transversal S^o. Then R (L) is a subsemigroup of S if and only if I (Λ) is a subsemigroup of S.

PROOF. Suppose that *R* is a subsemigroup of *S*. Let *e*, $f \in I$. Then *e*, $f \in R$ and so $ef \in R$ since *R* is a subsemigroup. Also we have $ef \in E(S)$ by [9, Theorem 2.6], whence $ef \in E(S) \cap R = I$.

Conversely, suppose that *I* is a subsemigroup of *S* and let $x, y \in R$. Then

$$xy = xx^{o}x^{oo}yy^{o}y^{oo}$$

= $x \cdot x^{o}x^{oo}yy^{o} \cdot x^{o}x^{oo}yy^{o} \cdot y^{oo}$
= $xy \cdot y^{o}x^{o} \cdot x^{oo}y$.

By the definition of an orthodox transversal, we have $y^o x^o \in V_{S^o}(x^{oo}y)$, and so

$$y^{o}x^{o} \cdot x^{oo}y = y^{o} \cdot y^{oo}y^{o}x^{o}x^{oo}yy^{o} \cdot y^{oo}$$

$$\in y^{o} \cdot y^{oo}y^{o}E^{o} \cdot yy^{o} \cdot y^{oo}$$

$$\subseteq y^{o} \cdot E^{o} \cdot y^{oo} \quad (\text{since } yy^{o} \in I, yy^{o}\mathcal{L}y^{oo}y^{o} \in E^{o})$$

$$\subseteq E^{o}.$$

So we have $xy = xy \cdot y^o x^o \cdot x^{oo} y \mathcal{L} y^o x^o \cdot x^{oo} y \in E^o$; by Theorem 2.1, $xy \in R$. \Box

LEMMA 2.3. Let S be a regular semigroup with an orthodox transversal S^o. If $x \in R$ or $y \in L$, then $V_{S^o}(y)V_{S^o}(x) \subseteq V_{S^o}(xy)$.

PROOF. If $x \in R$, then for any $x^o \in V_{S^o}(x)$ there exists $x^{oo} \in V_{S^o}(x^o)$ such that $x^o x = x^o x^{oo}$. For any $y^o \in V_{S^o}(y)$,

$$x^{o}xyy^{o} = x^{o}x^{oo}yy^{o} \in E(S^{o})\Lambda \subseteq E(S)$$

and

$$yy^{o}x^{o}x = yy^{o}x^{o}x^{oo} \in IE(S^{o}) \subseteq E(S).$$

Thus

$$xy \cdot y^{o}x^{o} \cdot xy = x \cdot x^{o}xyy^{o} \cdot x^{o}xyy^{o} \cdot y = x \cdot x^{o}xyy^{o} \cdot y = xy$$

[4]

and

[5]

$$y^{o}x^{o} \cdot xy \cdot y^{o}x^{o} = y^{o} \cdot yy^{o}x^{o}x \cdot yy^{o}x^{o}x \cdot x^{o} = y^{o} \cdot yy^{o}x^{o}x \cdot x^{o} = y^{o}x^{o}.$$

For the choice of x^o and y^o , we have $V_{S^o}(y)V_{S^o}(x) \subseteq V_{S^o}(xy)$.

THEOREM 2.4. Let S be a regular semigroup with an orthodox transversal S^{o} . Then the following statements are equivalent:

- (1) S^o is a quasi-ideal;
- $E(S^{o})I \subseteq E(S^{o}), \Lambda E(S^{o}) \subseteq E(S^{o});$ (2)
- (3) $\Lambda I \subseteq S^o$:
- $SS^o \subseteq R, S^o S \subseteq L;$ (4)
- *R* is a left ideal and *L* is a right ideal of *S*. (5)

PROOF. Obviously, (1), (2) and (3) are equivalent.

(1) implies (4). If (1) holds, then $yx^o \mathcal{L}(yx^o)^o yx^o \in S^o \cap E(S) = E(S^o)$, whence $SS^o \subseteq R$; and dually $S^o S \subseteq L$.

(4) implies (5). If (4) holds, then for any $x \in S$ and $y \in R$, we have $xy = xyy^{o}y^{oo} \in C$ $SS^o \subseteq R$, whence $SR \subseteq R$; and dually $LS \subseteq L$.

(5) implies (3). If (5) holds, then for $l \in \Lambda$ and $i \in I$, there exist $i^o, l^o \in E(S^o)$, such that $i = ii^o$, $l = l^o l$. Thus

$$li = lii^o \in SS^o \subseteq SR \subseteq R$$
 and $li = l^o li \in S^o S \subseteq LS \subseteq L$,

whence $li \in R \cap L = S^o$ and we have (3).

THEOREM 2.5. Suppose that $a, a' \in L$ and $a\mathcal{L}a', y, y' \in R$ and $y\mathcal{R}y'$. Then

$$y^{o}y'V_{S^{o}}(a'y')a'a^{o} \subseteq V_{S^{o}}(ay),$$

where $y^{o} \in V_{S^{o}}(y) \cap V_{S^{o}}(y'), a^{o} \in V_{S^{o}}(a) \cap V_{S^{o}}(a').$

PROOF. Take $s \in V_{S^o}(a'y')$. Then

$$ay(y^{o}y'sa'a^{o})ay = ay'sa'y = aa^{o}a'y'sa'y'y^{o}y = aa^{o}a'y'y^{o}y = ay$$

and

$$(y^{o}y'sa'a^{o})ay(y^{o}y'sa'a^{o}) = y^{o}y'sa'y'sa'a^{o} = y^{o}y'sa'a^{o}.$$

3. The main theorem

The main objective in this section is to give a structure theorem for regular semigroups with quasi-ideal orthodox transversals. In what follows R denotes a regular semigroup with a right ideal orthodox transversal S^{o} . Then by [7, Lemma 1], E(R) = I is a band, consequently R is an orthodox semigroup and we will denote the minimum inverse semigroup congruence on R by γ . For $a \in R$, the R-class of R

containing *a* will be denoted by R_a and the γ -class containing *a* will be denoted by T(a). Then $T(a) \cap S^o = V_{S^o}(a)$ and by [5, Theorem 2.6] and since *R* is orthodox,

$$V_{S^o}(a) \cap V_{S^o}(b) \neq \emptyset \quad \Longleftrightarrow \quad V_{S^o}(a) = V_{S^o}(b) \quad \Longleftrightarrow \quad T(a) = T(b)$$

for all $a, b \in R$.

We define K(a) = K(b) if $R_a = R_b$ and T(a) = T(b) for $a, b \in R$ and we define a relation \mathcal{K} on R by $(a, b) \in \mathcal{K}$ if K(a) = K(b). Then \mathcal{K} is an equivalence relation on R.

THEOREM 3.1. Let *R* and *L* be regular semigroups with a common orthodox transversal S^o. Suppose that S^o is a right ideal of *R* and a left ideal of *L*. Let $L \times R \longrightarrow S^o$ described by $(a, x) \longrightarrow a * x$ be a mapping such that for any $x, y \in R$ and for any $a, b \in L$:

(1) (a * x)y = a * xy and b(a * x) = ba * x;

(2) *if* $x \in S^o$ or $a \in S^o$, then a * x = ax; and

(3) if $a, a' \in L$ and $a\mathcal{L}a', y, y' \in R$ and $y\mathcal{R}y'$, then

$$y^{o}y'V_{S^{o}}(a'*y')a'a^{o} \subseteq V_{S^{o}}(a*y),$$

where $y^{o} \in V_{S^{o}}(y) \cap V_{S^{o}}(y'), a^{o} \in V_{S^{o}}(a) \cap V_{S^{o}}(a').$

Define a multiplication on the set

$$\Gamma = R/\mathcal{K} \mid \times \mid L/\mathcal{L} = \{ (K_x, L_a) \in R/\mathcal{K} \times L/\mathcal{L} \mid V_{S^o}(x) \cap V_{S^o}(a) \neq \emptyset \}$$

by

$$(K_x, L_a) (K_y, L_b) = (K_{xx^o(a*y)}, L_{(a*y)y^ob}).$$

Then Γ is a regular semigroup with a quasi-ideal orthodox transversal that is isomorphic to S^{o} .

Conversely, every regular semigroup with a quasi-ideal orthodox transversal can be constructed in this way.

To prove this theorem, we give a sequence of lemmas as follows.

LEMMA 3.2. The multiplication in Γ is well defined.

PROOF. First it is easy to see that $(K_{xx^o(a*y)}, L_{(a*y)y^ob}) \in \Gamma$, since

$$(a * y)^o x^{oo} x^o \in V_{S^o}(x x^o (a * y)) \cap V_{S^o}((a * y) y^o b) \neq \emptyset.$$

Let $x^o, x_1^o \in V_{S^o}(x) \cap V_{S^o}(a)$, then

$$R_{xx^{o}(a*y)} = R_{xx_{1}^{o}(a*y)}$$
 and $T(xx^{o}(a*y)) = T(xx_{1}^{o}(a*y)),$

and hence the multiplication in Γ is not dependent on the choice of x^{o} . There is a dual result for y^{o} .

Finally we prove that the multiplication in Γ is not dependent on the choice of x, a, y, b. Let

$$(K_x, L_a) = (K_{x'}, L_{a'}), \quad (K_y, L_b) = (K_{y'}, L_{b'}).$$

We then have

$$(K_x, L_a) (K_y, L_b) = (K_{xx^o(a*y)}, L_{(a*y)y^ob}),$$

and

$$(K_{x'}, L_{a'}) (K_{y'}, L_{b'}) = (K_{x'x^o(a'*y')}, L_{(a'*y')y^ob'}),$$

where $x^o \in V_{S^o}(x) \cap V_{S^o}(x')$ and $y^o \in V_{S^o}(y) \cap V_{S^o}(y')$.

Next we prove that $T(xx^o(a * y)) = T(x'x^o(a' * y'))$. Take $s \in V_{S^o}(a' * y')$, then $y^o y'sa'a^o \in V_{S^o}(a * y)$ by (3). Since S^o is orthodox,

$$y^{o}y'sx^{oo}x^{o} \in V_{S^{o}}(x'x^{o}(a' * y')),$$

$$y^{o}y'sa'a^{o}x^{oo}x^{o} = y^{o}y'sx^{oo}x^{o} \in V_{S^{o}}(xx^{o}(a * y)),$$

where $x^{oo} \in V_{S^o}(x^o)$. So

$$V_{S^o}(xx^o(a*y)) \cap V_{S^o}(x'x^o(a'*y')) \neq \emptyset$$

and hence $V_{S^{o}}(xx^{o}(a * y)) = V_{S^{o}}(x'x^{o}(a' * y'))$, that is

$$T(xx^{o}(a * y)) = T(x'x^{o}(a' * y'))$$

as required.

To show that $R_{xx^o(a*y)} = R_{x'x^o(a'*y')}$, notice that $xx^o = x'x^o$ since $x\mathcal{R}x'$ and $x^o \in V_{S^o}(x) = V_{S^o}(x')$, and $x^o a = x^o a'$ since $a\mathcal{L}a'$ and $x^o \in V_{S^o}(a) = V_{S^o}(a')$. Take $s \in V_{S^o}(a'*y')$, then $(a*y)^o = y^o y'sa'a^o \in V_{S^o}(a*y)$ by (3). So

$$xx^{o}(a * y)\mathcal{R}xx^{o}(a * y) (a * y)^{o}x^{oo}x^{o} = e,$$

$$x'x^{o}(a' * y')\mathcal{R}x'x^{o}(a' * y')sx^{oo}x^{o} = f.$$

Thus

$$e = xx^{o}(a * y)y^{o}y'sa'a^{o}x^{oo}x^{o}$$

= $xx^{o}(a * yy^{o}y')sx^{oo}x^{o}$ $(a'a^{o}x^{oo} = x^{oo} \text{ since } a' \in L)$
= $x'x^{o}(a * y')sx^{oo}x^{o}$ $(xx^{o} = x'x^{o} \text{ and } y'\mathcal{R}y\mathcal{R}yy^{o})$
= $x'x^{o}(a' * y')sx^{oo}x^{o}$ $(x^{o} \in S^{o} \text{ and } x^{o}a = x^{o}a')$
= $f.$

Therefore $R_{xx^o(a*y)} = R_{x'x^o(a'*y')}$. Dually we have $L_{(a*y)y^ob} = L_{(a'*y')y^ob'}$.

[7]

LEMMA 3.3. The set Γ is a semigroup.

PROOF. Let $e, f, g \in \Gamma$, where $e = (K_x, L_a), f = (K_{x_1}, L_{a_1}), g = (K_{x_2}, L_{a_2})$. Then

$$\begin{aligned} (ef)g &= (K_{xx^o(a*x_1)}, L_{(a*x_1)x_1^oa_1}) (K_{x_2}, L_{a_2}) \\ &= (K_{xx^o(a*x_1)} (a*x_1)^{o} x^{oo} x^{o} (((a*x_1)x_1^oa_1)*x_2), L_{(((a*x_1)x_1^oa_1)*x_2)x_2^oa_2}) \\ &= (K_{xx^o(a*x_1)x_1^o(a_1*x_2)}, L_{(a*x_1)x_1^o(a_1*x_2)x_2^oa_2}). \end{aligned}$$

On the other hand,

$$e(fg) = (K_x, L_a) (K_{x_1 x_1^o(a_1 * x_2)}, L_{(a_1 * x_2) x_2^o a_2})$$

= $(K_{x x^o(a * x_1) x_1^o(a_1 * x_2)}, L_{(a * x_1) x_1^o(a_1 * x_2) x_2^o a_2}).$

Therefore (ef)g = e(fg).

LEMMA 3.4. Let $W = \{(K_x, L_x) | x \in S^o\}$. Then W is an orthodox subsemigroup of Γ isomorphic to S^o .

PROOF. We only need to notice that, for $x, y \in S^o$, $(K_x, L_x) = (K_y, L_y)$ if and only if x = y.

LEMMA 3.5. Let $e = (K_x, L_a)$. Put

$$M(e) = \{ (K_{x^o}, L_{x^o}) \in W \mid x^o \in V_{S^o}(x) \}.$$

Then $V_W(e) = M(e)$.

PROOF. Take $f = (K_{x^o}, L_{x^o}) \in W$, where $x^o \in V_{S^o}(x)$. Then

$$(K_x, L_a) (K_{x^o}, L_{x^o}) (K_x, L_a) = (K_{xx^o(a * x_o)x^{oo}(x^o * x)}, L_{(a * x^o)x^{oo}(x^o * x)x^o a})$$

= $(K_{xx^o a x^o x^{oo} x^o x}, L_{ax^o x^{oo} x^o x x^o a})$
= $(K_x, L_a).$

Also

$$(K_{x^{o}}, L_{x^{o}}) (K_{x}, L_{a}) (K_{x^{o}}, L_{x^{o}}) = (K_{x^{o}xx^{o}x^{o}x^{o}x^{o}}, L_{x^{o}xx^{o}ax^{o}x^{o}x^{o}})$$
$$= (K_{x^{o}}, L_{x^{o}}).$$

Thus $f \in V_W(e)$.

Conversely, let $f = (K_{y^o}, L_{y^o}) \in V_W(e)$, then efe = e, fef = f. So

$$(K_x, L_a) (K_{y^o}, L_{y^o}) (K_x, L_a) = (K_{xx^o ay^o x}, L_{ay^o xx^o a}) = (K_x, L_a),$$

$$(K_{y^o}, L_{y^o}) (K_x, L_a) (K_{y^o}, L_{y^o}) = (K_{y^o xx^o ay^o}, L_{y^o xx^o ay^o}) = (K_{y^o}, L_{y^o}).$$

Therefore $x = xx^o ay^o x$ since x and $xx^o ay^o x$ have a common inverse by $T(xx^o ay^o x) = T(x)$. Similarly $y^o = y^o xx^o ay^o$. Then x has an inverse

$$x^{\#} = x^{o} y^{oo} x^{o} x^{oo} x^{o} = x^{o} y^{oo} x^{o}.$$

[8]

185

On the other hand, $x^o y^{oo} x^o \in V_{S^o}(xy^o x)$; thus x and $xy^o x$ have a common inverse and so $x = xy^o x$. Similarly $y^o = y^o xy^o$. Hence $y^o \in V_{S^o}(x)$ and therefore $f \in M(e)$. Now the proof of the lemma is completed.

LEMMA 3.6. The set W is a quasi-ideal orthodox transversal of Γ .

PROOF. Take $e = (K_x, L_a) \in \Gamma$, and $x^o \in V_{S^o}(x) \cap V_{S^o}(a)$. It follows from Lemma 3.5 that $V_W(e) \neq \emptyset$, and hence condition (1.1) holds. To check condition (1.2), take $f = (K_y, L_y) \in W$, where $y \in S^o$. Then $ef = (K_{xx^oay}, L_{ay})$ since $xx^o(a * y) = xx^oay$ and $(a * y)y^oy = ayy^oy = ay$ by the assumption $y \in S^o$. Now let

$$e' = (K_{x^o}, L_{x^o}) \in V_W(e), \quad f' = (K_{y^o}, L_{y^o}) \in V_W(f).$$

Then $f'e' = (K_{y^ox^o}, L_{y^ox^o})$. Obviously xx^oay has an inverse

$$(xx^o ay)^{\#} = y^o x^o x^{oo} x^o = y^o x^o$$

That is to say, $(K_{y^ox^o}, L_{y^ox^o}) \in M(ef)$ and thus $f'e' \in V_W(ef)$. Similarly we have $e'f' \in V_W(fe)$. Hence condition (1.2) holds and W is an orthodox transversal of Γ .

Take $w_1, w_2 \in W$ and $s \in \Gamma$. It is a routine matter to show that $w_1 s w_2 \in W$, so W is a quasi-ideal of Γ .

Now we turn to prove the converse part of Theorem 3.1. Let *S* be a regular semigroup and *S*^o a quasi-ideal orthodox transversal of *S*. Let *R* and *L* be described as in Theorem 2.1. Then *R* and *L* are orthodox semigroups with an orthodox transversal *S*^o which is a right ideal of *R* and a left ideal of *L*. For every $(a, x) \in L \times R$, put a * x = ax. Then $a * x = ax = a^{oo}a^o axx^o x^{oo} \in S^o$ since *S*^o is a quasi-ideal of *S*. Clearly the map satisfies (1) and (2). By Theorem 2.5 the condition (3) holds. Therefore we get a regular semigroup Γ in the same way as in the first part of Theorem 3.1. Finally we shall prove that Γ is isomorphic to *S*.

Let $(K_x, L_a) \in \Gamma$. Define $\theta : \Gamma \longrightarrow S$ by $(K_x, L_a)\theta = xx^o a$, where $x^o \in V_{S^o}(x)$. It is evident that, for every $y^o \in V_{S^o}(x)$, $xx^o a = xy^o a$ since $xx^o a \mathcal{H}xy^o a$ and

$$y^{o}xx^{o} \in V(xx^{o}a) \cap V(xy^{o}a).$$

We first have to show that θ is well defined. If $(K_x, L_a) = (K_y, L_b)$ then $R_x = R_y$, $V_{S^o}(x) = V_{S^o}(y)$, $L_a = L_b$ and so

Thus $xx^{o}a\mathcal{H}yy^{o}b$ and we also have

$$y^{o}xx^{o} \in V(xx^{o}a) \cap V(yy^{o}b).$$

Therefore $xx^{o}a = yy^{o}b$ since no \mathcal{H} -class contains more than one inverse of some element.

Take $(K_x, L_a), (K_y, L_b) \in \Gamma$. Then

$$((K_x, L_a) (K_y, L_b))\theta = (K_{xx^oay}, L_{ayy^ob})\theta$$
$$= xx^o ay(ay)^o a^{oo} a^o (ay)y^o b$$
$$= xx^o ayy^o b$$
$$= (K_x, L_a)\theta(K_y, L_b)\theta,$$

and so θ is a homomorphism.

For every $x \in S$,

$$xx^{o}x^{oo} \in R, \quad x^{oo}x^{o}x \in L \quad \text{and} \quad x^{o} \in V_{S^{o}}(xx^{o}x^{oo}) \cap V_{S^{o}}(x^{oo}x^{o}x), (K_{xx^{o}x^{oo}}, L_{x^{oo}x^{o}x})\theta = xx^{o}x^{oo} \cdot x^{o} \cdot x^{oo}x^{o}x = x.$$

Therefore θ is surjective.

Now let (K_x, L_a) , $(K_y, L_b) \in \Gamma$ such that $(K_x, L_a)\theta = (K_y, L_b)\theta$, that is $xx^o a = yy^o b$. So

$$x\mathcal{R}xx^{o}\mathcal{R}xx^{o}a = yy^{o}b\mathcal{R}yy^{o}\mathcal{R}y$$

and

$$a\mathcal{L}x^{o}a\mathcal{L}xx^{o}a = yy^{o}b\mathcal{L}y^{o}b\mathcal{L}b.$$

That is $R_x = R_y$ and $L_a = L_b$. It is easy to see that $x^o \in V_{S^o}(xx^o a)$ and $y^o \in V_{S^o}(yy^o b)$, so

$$V_{S^{o}}(x) = V_{S^{o}}(xx^{o}a) = V_{S^{o}}(yy^{o}b) = V_{S^{o}}(y).$$

Hence θ is injective.

Acknowledgements

The first author expresses his sincere thanks to Professor M. Jackson and the referees for their important and constructive modifying suggestions.

References

- T. S. Blyth and M. H. Almeida Santos, 'A classification of inverse transversal', *Comm. Algebra* 29(2) (2001), 611–624.
- [2] _____, 'Amenable orders associated with inverse transversals', J. Algebra 240(1) (2001), 143–164.
- [3] T. S. Blyth and R. B. McFadden, 'Regular semigroups with a multiplicative inverse transversal', *Proc. Roy. Soc. Edinburgh A* 92 (1982), 253–270.
- [4] J. Chen, 'On regular semigroups with orthodox transversals', *Comm. Algebra* 27 (1999), 4275–4288.
- [5] J. Chen and Y. Guo, 'Orthodox transversals of regular semigroups', *Internat. J. Algebra Comput.* 11(2) (2001), 269–279.
- [6] J. M. Howie, An Introduction to Semigroup Theory (Academic Press, London, 1976).
- [7] X. Kong, 'Regular semigroups with quasi-ideal orthodox transversals', Semigroup Forum 74 (2007), 247–258.

A new construction for regular semigroups

187

- [8] D. B. McAlister and R. B. McFadden, 'Regular semigroups with inverse transversals', Q. J. Math. 34(2) (1983), 459–474.
- [9] T. Saito, 'Structure of regular semigroups with a quasi-ideal inverse transversal', *Semigroup Forum* **31** (1985), 305–309.
- [10] _____, 'A note on regular semigroups with inverse transversals', *Semigroup Forum* **33** (1986), 149–152.
- [11] X. Tang, 'Regular semigroups with inverse transversals', Semigroup Forum 55 (1997), 25–32.

XIANGJUN KONG, School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, People's Republic of China and Current address: Department of Mathematics, Lanzhou University, Lanzhou,

Gansu 730000, People's Republic of China

e-mail: xiangjunkong97@163.com

XIANZHONG ZHAO, Department of Mathematics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China

[11]