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Abstract

It is well known that simply typed λ-terms can be used to represent numbers, as well as some

other data types. We show that λ-terms of each fixed (but possibly very complicated) type

can be described by a finite piece of information (a set of appropriately defined intersection

types) and by a vector of natural numbers. On the one hand, the description is compositional:

having only the finite piece of information for two closed λ-terms M and N, we can determine

its counterpart for MN, and a linear transformation that applied to the vectors of numbers

for M and N gives us the vector for MN. On the other hand, when a λ-term represents a

natural number, then this number is approximated by a number in the vector corresponding

to this λ-term. As a consequence, we prove that in a λ-term of a fixed type, we can store

only a fixed number of natural numbers, in such a way that they can be extracted using

λ-terms. More precisely, while representing k numbers in a closed λ-term of some type, we

only require that there are k closed λ-terms M1, . . . ,Mk such that Mi takes as argument

the λ-term representing the k-tuple, and returns the i-th number in the tuple (we do not

require that, using λ-calculus, one can construct the representation of the k-tuple out of the k

numbers in the tuple). Moreover, the same result holds when we allow that the numbers can

be extracted approximately, up to some error (even when we only want to know whether a set

is bounded or not). All the results remain true when we allow the Y combinator (recursion)

in our λ-terms, as well as uninterpreted constants.

1 Introduction

It is well known that simply typed λ-terms can be used to represent natural numbers,

as well as some other data types (for an introduction, see e.g. Barendregt et al.

(2013)). Then, we can construct higher order functions operating on numerals (that

is, representations of natural numbers). The goal of this paper is to characterize all

such functions.

Consider for example functions of the form

g(f) = n1 + f(n2 + f(n3 + f(· · · + f(nk) . . . ))),

where n1, . . . , nk are some fixed natural numbers. In order to know precisely the result

of such a function g for each argument f, we need to remember all the numbers

n1, . . . , nk (notice that k may be arbitrarily big). If, however, we allow approximation

of the result up to some error, the situation changes dramatically. Assuming that

all ni are positive, it turns out that the function g is quite well approximated by the
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function

g′(f) = n1 + f(m),

where m = n2 + · · · + nk . For example, if f(x) = 2 ·x, then g′(f) � g(f) � g′(f) · 2g
′(f).

In fact, for each fixed function f definable in simply typed λ-calculus, we can give a

similar relationship between g′(f) and g(f) (not depending on the values used in g

and g′). Notice that we need to remember n1 separately in order to handle functions

f ignoring its argument, like f(x) = 0.

We thus see that all the functions g are “of the same shape” and can be specified

using only two numbers: n1 and m. In this paper, we generalize the above example,

and we prove that for each sort1 there exist only finitely many “shapes” of functions,

and for each of them, we need to specify only a fixed number of constants appearing

in the function.

More precisely, to each closed λ-term M of a fixed sort α, we assign a finite piece

of information types(M), which is a set of appropriately defined types of M (for

each α, there are only finitely possible values of types(M)). We also assign to M a

vector of natural numbers, whose length is equal to the size of types(M); thus, the

maximal length of this vector for each α is fixed. If a λ-term M represents a natural

number n (which is possible only for terms of one sort α), then some number m

in the vector for M approximates n, that is it holds that m � H(n) and n � H(m),

where H is a fixed, although very fast growing, function. For λ-terms M of other

sorts α, the numbers in the vector assigned to M may be seen as approximations of

the numbers “appearing in M”.

The key reason why such a characterization may be at all interesting is com-

positionality. Consider an application MN, where M and N are closed λ-terms.

Then types(MN) can be determined while knowing only types(M) and types(N).

Moreover, there exists a linear transformation L, again depending only on types(M)

and types(N), such that L applied to the vectors assigned to M and to N gives us

the vector assigned to MN. In fact, L will be of a very special form: to obtain a

number in the vector for MN, we take one number from the vector for M and some

numbers from the vector for N, and we sum them.

We believe that the characterization of higher order functions is interesting in

its own, but we also obtain some consequences. Recall that in λ-calculus, we can

represent pairs or tuples of representable data types, in particular of natural numbers.

Notice however that the sort of terms representing pairs is more complex than the

sort of terms representing the elements of pairs. It follows from our result that,

indeed, for representing k-tuples of natural numbers for big k, we need terms of

complex sort. For this reason, for each sort α, we define a number dim(α), the

dimension of sort α, and we prove that tuples of more than dim(α) natural numbers

cannot be represented in terms of sort α. This has to be understood correctly. It

is not a problem to pack arbitrarily many natural numbers into a term of some

fixed (even very simple) sort, so that for each list (arbitrarily long tuple) of natural

1 We use the name “sort” instead of “type” (except in the abstract) to avoid confusion with the types
introduced later, used for describing λ-terms more precisely.
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numbers, we obtain a different term, like in our function g given above. We however

consider the opposite direction, that is extracting numbers from terms: we do not

require anything about how a representation of a tuple can be created out of the

numbers in the tuple, but what we require is that using λ-terms we can extract

the numbers from the representation of the tuple. One could imagine the following

function h:

h(x) =

⎧⎪⎪⎨
⎪⎪⎩

n1 if x = 1,

. . .

nk if x = k,

0 otherwise.

By passing different values of x, we could extract out of h each ni separately. But

we see that, unlike g, this function cannot be rewritten using a fixed amount of

numbers, since each ni is independent. In the light of our results, this means that h

cannot be realized in simply typed λ-calculus.

We also obtain another property. Let α� be the sort of terms representing natural

numbers. Fix a sort α, and consider the following equivalence relation over closed

terms of sort α→α�: we have M ∼ M ′ when for each sequence N1, N2, . . . of closed

terms of sort α, the sequences of numbers represented by the terms MN1,M N2, . . .

and M ′ N1,M
′ N2, . . . are either both bounded or both unbounded (if all these terms

indeed represent numbers). We obtain that this relation has at most dim(α) (hence

finitely many) equivalence classes.

We should note that our environment is slightly stronger than just higher order

functions on natural numbers using some basic arithmetical operations. It is possible

to have terms not representing any number nor a function on natural numbers, but

by composing such terms, we can later obtain a term representing a number.

Our theorems are independent from the choice of a particular numeral system

(a way of representing natural numbers in λ-terms). The reason is that numbers

read in one numeral system approximate numbers read in any other numeral system

(since there can be only finitely many numerals of at most a particular size, small

numerals represent small numbers), and we talk only about asymptotic behavior.

A particular numeral system is one in which the number represented by a λ-term

equals the size of its β-normal form. Thus, the results can be restated using sizes of

β-normal forms of terms, without talking about numeral systems. In fact, the core

of our proofs refers basically to sizes of β-normal forms, not directly to numeral

systems.

Our results hold also:

• when we consider the λY -calculus, that is when we allow the Y combinator,

introducing infinite recursion, and

• when one is allowed to use uninterpreted constants in λ-terms.

We remark that results of our paper hold only for simply typed λ-calculus. As

we will see on page 35, analogous results become false for polymorphic λ-calculus

(already with the Hindley–Milner type system).
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1.1 Related work

This is an extended version of a conference paper (Parys, 2014). In the conference

paper, the main result was slightly weaker: to a term M we were assigning not

only a finite piece of information types(M) and a vector of natural numbers, but

it was also necessary to know the maximal order k of a subterm appearing in M.

For higher k, the precision of approximation of the number represented in a term

by numbers in the vector was smaller. Here, the precision is independent of k.

Additionally, we have allowed here the Y combinator and arbitrary representations

of natural numbers. The two main differences in the proof are the following. First,

the type system introduced in Parys (2014) was using a productive/non-productive

flag, that is replaced here by a number called duplication order. This change was

necessary when we wanted to obtain precision independent of the maximal order

of a subterm. Second, in Parys (2014), we were using Krivine machines, while here

we directly analyze a sequence of left-most reductions. This change is mainly on the

level of presentation, and the idea of the proof remains the same (indeed, a Krivine

machine performs left-most reductions).

Results in the spirit of this paper were an important part of the proof (Parys,

2012) that collapsible higher order pushdown systems generate more trees than

higher order pushdown systems without the collapse operation. In that proof, it is

first shown that if some particular tree is generated by a pushdown system without

collapse, then the stack of the pushdown system can be divided into two parts, one

encoding a function, and the other encoding an argument to the function, so that

the function has to operate on its argument in some complex way. Then, like in our

paper, it is shown that the behavior of every of the two parts can be represented

by a type coming from a finite set and by a vector of numbers that are composed

in a linear way; such a representation is not strong enough to encode the complex

behavior of the function claimed in the former part of the proof, which leads to

a contradiction. The appropriate lemmas of Parys (2012) were almost completely

hidden in the appendix, and stated in the world of stacks of higher order pushdown

systems. Because we think that these results are of independent interest, we present

them here, in a more natural variant.

The types defined in our paper resemble the intersection types used in Kobayashi

(2013). However, comparing to Kobayashi (2013), in our types, we additionally have

a number, called the duplication order.

Schwichtenberg (1976) and Statman (1979) show that the functions over natural

numbers representable in the simply typed λ-calculus are precisely the “extended

polynomials”. Notice that they describe only first-order functions (functions �k→�),

while we analyze arbitrary higher order functions; on the other hand, we are not

interested in the precise rate of growth of the functions. Similarly, Zaionc (1987)

characterizes the class of functions over words which are represented by closed

λ-terms (for appropriate representation of words in λ-calculus).

We explore here equality of functions up to boundedness: two functions leading

into natural numbers are considered equivalent if over each subset of their domain

they are either both bounded or both unbounded. Such an equivalence relation, called
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domination equivalence, is widely used in the context of regular cost functions, see

e.g. Colcombet (2013).

1.2 Structure of the paper

In Section 2, we define some basic notions. In Section 3, we introduce a type system

which has two roles. First, it allows us to determine which arguments of a term

will be used (i.e. will not be ignored, as in λx.λy.x). Second, the type of a subterm

says whether this subterm is productive, that is whether it adds something to the

value of the whole term. Then, we define the vector of numbers assigned to each

term. Finally, we state our main theorem (Theorem 10) and we prove some basic

properties. The major part of the proof of Theorem 10 is contained in Section 4.

Section 5 gives a longer example illustrating notions from former sections. Finally,

in Section 6, we concentrate on consequences of our result.

2 Preliminaries

The set of sorts is constructed from a unique basic sort o using a binary operation

→. Thus, o is a sort and if α, β are sorts, so is (α→β). The order of a sort is defined

by: ord (o) = 0, and ord (α→β) = max(1 + ord (α), ord (β)).

The set of simply typed λY -terms is defined inductively as follows. For each sort α,

there is a countable set of variables xα, yα, . . . and a countable set of uninterpreted

constants cα, dα, . . . that are also terms of sort α. If M is a term of sort β and xα a

variable of sort α, then λxα.M is a term of sort α→β. If M is of sort α→β and N is

of sort α, then MN is a term of sort β. Finally, if a term M is of sort α→α, then

Y M is a term of sort α.

As usual, we identify λ-terms up to α-conversion. We often omit the sort annotation

of variables, but please keep in mind that every variable is implicitly sorted. A term

is called closed when it does not have free variables. For a term M of sort α, we write

ord (M) for ord (α). We write M[N/x] for the term obtained from M by substituting

N for all appearances of x. The size of a sort and of a term is defined as

|o| = 0, |xα| = |cα| = |α|,
|α→β| = |α| + |β|, |λxα.M| = |α| + |M|,

|Y M| = 1 + |M|,
|MN| = |M| + |N|.

In addition to the standard β-reduction →β , we have δ-reduction →δ , defined by

the following rewriting rule:

Y M →δ M (Y M).

A term is in βδ-normal form, if neither →β nor →δ can be applied to it; N is

the βδ-normal form of M, if M can be reduced to N and N is in βδ-normal form.

A term M βδ-normalizes if there exists a term N that is the βδ-normal form of

M. Notice that not every term βδ-normalizes. Recall, however, that the system has
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the Church–Rosser property, which means that there exists at most one βδ-normal

form of each term. Even when the βδ-normal form exists, not every sequence of

reductions leads to it (there may exist infinite sequences of reductions). It is, however,

always a good strategy to perform leftmost (outermost) reductions first, as described

below. A reduction λx1. · · · .λxm.M N1 . . . Nk →βδ λx1. · · · .λxm.M ′ N ′
1 . . . N ′

k is called

a leftmost reduction, if

• M = (λx.K)N0 →β K[N0/x] = M ′ and Ni = N ′
i for all i, or

• M = Y K →δ K (Y K) = M ′ and Ni = N ′
i for all i, or

• M = M ′ is a constant or a variable, and Ni →βδ N ′
i is a leftmost reduction for

some i, and Ni = N ′
i for all other i.

Fact 1

A λY -term βδ-normalizes if a term in βδ-normal form can be reached by a finite

sequence of leftmost reductions. �

2.1 Domination relation

Given two numbers n, m ∈ � and a function H : � → � (called a correction

function), we write n �H m if n � H(m). This relation is extended to functions

f, g : X → �: we have f �H g if f(x) �H g(x) for every x ∈ X. We also

write f ≈H g if f �H g and g �H f. Finally, we say that f is dominated by

g, denoted f � g, if f �H g for some correction function H , and we say that

f is domination-equivalent to g, denoted f ≈ g, if f ≈H g for some correction

function H .

It is easy to observe that f � g holds if and only if for every set Y ⊆ X, f(Y ) is

bounded whenever g(Y ) is bounded. Moreover, f � g and g � f implies f ≈ g, as

well as f ≈ g and g ≈ h implies f ≈ h.

2.2 Numeral systems

A numeral system is given by a sort α�, by a set N of closed λY -terms that

are of sort α� and in βδ-normal form, and by a function val : N → � that is

domination-equivalent to the function sizeN : N → � returning the size of its

argument, sizeN(M) = |M|. The function val is extended to all closed terms M

whose βδ-normal form N is in N by val(M) = val (N); we say that M represents

the number val(M). Notice that not every term of sort α� represents some number:

this is certainly the case for terms which do not βδ-normalize, but possibly also for

other terms.

The assumption that val is domination-equivalent to the size function may look

artificial, but in fact, every reasonable function aiming to define a numeral system

satisfies this condition. The following proposition says that this is the case when

every number is represented by only one term in βδ-normal form, and these terms

use only finitely many constants.
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Proposition 2

Let N be a set of closed λY -terms that are of some sort α�, in βδ-normal form,

and altogether use only finitely many constants. Then, every injective function

val : N → � defines a numeral system.

Proof

We need to prove that val ≈ sizeN, which means that val and sizeN are bounded

on the same sets X ⊆ N. Of course, on finite sets, both functions are bounded.

Since val is injective, on every infinite set X ⊆ N, it is unbounded. On the other

hand, there are only finitely many closed terms of at most a particular size built

using constants from a finite set (recall that terms differing only in names of bound

variables are considered to be equal). Thus, sizeN, similarly to val , is unbounded on

every infinite set X ⊆ N. �

Another possibility of defining a numeral system is to use a term for zero, and a

term for the increment operation, as described by the next proposition.

Proposition 3

Let Z and I be closed terms of sort α� and α�→α�, respectively, for some sort α�.

Suppose that I (I (. . . (I︸ ︷︷ ︸
n

Z) . . . )) βδ-normalizes for every n ∈ �, and let Mn be its

βδ-normal form. If every Mn is different, the function val mapping Mn to n defines

a numeral system.

Proof

The terms M0,M1, . . . can only use constants appearing in Z and I , so the thesis

follows from the previous proposition. �

Example 1

The standard numeral system (called Church encoding) uses sort α� = (o→o)→o→o

for numerals. A number n ∈ � is represented by

N1 
 λf.λx. f (f (. . . (f︸ ︷︷ ︸
n

x) . . . ))
val1�−−→ n.

Example 2

Another possibility is to use sort α� = o and constants 0 of type o, denoting

zero, and 1+ of type o→o, denoting an increment. Then, a number n ∈ � is

represented by

N2 
 1+ (1+ (. . . (1+︸ ︷︷ ︸
n

0) . . . ))
val2�−−→ n.

Let us remark that the fact that we are fixing a particular simple sort for numerals

restricts the arithmetic that can be performed on those numerals, compared to when

polymorphic sorts can be used. In particular, such numerals cannot be subtracted,

in contrast to numerals of polymorphic sort. This is essential for our results, with

the following intuition: in order to approximate n + m, it is enough to approximate

n and m, but in order to approximate n − m, it is necessary to know n and m quite
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precisely (to detect whether n − m is close to 0 we need to know whether n is close

to m; knowing that say n � 2m � 4n is highly insufficient). See also page 35 for a

discussion on polymorphic λ-calculus.

3 Type system and values of terms

In this section, we define types which will be used to precisely describe our terms.

Then, we define the vector of numbers assigned to each term. Finally, we state the

main theorem of this paper, Theorem 10. The proof of this theorem is postponed to

the next section.

3.1 Eliminating higher order constants

Our type system will be defined for terms using only constants of order at most 1.

Instead of handling constants of higher orders directly in the type system, we now

show how to replace them by combinations of constants of order at most 1.

Arguments of the original constants were of positive order, which means that

they were expecting further arguments; now we give them some other constants as

arguments. This is described by the following mutual definitions of flatten and carg ,

working by induction on sort:

flatten(cα) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cα, if ord (α) � 1,

λxα1

1 . · · · .λxαkk . d1 (. . . (d1︸ ︷︷ ︸
|α|−k−1

(dk carg(xα1

1 ) . . . carg(xαkk ))) . . . ),

otherwise, if α = α1→ . . .→αk→o,

carg(xα1→...→αk→o) = xα1→...→αk→o flatten(dα1 ) . . . flatten(dαk ).

In this definition, dk is a fixed constant of sort o→ . . .→o︸ ︷︷ ︸
k

→o, and dα is a fixed

constant of sort α. Notice that flatten(cα) is a term of sort α (the sort is unchanged)

and carg(cα) is a term of sort o. We extend flatten(·) to arbitrary terms in the

natural way:

flatten(MN) = flatten(M) flatten(N), flatten(Y M) = Y flatten(M),

flatten(xα) = xα, flatten(λxα.M) = λxα.flatten(M).

Example 3

Let us see how some example constant will be transformed:

flatten(c(((o→o)→o)→o)→((o→o)→o)→(o→o)→o→o)

= λx
((o→o)→o)→o
3 .λx

(o→o)→o
2 .λxo→o

1 .λxo0.d1 (d1 (d1 (d1 (d1 (d1

(d4 (x3 (λyo→o
1 .d1 (d1 (y1 d0)))) (x2 d1) (x1 d0) x0)))))).

It is easy to see that if M →∗
βδ N, then also flatten(M) →∗

βδ flatten(N): we

simply replace every constant c in the sequence of reductions by flatten(c), and we

obtain a correct sequence of reductions from flatten(M) to flatten(N). It follows
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that if M βδ-normalizes, then flatten(M) as well. Indeed, the βδ-normal form N

of M does not contain any Y , as well as flatten(N), so flatten(N) βδ-normalizes,

and thus flatten(M) βδ-normalizes as well thanks to the sequence of reductions

flatten(M) →∗
βδ flatten(N).

The key property of the flatten operation is that it only slightly changes the size

of the βδ-normal form of a term (thus also the represented number).2 Let us denote

the size of the βδ-normal form of a term M by size(M).

Lemma 4

1. For every closed term M that is of sort o and in βδ-normal form, it holds that

|M| � size(flatten(M)) � |M|2.

2. For every closed term M that is of some sort α and in βδ-normal form, it

holds that |M| � |α| − 1 + size(carg(xα)[flatten(M)/xα]) � (|M| + |α|)2.

Proof

We use induction, where the induction parameter is |M| for the first point and

|M| + |α| for the second point. For the first part, observe that M is of the form

cα M1 . . . Mk , where α = α1→ . . .→αk→o. If ord (α) � 1, it holds that flatten(M) =

cα flatten(M1) . . . flatten(Mk), and using the induction assumption for M1, . . . ,Mk ,

that are of sort o, we obtain

|M| = |α| + |M1| + · · · + |Mk|
� |α| + size(flatten(M1)) + · · · + size(flatten(Mk)) = size(flatten(M))

� |α| + |M1|2 + · · · + |Mk|2 � (|α| + |M1| + · · · + |Mk|)2 = |M|2.

Next, suppose that ord (M) > 1. In this case, flatten(M) β-reduces (in k steps) to

the term

d1 (. . . (d1︸ ︷︷ ︸
|α|−k−1

(dk carg(xα1

1 )[flatten(M1)/xα1

1 ] . . . carg(xαkk )[flatten(Mk)/x
αk
k ])) . . . ),

thus, recalling that |α| = |α1| + · · · + |αk| + 1, we have

size(flatten(M)) = 2(|α| − k − 1) + (k + 1) +

k∑
i=1

size(carg(xαii )[flatten(Mi)/x
αi
i ])

= |α| +

k∑
i=1

(
|αi| − 1 + size(carg(xαii )[flatten(Mi)/x

αi
i ])

)
.

2 We remark that as a result of applying our encoding and βδ-normalizing the term, the information
about variable binding is lost (e.g. even if a closed term M of sort o has a lot of variables, all of
them are replaced by constants in the βδ-normal form of flatten(M)), so it is impossible to recover the
original term from the encoding. This is irrelevant for us, as we only care about the size of terms, up
to domination equivalence. Let us mention, however, in this place, a result (Clairambault & Murawski,
2013) which shows how to encode terms with higher order constants in terms with constants of order
at most 1 in a nice, compact way, so that all information is preserved.
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Since |Mi| + |αi| < |M|, we can use the second part of the induction assumption for

the subterms M1, . . . ,Mk; we obtain

|M| = |α| + |M1| + · · · + |Mk|

� |α| +

k∑
i=1

(
|αi| − 1 + size(carg(xαii )[flatten(Mi)/x

αi
i ])

)
= size(flatten(M))

� |α| +

k∑
i=1

(|Mi| + |αi|)2 � |α| + (|M1| + |α1| + · · · + |Mk| + |αk|)2

= |α| + (|M| − 1)2 � 2|M| − 1 + (|M| − 1)2 = |M|2.

For the second point, let us write α = α1→ . . .→αk → o and M = λxα1

1 . · · · .λxαmm .N,

where N does not begin with a lambda (we have m � k); we want to estimate the

size of the βδ-normal form of the term K = carg(xα)[flatten(M)/xα]. Observe that

K = flatten((λxα1

1 . · · · .λxαmm .N) dα1 . . . dαk ) →∗
βδ flatten(L), where

L = N[dα1/xα1

1 , . . . , dαm/xαmm ] dαm+1 . . . dαk .

Notice that L is in βδ-normal form, and its size satisfies

|N| � |L| = |N| + |αm+1| + · · · + |αk| � |N| + |α| − 1 � |M| + |α| − 1.

In particular, we can use the first part of the induction assumption for L; we obtain

|M| = |α1| + · · · + |αm| + |N| � |α| − 1 + |L| � |α| − 1 + size(K)

� |α| − 1 + |L|2 � |α| − 1 + (|M| + |α| − 1)2 � (|M| + |α|)2. �

Corollary 5

It holds that size(M) ≈ size(flatten(M)), where M ranges over all closed terms of

sort o that βδ-normalize.

3.2 The type system

Our types differ from sorts in that on the left-hand side of →, instead of a single

type, we have a set of pairs (f, τ), where τ is a type, and f is a number called the

duplication order. The unique atomic type is denoted r. Also, we will not only assign

a type τ to our terms, but also a duplication flag F (which together form a pair

(F, τ)).

More precisely, for each sort α, we define the set Tα of types of sort α, by induction

on α, as follows:

To = {r}, Tα→β = Pcons ({−∞, 0, . . . , ord (α)} × Tα) × Tβ,

where Pcons ({−∞, 0, . . . , ord (α)}×Tα) denotes the set of consistent (see below) subsets

of {−∞, 0, . . . , ord (α)} × Tα. A type (T , τ) ∈ Tα→β is always denoted as
∧
T→τ, or∧

i∈I (fi, τi)→τ, when T = {(fi, τi) | i ∈ I}.

For α = α1→ . . .→αk→o, a set T ⊆ {−∞, 0, . . . , ord (α)} × Tα of type pairs is

consistent if for each tuple of consistent sets U1 ⊆ Tα1 , . . . , Uk ⊆ Tαk there exists at
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A characterization of lambda-terms transforming numerals 11

most one pair (f,
∧

T1→ . . .→
∧
Tk→r) ∈ T such that Ti ⊆ Ui for each i ∈ {1, . . . , k}.

Again, this definition is by induction on the sort.

Intuitively, a term has type
∧
T→τ if it returns a term described by τ, when given

an argument for which we can derive all type pairs from T . It will be important to

estimate how many constants will be used in the βδ-normal form of a term. The

duplication order f helps with that. It is used to describe the way in which a term

is productive, that is how it increases the number of constants in the βδ-normal

form. When a term uses a constant, we set f � 0. Notice however that this constant

has to be really used: there exist terms which syntactically contain a constant, but

such that it will disappear during reductions, like in (λx.λy.y) c. But a subterm can

increase the number of constants in the βδ-normal form even if it does not contain

any constant: it may take a constant as an argument and use this argument more

than once. For that reason, when our term takes an argument of some duplication

order f′, and uses it more than once (duplicates it), we set f � f′ + 1.

In a type
∧
T→τ, we always assume that the set T is consistent. The reason is

that, on the one hand, for each term, the set of all its types is consistent, as we will

see later, so it does not make sense to expect an argument whose set of types is not

consistent. And, on the other hand, by restricting ourselves to types
∧
T→τ, where

T is consistent, we obtain better properties of the type system, like uniqueness of

derivation.

A type environment Γ is a set of bindings of variables of the form xα : (f, τ),

where τ ∈ Tα and f ∈ {−∞, 0, . . . , ord (α)}; for each variable xα, it is required that

the set {(f, τ) | (xα : (f, τ)) ∈ Γ} of all type pairs assigned to it is consistent. In Γ, we

may have multiple bindings for the same variable. By dom(Γ), we denote the set of

variables x which are bound by Γ.

A type judgment is of the form Γ � M : (F, τ), where we require that the type τ and

the term M are of the same sort, and where F , called a duplication flag, is a function

F : P(dom(Γ)) → {−∞} ∪ �. Here, instead of a single duplication order f, we have

a function F which assigns a duplication order separately to each subset of dom(Γ).

Intuitively, F(X) is the duplication order of the term obtained by substituting closed

terms (of types corresponding to the type binding in Γ) for all variables in X.

In our type system, we assume that only constants of order at most 1 appear

in our terms. Constants of higher orders should be replaced by a combination of

constants of order 0 and 1, as shown before.

The type system consists of the following rules:

Fx(∅) = −∞
x : (Fx({x}), τ) � x : (Fx, τ)

(Var)

α =

k︷ ︸︸ ︷
o→ . . .→o→o F0(∅) = 0

∅ � cα : (F0, (0, r)→ . . .→(0, r)︸ ︷︷ ︸
k

→r)
(Con)

Γ � M (Y M) : (F, τ)

Γ � Y M : (F, τ)
(Y )

Γ ∪ {x : (fi, τi) | i ∈ I} � M : (F, τ) x �∈ dom(Γ)

Γ � λx.M : (F�P(dom(Γ)),
∧
i∈I

(fi, τi)→τ)
(λ)
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12 P. Parys

Γ0 � M : (F0,
∧
i∈I

(Fi(dom(Γi)), τi)→τ) Γi � N : (Fi, τi) for each i ∈ I 0 �∈ I

⋃
i∈{0}∪I

Γi � MN : (F, τ)
(@)

where in the (@) rule, we assume that

• the types τi are pairwise different (where i ∈ I), and

• with τ =
∧
T1→ . . .→

∧
Tk→r for each X ⊆ dom(

⋃
i∈{0}∪I Γi) the following

holds:

F(X) = min
(

max({Fi(X ∩ dom(Γi)) | i ∈ {0} ∪ I}
∪ {n | ∃i, j ∈ {0} ∪ I. ∃x �∈ X. ∃σ. i �= j ∧ (x : (n − 1, σ)) ∈ Γi ∩ Γj}),

max({0} ∪ {n | ∃σ. (n − 1, σ) ∈
⋃

i∈{1,...,k}

Ti}

∪ {n | ∃x �∈ X. ∃σ. (x : (n − 1, σ)) ∈
⋃

i∈{0}∪I

Γi})
)
. (1)

A derivation tree is defined as usual: it is a tree labeled by type judgments, such

that each node together with its children fit to one of the rules of the type system.

For an example of a derivation tree, see Section 5.1.

Notice that strengthening of type environments is disallowed (i.e. Γ � M : (F, τ)

does not necessarily imply Γ, x : (g, σ) � M : (F, τ)), but contraction is allowed

(i.e. Γ, x : (g, σ), x : (g, σ) � M : (F, τ) implies Γ, x : (g, σ) � M : (F, τ), since a

type environment is a set of type bindings); such contractions will be counted by

duplication factors defined later.

We see that in order to derive a type for Y M, we first need to derive a type for

M (Y M), but in order to derive a type for M (Y M), it is not necessary to derive a

type for Y M: the set I in the (@) rule may be empty.

Let us explain condition (1) defining the duplication flag in the (@) rule. As

already mentioned, for a fixed set X of variables, the intended meaning of F(X)

is that this should be the duplication order of the term obtained from MN by

substituting appropriate terms for all variables in X. Thus, we collect (we take a

maximum of) corresponding duplication orders Fi(X ∩ dom(Γi)) from premisses of

the rule, where we need to restrict X to those variables which indeed appear in the

premiss. Additionally, the duplication order should be at least n if already prior to the

application we duplicate some binding of duplication order n − 1; we are interested

only in bindings for variables not in X, since afterwards the imaginary substitution

the variables from X will disappear. It is however possible that a premiss has some

big duplication order n, but in the conclusion, we only have variables and arguments

of duplication order smaller than n − 1. Then, this duplication may be only used to

duplicate some other premiss and is not visible outside of our conclusion. Thus, in

the formula, we have a minimum, dropping the duplication order down to a greatest

n such that there is either an argument or a binding in the environment having

duplication order n − 1.
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A characterization of lambda-terms transforming numerals 13

We notice that it is possible to derive Γ � M : (F, τ) with F(X) > ord (M).

However, F(X) is bounded by the order in the following sense.

Proposition 6

Let Γ � M : (F, τ) be a derivable type judgment, and let X ⊆ dom(Γ). Then,

F(X) � max({ord (M)} ∪ {ord (x) + 1 | x ∈ dom(Γ) \ X}).

Proof

Induction on the size of the smallest derivation tree for Γ � M : (F, τ). This is

immediate when this tree consists of a single (Var) or (Con) rule (for the (Var) rule,

we recall that the definition of a type environment only allows bindings x : (f, σ)

with f � ord (x)). When the derivation tree starts by the (Y ) rule, we can directly use

the induction assumption for the rest of the tree. Similarly, for the (λ) rule, where

for M = λy.K and τ =
∧

i∈I (fi, τi)→τ′, we observe that

max({ord (K)} ∪ {ord (x) + 1 | x ∈ dom(Γ ∪ {y : (fi, τi) | i ∈ I}) \ X})

� max({ord (K), ord (y) + 1} ∪ {ord (x) + 1 | x ∈ dom(Γ) \ X})

= max({ord (M)} ∪ {ord (x) + 1 | x ∈ dom(Γ) \ X}).

When the first rule is (@), we (without using the induction assumption) observe

the second max in the formula (1) for F(X). This max (and hence F(X)) cannot be

greater than max({ord (M)} ∪ {ord (x) + 1 | x ∈ dom(Γ) \ X}). �

3.3 Consistency and uniqueness of type derivations

We see that there may be multiple type judgments for the same term. Thus,

potentially it might be possible to derive the same type judgment in multiple

ways, because in the (@) rule, different premisses may give the same conclusion. It

turns out, however, that it is impossible: each type judgment can be derived in only

one way. Even more: for a given term, we cannot derive an arbitrary set of type

pairs; this set will be always consistent.

For two types τ =
∧
T1→ . . .→

∧
Tk→r and σ =

∧
U1→ . . .→

∧
Uk→r, we write

τ � σ if Ti ⊆ Ui for each i ∈ {1, . . . , k}. Notice that a set T ⊆ {−∞, 0, . . . , ord (α)}×Tα

is consistent if and only if for each τmax ∈ Tα there exists at most one pair (f, τ) ∈ T

such that τ � τmax .

Lemma 7

Let K be a term of sort α, let Γmax be a type environment, and let τmax ∈ Tα. Then,

there exists at most one derivation tree for a type judgment Γ � K : (F, τ) such that

Γ ⊆ Γmax and τ � τmax .

In this lemma, we claim that both the type judgment and the derivation tree

is unique. As written in the definition of a type environment, it is required

that the set of all type pairs assigned by Γmax to any variable is

consistent.

The intuitive explanation of the lemma is as follows. Suppose that we have fixed

some terms used for arguments of a term K , and terms which we will substitute
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14 P. Parys

for free variables in K . This determines how the term K will “behave”: how the

arguments and the free variables will be used, that is which of the type pairs for

arguments and for free variables will be used; it also determines which variables will

be used more than once, so it determines the duplication order. It turns out that

instead of fixing completely the terms used for arguments and for substitution, it is

enough to know all type pairs which we can assign to them (they are described by

τmax and Γmax ).

Proof of Lemma 7

It is enough to prove that for each m ∈ �, there exists at most one derivation

tree of height at most m for a type judgment Γ � K : (F, τ) such that Γ ⊆ Γmax

and τ � τmax . This is proved by induction on m. We analyze possible shapes of the

term K .

Suppose first that K = x is a variable. Then, all possible type judgments are of the

form x : (Fx({x}), τ) � x : (Fx, τ), where Fx(∅) = −∞. Because the set of pairs (f, τ)

such that (x : (f, τ)) ∈ Γmax is consistent, there exists at most one pair (f, τ) such

that τ � τmax and (x : (f, τ)) ∈ Γmax ; we have to take Fx({x}) = f and Fx(∅) = −∞.

Next, suppose that K = cα is a constant. Then, we observe that in the (Con) rule

there is no freedom, it is possible to derive only one type judgment

for K .

Next, suppose that K = Y M. Then, in order to derive Γ � Y M : (F, τ), we need

to derive Γ � M (Y M) : (F, τ) by a tree of height at most m − 1. By the induction

assumption, there is only one such tree.

Next, suppose that K = λx.M. Then, in order to derive Γ � λx.M : (F, τ), where

τ =
∧
T→τ′, we need a derivation tree of height at most m − 1 for Γ ∪ {x : (f, σ) |

(f, σ) ∈ T } � M : (F ′, τ′), where x �∈ dom(Γ). Denote τmax =
∧
Tmax →τ′

max . The

conditions Γ ⊆ Γmax and τ � τmax can be rewritten as Γ ∪ {x : (f, σ) | (f, σ) ∈ T } ⊆
Γmax ∪{x : (f, σ) | (f, σ) ∈ Tmax } and τ′ � τ′

max . By the induction assumption, there is

at most one derivation tree satisfying these conditions. Notice that F is determined

by F ′: it holds that F = F ′�P(dom(Γ)).

Finally, suppose that K = MN. Consider the set Tmax containing all pairs

(G(dom(Σ)), σ) such that in at most m − 1 steps, we can derive a type judgment

Σ � N : (G, σ), where Σ ⊆ Γmax . By the induction assumption, for each σmax , there is

at most one derivation tree of height at most m−1 for a type judgment Σ � N : (G, σ)

such that Σ ⊆ Γmax and σ � σmax . This implies that the set Tmax is consistent. In

order to derive a type judgment Γ � MN : (F, τ) such that Γ ⊆ Γmax and τ � τmax

in at most m steps, we need to derive a type judgment Γ′ � M : (F ′,
∧

T→τ) such

that Γ′ ⊆ Γmax and T ⊆ Tmax and τ � τmax in at most m − 1 steps. The last

two conditions can be rewritten as (
∧
T→τ) � (

∧
Tmax →τmax ). By the induction

assumption, there exists at most one derivation tree of such Γ′ � M : (F ′,
∧

T→τ).

The set T determines which derivation trees for type judgments Σ � N : (G, σ) have

to be included in a derivation tree for Γ � MN : (F, τ); this in turn determines Γ

and F . �
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3.4 Lower cost of a derivation tree

Consider a node of a derivation tree in which the (@) rule is used, with type

environments Γi for i ∈ {0} ∪ I . The duplication factor in such a node is defined as⎛
⎝ ∑

i∈{0}∪I

|{(x : (f, σ)) ∈ Γi | f � 0}|

⎞
⎠ − |{(x : (f, σ)) ∈

⋃
i∈{0}∪I

Γi | f � 0}|.

In other words, this is equal to the number of type bindings with non-negative

duplication order together in all the type environments (Γi)i∈{0}∪I , minus the number

of such type bindings in their union. That is, we say how many times we have to

duplicate a binding in Γ, so that the resulting multiset splits into (Γi)i∈{0}∪I . We

ignore here bindings with duplication factor −∞ (intuitively, duplicating them does

not increase the number of constants in the βδ-normal form of the whole term).

The lower cost of a derivation tree D, denoted low (D), equals the sum of

duplication factors in all nodes of this tree, plus the number of its nodes using

the (Con) rule (we use the name “lower cost” in opposition to the “higher cost”,

defined later). See Section 5.2 for a calculation of the lower cost of example derivation

trees.

Let M be a closed term. We define types(M) to be the set of those type pairs

(f, τ) for which we can derive � flatten(M) : (F, τ) with F(∅) = f. Recall that for

each (f, τ) ∈ types(M), we have a unique derivation tree for � flatten(M) : (F, τ) (see

Lemma 7). By low(M, (f, τ)), we denote the lower cost of this tree.

As already observed in Proposition 6, it is always the case that F(∅) �
ord (flatten(M)) = ord (M) for a derivable type judgment � flatten(M) : (F, τ). Thus,

for terms M of a fixed sort α, the set types(M) is a subset of a fixed finite set

{−∞, 0, . . . , ord (α)} × Tα.

Notice that if all constants in a term M are of order at most 1, then M =

flatten(M), so for such terms the use of flatten(·) in the definition of types and low

does not change anything.

3.5 Compositionality

Let us see how we assign types to a composition MN of two closed terms. Looking

at our type system, we observe that types(MN) contains a pair (f, τ) if and only if

types(M) contains a pair (f′,
∧

T→τ) such that T ⊆ types(N) and

f = min
(

max({f′} ∪ {g | (g, σ) ∈ T }),max({0} ∪ {n | ∃σ. (n − 1, σ) ∈
⋃

i∈{1,...,k}

Ti})
)
,

where τ =
∧
T1→ . . .→

∧
Tk→r. Thus, types(MN) depends only on types(M) and

types(N).

Let us now see how low(MN, (f, τ)) can be calculated, where (f, τ) ∈ types(MN).

Notice that the duplication factor in the root of the derivation tree for � flatten(MN):

(f, τ) is always 0, because the type environments are empty. As written above,

(f, τ) ∈ types(MN) implies that types(M) contains a pair (f′,
∧

T→τ) such that

T ⊆ types(N); by uniqueness of the derivation tree, there must be at most one such
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16 P. Parys

pair. We have

low(MN, (f, τ)) = low(M, (f′,
∧

T→τ)) +
∑

(g,σ)∈T
low(N, (g, σ)).

Thus, if we view low(MN, ·) as on a vector of numbers (whose entries are

low(MN, (f, τ)) for all (f, τ) ∈ types(MN), aligned in some fixed order), this vector

is obtained by applying a linear function to the vectors low(M, ·) and low(N, ·).
Moreover, the linear function itself depends only on types(M) and types(N).

3.6 Costs during reductions

The technical core of our result is contained in the following lemma, which says

that the lower costs assigned to a term cannot change too much during reductions.

This means that the number assigned to a closed term M approximates the number

assigned to the βδ-normal form of M. At the end, we will be interested in terms of

sort o, so we present the lemma only for such terms.

Lemma 8

There exists a correction function H : � → � such that whenever N is the βδ-

normal form of a closed term M that is of sort o and contains only constants of

order at most 1, then (0, r) ∈ types(M) ∩ types(N) and low(M, (0, r)) ≈H low(N, (0, r)).

This lemma will be proved in Section 4.

Example 4

Let us consider sorts α0 = o and αi = αi−1→αi−1 for i � 1. For i � 1, we define a

term Ki = λfαi .λyαi−1 .f (f y) of sort αi+1. Concentrate on the term

Mn = Kn Kn−1 . . . K1 (λxo.co→o x) do.

It is not difficult to see that low(Mn, (0, r)) = n + 2: we have two constants, and in

each Ki, the first argument is used twice. Notice however that the βδ-normal form

Nn of Mn is very big. Indeed, each Ki causes that its argument will be used twice.

Thus, Kn causes that Kn−1 will be used twice; these two Kn−1 cause that Kn−2 will

be used 22 times; in turn, these Kn−2 cause that Kn−3 will be used 222

times, and so

on. Altogether, low(Nn, (0, r)) will be non-elementary in n. In consequence, H(n) in

Lemma 8 has to be non-elementary in n.

3.7 Relating costs with represented numbers

Beside of the fact that the lower cost of a term (closed, of sort o) approximates the

lower cost of its βδ-normal form, we also need to know that the lower cost of a

term in βδ-normal form approximates its size (and thus the numeral represented by

the term).

Lemma 9

Let M be a closed term that is of sort o, in βδ-normal form, and contains only

constants of order at most 1. Then, (0, r) ∈ types(M) and |M| = 2 · low(M, (0, r)) − 1.
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Proof

Induction on |M|. Notice that M is necessarily of the form cM1 . . . Mk , where all

Mi are again closed, of sort o, and in βδ-normal form. The induction assumption

gives us, for each i, a derivation tree Di for � Mi : (F0, r), where F0(∅) = 0 and

|Mi| = 2 · low (Di) − 1. We use the (Con) rule to derive � c : (F0, (0, r)→ . . .→(0, r)→r),

and then using k times the (@) rule we attach the derivation trees Di, obtaining a

derivation tree for � M : (F0, r). The lower cost of this tree, that is simultaneously

low(M, (0, r)), is 1 (for the new (Con) rule) plus the lower costs of the trees Di. We

see that

|M| = (k + 1) +

k∑
i=1

|Mi| = k + 1 +

k∑
i=1

(2 · low (Di) − 1)

= 2 · (1 +

k∑
i=1

low (Di)) − 1 = 2 · low(M, (0, r)) − 1.
�

We see that low(M, (0, r)) counts precisely the number of constants used in M.

3.8 The main theorem

We are now ready to state and prove the main theorem of our paper, saying that

the values assigned to terms approximate the numbers represented by the terms.

Theorem 10

Let val be a numeral system using terms of sort α�. Then, there exists a (choice)

function t mapping each non-empty set T ⊆ {−∞, 0, . . . , ord (α�)} × Tα� to some

its element such that low(M, t(types(M))) ≈ val(M), where M ranges over dom(val)

(that is, over all closed terms of sort α� that represent some number); in particular,

types(M) is non-empty for these M.

Let us emphasize that the correction function hidden in the domination equiv-

alence low(M, t(types(M))) ≈ val(M) does not depend on M (but depends on the

numeral system val ).

Proof

Let α� = α1→ . . .→αk→o. Fix some constants c1, . . . , ck of sorts α1, . . . , αk , respec-

tively. For i ∈ {1, . . . , k}, let Ti be the set of all type pairs (G(∅), σ) such that we can

derive ∅ � flatten(ci) : (G, σ), and let τterm =
∧
T1→ . . .→

∧
Tk→r. Thanks to Lemma

7, we can notice that each set Ti is consistent, so τterm is indeed a type (belongs to

Tα� ). We choose t as follows: if T ⊆ {−∞, 0, . . . , ord (α�)} × Tα� contains a pair

(f, τ) such that τ � τterm , we fix one such pair as t(T ); otherwise we just fix any

element of T as t(T ).

Take now some term M ∈ dom(val). Lemma 8 says that types(flatten(M c1 . . . ck))

contains (0, r), which means that there is a derivation tree for ∅ � flatten(M c1 . . . ck) :

(F0, r), where F0(∅) = 0. It ends with k nodes using the (@) rule, above which we

have derivation trees for flatten(ci) and a derivation tree for ∅ � flatten(M) : (F, τ),

where necessarily τ � τterm . In consequence, (F(∅), τ) ∈ types(M). Due to Lemma 7,
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this is the only pair (f, τ′) in types(M) such that τ′ � τterm , so (F(∅), τ) = t(types(M)).

Comparing the lower costs of the derivation trees, we see that

low(M, t(types(M)) � low(flatten(M c1 . . . ck), (0, r))

� low(M, t(types(M))) +

k∑
i=1

∑
(g,σ)∈Ti

low(ci, (g, σ)).

This means that low(M, t(types(M)) ≈H1
low(flatten(M c1 . . . ck), (0, r)) for the cor-

rection function H1(n) = n +
∑k

i=1

∑
(g,σ)∈Ti

low(ci, (g, σ)) independent of M.

Let N be the βδ-normal form of flatten(M c1 . . . ck). Applying Lemma 8 for the

term flatten(M c1 . . . ck), we obtain low(flatten(M c1 . . . ck), (0, r)) ≈H2
low(N, (0, r))

for a correction function H2 independent of M. Then, from Lemma 9, we obtain

low(N, (0, r)) ≈H3
|N| for H3(n) = 2n, and |N| = size(flatten(M c1 . . . ck)). Next,

due to Lemma 5, it holds that size(flatten(M c1 . . . ck)) ≈H4
size(M c1 . . . ck) for H4

independent of M.

Let us now observe that size(M c1 . . . ck) ≈H5
size(M) for H5(n) = n + |α1| +

· · · + |αk|. Indeed, let K be the βδ-normal form of M, and L the βδ-normal

form of M c1 . . . ck , thus simultaneously of K c1 . . . ck . Let us represent K =

λx1. · · · .λxm.K ′, where K ′ does not begin with a lambda (necessarily m � k). Then,

L = K ′[c1/x1 . . . cm/xm] cm+1 . . . ck , and thus |L| = |K| − |α1| − · · · − |αm| + |αm+1| +

· · · + |αk|.
Finally, by the definition of a numeral system, we have size(M) ≈H6

val(M).

Composing all the above equivalences together, we obtain low(M, t(types(M))) ≈
val(M), where the correction function is independent of M. �

Remark 11
Of course, while considering a general numeral system, we cannot be too specific

about the relation between the costs and the represented numbers. We notice however

that for the standard numeral systems given in Examples 1 and 2, this relation is

completely straightforward. For the first of them, the lower cost counts how many

times the variable f is duplicated:

low(val−1
1 (n), t(types(val−1

1 (n)))) =

{
0 if n = 0,

n − 1 if n � 1,

where

t(types(val−1
1 (n))) =

⎧⎨
⎩

(−∞,�→(0, r)→r) if n = 0,

(−∞, (0, (0, r)→r)→(0, r)→r) if n = 1,

(1, (0, (0, r)→r)→(0, r)→r) if n � 2.

For the second numeral system, the lower cost counts the number of constants in

a term: low(val−1
2 (n), t(types(val−1

2 (n)))) = n + 1, where t(types(val−1
2 (n))) = (0, r) for

all n.

4 Costs during reductions

In the previous section, we have presented the main theorem, but its key component,

that is Lemma 8, is not yet proved. We prove it in this section.
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4.1 Higher cost

It turns out that during leftmost reductions, the lower cost of a term either increases

or stays the same, but it cannot decrease. As observed in Fact 1, it is enough to

consider leftmost reductions to obtain the βδ-normal form of a term. In consequence,

the lower cost of a term M is indeed a lower bound for the lower cost of the βδ-

normal form K of M. We now define another quantity, the higher cost, which will

be the upper bound for the lower cost of K . This higher cost behaves in an opposite

manner to the lower cost: it either decreases or stays the same during leftmost

reductions, but it cannot increase. Additionally, the higher cost will be related to

the lower cost by a function H: the higher cost can be very big only when the lower

cost is also quite big.

We need to the look at the duplication factor more precisely. Consider a node

of a derivation tree in which the (@) rule is used, with type environments Γi for

i ∈ {0} ∪ I . For a ∈ �, the order-a duplication factor in such a node is defined as

⎛
⎝ ∑

i∈{0}∪I

|{(x : (a − 1, σ)) ∈ Γi}|

⎞
⎠ − |{(x : (a − 1, σ)) ∈

⋃
i∈{0}∪I

Γi}|.

In other words, this is equal to the number of type bindings with duplication order

a − 1 together in all the type environments (Γi)i∈{0}∪I , minus the number of such

type bindings in their union. Notice that the sum of order-a duplication factors over

all a ∈ � gives the standard duplication factor, and the order-0 duplication factor

is always 0.

Consider now a derivation tree D. For each a ∈ �, we define a value loca(D) (loc

stands for “local”). If the root (and thus the only node) of D uses the (Con) rule,

loc0(D) = 1 and loca(D) = 0 for all a > 0. If the root of D uses the (@) rule, loca(D)

equals the order-a duplication factor in the root of D (for all a ∈ �). If the root of

D uses any other rule, loca(D) = 0 for all a ∈ �.

We notice that the sum of loca(D
′) over all a ∈ � and over all subtrees D′ of a

tree D gives exactly the lower cost of D. In order to obtain the higher cost, we will

also collect all loca(D
′), but in a more complicated way than just summing.

The values assigned to different duplication orders will be cumulated in an

exponential way as follows. Suppose that we have a sequence (na)a∈� of natural

numbers in which only finitely many elements are positive. For such a sequence, we

define cuma ((nb)b∈�) for each a ∈ � as follows:

cuma ((nb)b∈�) =

{
0 if nb = 0 for all b � a,

(na + 1) · 2cuma+1((nb)b∈�) − 1 otherwise.

We will be performing the cumulation in a situation when a term no longer

duplicates any argument of some duplication order. Then, we are sure that the

duplication concerns only internals of the term, and we may shift the values to a

lower order. Thus, for a derivation tree D deriving Γ � M : (F, τ), we define the
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following shifting function:

shD,a ((nb)b∈�) =

⎧⎨
⎩

0 if a > F(∅),

cuma ((nb)b∈�) if a = F(∅),

na if a < F(∅).

To get used with the cum and sh operations, let us observe two easy proper-

ties. First, we notice that cuma((nb)b∈�) = na if nb = 0 for all b > a. Second,

cuma((shD,b((nc)c∈�))b∈�) (with D and F as above) equals cuma((nc)c∈�) if a � F(∅)

and 0 otherwise.

We are now ready to define how the loca(·) values are collected. Consider a

derivation tree D. For each a ∈ �, we define a value higha(D), by induction on

the structure of D; these values are called higher costs. Let D′
i for i ∈ I denote all

subtrees of D attached just above the root. We take

higha(D) = shD,a

((
locb(D) +

∑
i∈I

highb(D
′
i)
)
b∈�

)
.

See Section 5.3 for a calculation of the higher cost for example derivation trees.

Let us explain the intuitions behind the definition of higher costs. At the end,

we want to look at high0(D), where D derives a type for a closed term M of sort

o. Notice that for such term, values of all orders are shifted using our exponential

cumulation to high0(D) (it holds that higha(D) = 0 for all a > 0). This value should

give an upper bound for the lower cost of the βδ-normal form of M. It is always

the case that the higher cost is greater than the lower cost. Thus, to achieve our

goal, we have to ensure that high0(D) is never increased during leftmost reductions.

It turns out that it is not enough to look at the sum of duplication factors; the

orders on which they appear start to play a role. Consider the highest n for which

the order-n duplication factor is positive somewhere in D. Then, consider a node of

D for a redex (λx.M)N such that in the subtrees corresponding to N the order-n

duplication factor is zero (inside we only have duplication factors of smaller order,

and some (Con) nodes), but a binding for x of duplication order n − 1 is duplicated

in M, say once. When this redex is reduced, subtrees describing N are replicated

twice, and substituted for x in M; simultaneously x disappears, so the order-n

duplication factor decreases by one. Similarly, while reducing the next redex, the

subtrees describing the argument can also be replicated twice, and so on. Moreover,

the subtrees in each step can contain subtrees replicated in previous steps. Next,

analogous analysis for order-(n − 1) duplication factors (whose number is already

increased by order-n duplication factors) shows that each of them can multiply by

two the number of duplication factors of order smaller than n − 1 (and of (Con)

nodes), and so on.

This justifies on the intuitive level the exponential character of the formula for

cumulating duplication factors of different orders, but in fact this analysis cannot

be formalized (in some sense it is incorrect). One problem is that the argument of

a redex is not necessarily a closed term. So a positive duplication factor not only

implies that the subtrees describing the argument will be replicated, but also the free

variables will be used more times (and we do not know how “big” the terms are
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that will be substituted there). Another problem is that in general reductions may

change the duplication flag of the redex (duplications factor of higher order slowly

disappear during reductions), so if the redex is used as an argument, it might be

necessary to change completely the rest of the derivation tree. Thus, it is important

in our correctness proof that we perform only leftmost reductions. Unluckily, then

we lose the property that the argument of a redex does not contain duplication

factors of the highest order.

However, in the formula, we do not make just one tower of exponentials at the

end, but we compute some exponentials already for some subterms. Although this

makes the final value high0(D) even smaller, this “eager cumulation” is essential

for the proof of correctness, since otherwise high0(D) could increase during leftmost

reductions. The idea behind that is as follows. Suppose that we have a term M of

duplication order f. Then, by definition, M can duplicate only terms of duplication

order smaller than f. So if inside M we have order-a duplication factor with a > f,

it can be used only to duplicate subterms of M. Thus, basically loca is cumulated

recursively along the derivation tree; however, when the duplication order of a

subtree is f, we can forget about its duplication factors in higha for a > f—they will

only be applied to locf contained inside this subtree, so we can predict their result

in highf .

It is an important detail that we take into account the duplication order instead

of the standard order. In the conference version of this paper with loca, we were

computing the number of duplicated type bindings for variables of order a − 1

(instead of duplicated type bindings with duplication order a − 1). For that reason,

we obtained there a weaker result: everything worked well only when the maximal

order of a subterm of all considered terms was bounded by some fixed number. The

problem was that it is possible to duplicate a variable of some high order without

duplicating anywhere else variables of lower orders. On the other hand, if we have

a subterm of some duplication order a, then it duplicates something of duplication

order a − 1, so necessarily, we have a subterm of duplication order a − 1, and so

on. In consequence, the maximal used duplication order is bounded by the lower

cost.

4.2 Relation between the costs

We now relate our two costs of a derivation tree: the lower cost and the higher cost.

Let us start by observing that the first one is always smaller.

Proposition 12

For each derivation tree D, it holds that low (D) �
∑

a∈� higha(D).

Proof

Easy induction on the structure of D. �

The key point is that we also have the opposite inequality, in the sense of the

domination relation.
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Lemma 13

For some correction function H , it holds that high0(D) �H low (D) for every

derivation tree D deriving a type for a closed term of sort o.

As a first ingredient of the proof, we need to observe that the maximal duplication

order of a subterm is bounded by the lower cost. We need some definitions. For

each type pair (f, τ), where τ =
∧
T1→ . . .→

∧
Tk→r, we define by induction:

mdo(f, τ) = max({f} ∪ {mdo(g, σ) | (g, σ) ∈
⋃

i∈{1,...,k}

Ti}),

prov (f, τ) = {0, . . . ,mdo(f, τ)} \
k⋃

i=1

⋃
(g,σ)∈Ti

prov (g, σ).

Here, mdo(f, τ) is the maximal duplication order used in (f, τ); it is just the greatest

number written anywhere inside (f, τ). The set prov (f, τ) contains all duplication

orders which have to be provided by each term having such a type. It contains

all numbers between 0 and mdo(t, τ) except those which have to be provided by

arguments of the term. We have analogous definitions for derivation trees. Let D be

a derivation tree for Γ � M : (F, τ), whose subtrees located just above the root are

Di for i ∈ I . Then,

mdo(D) = max
(
{mdo( max

X⊆dom(Γ)
F(X), τ)} ∪ {mdo(g, σ) | (x : (g, σ)) ∈ Γ}

∪ {mdo(Di) | i ∈ I}
)
.

prov(D) = prov (mdo(D), τ) \
⋃

(x:(g,σ))∈Γ

prov (g, σ).

In the formula for mdo(D), we include the numbers used in Γ only for convenience;

ignoring them would not change anything, as each type binding from Γ is used in

some leaf subtree of D.

Lemma 14

For each derivation tree D, and each a ∈ prov(D), there is a subtree D′ of D with

loca(D
′) > 0.

Proof

Induction on the structure of D. Let D be a derivation tree for Γ � M : (F, τ). We

have several cases.

Suppose that M is a constant. Then, Γ = ∅ and F(∅) = 0. It holds that mdo(D) = 0,

and surely loc0(D) > 0.

Suppose that M = x is a variable. Then, Γ = {x : (F({x}), τ)}, and F(∅) = −∞.

We have mdo(D) = F({x}), so prov(D) = prov (mdo(D), τ) \ prov (F({x}), τ) = ∅, thus

the thesis holds trivially.

Suppose that M = Y K . Just above the root of D, we have a subtree DY for

Γ � K (Y K) : (F, τ). Notice that mdo(D) = mdo(DY ), and prov(D) = prov(DY ), so

the thesis follows immediately from the induction assumption.
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Suppose that M = λx.K . Let τ =
∧
T→τ′. Just above the root of D, we have

a subtree Dλ for Γ ∪ {x : (g, σ) | (g, σ) ∈ T } � K : (F ′, τ′). Obviously, mdo(D) =

max(mdo(Dλ), . . . ) � mdo(Dλ). It also holds that mdo(D) � mdo(Dλ) (and hence

mdo(D) = mdo(Dλ)), since in the root of D, we only shift some numbers from the

environment to τ, and we have F = F ′�P(dom(Γ)). In consequence, prov(D) = prov(Dλ)

(only the duplication orders provided by T are removed from {0, . . . ,mdo(D)} in a

different place), thus the thesis follows from the induction assumption.

Finally, suppose that M = K L. Above the root of D, we have a derivation tree D0

for Γ0 � K : (F0,
∧

i∈I (Fi(dom(Γi)), τi)→τ) and for each i ∈ I , we have a derivation

tree Di for Γi � L : (Fi, τi). Take some a ∈ prov(D); we want to prove that there is a

subtree D′ of D with loca(D
′) > 0. Suppose first that a � mdo(D0). If a ∈ prov(D0),

the thesis follows from the induction assumption. Otherwise, a ∈ prov (Fi(dom(Γi)), τi)

for some i ∈ I (a was removed from {0, . . . ,mdo(D0)} by prov (·) for some of the

arguments, but since a ∈ prov(D), it was necessarily the first argument). Then,

a ∈ prov(Di) since mdo(Fi(dom(Γi)), τi) � mdo(Di), and again the thesis follows from

the induction assumption. Next, suppose that mdo(D0) < a � mdo(Di) for some

i ∈ I . Since τi is used in D0, all numbers appearing in τi are smaller than a (are

not greater than mdo(D0)). It follows that a ∈ prov(Di), and we are done again.

Finally, suppose that a > mdo(Di) for each i ∈ {0} ∪ I . Since a � mdo(D), the

duplication order mdo(D) comes from the root of D. It cannot come from the

environment, since Γ =
⋃

i∈{0}∪I Γi. So mdo(D) = F(X) for some X ⊆ dom(Γ).

As Fi(X ∩ dom(Γi)) � mdo(Di) < mdo(D) for each i ∈ {0} ∪ I , recalling how F

is computed in the (@) rule, necessarily two type environments Γi, Γj contain

the same type binding of duplication order mdo(D) − 1. Then, on the one hand,

locmdo(D)(D) > 0. On the other hand, this type binding is in some Γi, which causes

that mdo(Di) � mdo(D) − 1, so a = mdo(D). This finishes the proof. �

Next, we show an inequality concerning numbers, that will be useful in our proof

of Lemma 13, as well as later.

Lemma 15

Let (ma)a∈�, (m′
a)a∈�, (na)a∈� be sequences of natural numbers in which only finitely

many elements are positive. Suppose that cuma((mb)b∈�) � cuma((m
′
b)b∈�) for each

a ∈ �. Then, it is also the case that cuma((mb + nb)b∈�) � cuma((m
′
b + nb)b∈�) for

each a ∈ �.

Proof

To shorten the notation, in this proof, we drop the lower index b ∈ � for all

sequences. We prove a slightly stronger inequality, that is

cuma(mb + nb) � cuma(m
′
b + nb) + cuma(mb) − cuma(m

′
b). (2)

This inequality is proved by reversed induction. Of course it holds for big a, where

all sequences are zero. Assume that Equation (2) holds for a + 1. Below we derive
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Equation (2), where in the first inequality, we use the induction assumption, in the

second the assumption that cuma+1(mb) � cuma+1(m′
b), and in the third the simple

fact that cuma+1(m′
b + nb) � cuma+1(m′

b):

cuma(mb + nb) = (ma + na + 1) · 2cuma+1(mb+nb) − 1

� (ma + na + 1) · 2cuma+1(m′
b+nb)+cuma+1(mb)−cuma+1(m′

b) − 1

� (ma + 1) · 2cuma+1(mb) · 2cuma+1(m′
b+nb)−cuma+1(m′

b) + na · 2cuma+1(m′
b+nb) − 1

= (cuma(m
′
b) + 1 + cuma(mb) − cuma(m

′
b)) · 2cuma+1(m′

b+nb)−cuma+1(m′
b)

+ na · 2cuma+1(m′
b+nb) − 1

� (m′
a + 1) · 2cuma+1(m′

b) · 2cuma+1(m′
b+nb)−cuma+1(m′

b) + cuma(mb) − cuma(m
′
b)

+ na · 2cuma+1(m′
b+nb) − 1

= (m′
a + na + 1) · 2cuma+1(m′

b+nb) − 1 + cuma(mb) − cuma(m
′
b)

= cuma(m
′
b + nb) + cuma(mb) − cuma(m

′
b). �

We now prove a variant of Lemma 13 suitable for induction.

Lemma 16

Let D be a derivation tree, and let k ∈ � be such that loca(D
′) = 0 for each a � k

and for each subtree D′ of D. Then, for each a ∈ �, the following holds:

cuma ((highb(D))b∈�) � cuma

(
(mlow (D),k,b)b∈�

)
, where

mn,k,b =

{
0 if b � k,

n if b < k.

Proof

Induction on the structure of D. Let Di for i ∈ I denote all subtrees of D attached

just above the root. We observe that

cuma ((highb(D))b∈�) � cuma

((
locb(D) +

∑
i∈I

highb(Di)
)
b∈�

)
. (3)

Here, the sequence on the left side is obtained by applying a shift function to the

sequence on the right side; both sides are equal for small a, and from some moment

the left side is always 0.

Next, we use the induction assumption, which for each i ∈ I says that

cuma ((highb(Di))b∈�) � cuma

(
(mlow (Di),k,b)b∈�

)
.

Thus, using Lemma 15, we can replace highb(Di) by mlow (Di),k,b on the right side of

Equation (3). Finally, because locb(D) +
∑

i∈I low (Di) � low (D), we obtain

cuma ((highb(D))b∈�) � cuma

((
locb(D) +

∑
i∈I

mlow (Di),k,b

)
b∈�

)

� cuma

(
(mlow (D),k,b)b∈�

)
. �
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Proof of Lemma 13

We will prove that high0(D) �H low (D), where H(n) = cum0

(
(mn,n,b)b∈�

)
. Let D be

a derivation tree deriving a type for a term of sort o.

Observe first that loca(D
′) = 0 for each a � low (D) and for each subtree D′ of D.

Indeed, suppose that loca(Da) > 0 for some a � low (D) > 0 and some subtree Da of

D (for low (D) = 0 the thesis is obvious). Then, in the root of Da, we duplicate (in

particular, we have) a type binding of duplication order a − 1, so mdo(D) � a − 1,

and thus {0, . . . , a − 1} ⊆ prov(D). Lemma 14 implies that also for each b < a, there

is a subtree Db of D with locb(Db) > 0. But the lower cost equals the sum of locb(D
′)

over all b and all subtrees D′ of D, so low (D) �
∑a

b=0 locb(Db) � a + 1 > low (D), a

contradiction.

In order to conclude that high0(D) � H(low (D)), we just apply Lemma 16. �

4.3 Costs during head reductions

It is time to observe how the lower and higher costs of a derivation tree behave

during a single leftmost reduction: the lower cost cannot decrease, and the higher

cost cannot increase.

Lemma 17

Let K and L be closed terms such that L is obtained from K in a single leftmost

reduction, and K does not begin with a lambda (is not of the form λx.K ′). Suppose

that we can derive � L : (F, τ) with a derivation tree D. Then, we can derive

� K : (F ′, τ) with a derivation tree D′ such that F ′(∅) � F(∅) and low (D′) � low (D)

and cuma

(
(highb(D

′))b∈�

)
� cuma ((highb(D))b∈�) for each a ∈ �.

We concentrate on the case of β-reduction, as the case of δ-reduction is very easy.

The proof is tedious, but rather straightforward: it suffices to perform appropriate

surgery on the derivation tree, and then analyze how the costs change. Let us first

observe the following simple fact.

Proposition 18

Let D be a derivation tree for a type judgment with derivation flag F . Then,

higha(D) = 0 for all a > F(∅). If F(∅) � 0, then additionally low (D) � 1.

Proof

The part saying that higha(D) = 0 for all a > F(∅) is trivial, since higha(D) is a

result of shD,a, which by definition is 0 for all a > F(∅). We prove the second part

by induction on the structure of D. For most rules in the root of D, the proof is

trivial, only the case of application is interesting. Suppose that F(∅) � 0. Let Di for

i ∈ {0} ∪ I be the subtrees just above the root of D, and let Fi be the duplication

flags used in their roots. Looking at formula (1), we see that either Fi(∅) � F(∅) for

some i ∈ {0} ∪ I , or some binding with a non-negative duplication flag appears in

type environments in the roots of at least two subtrees Di. In the former case, the

induction assumption implies that low (Di) � 1 which implies low (D) � 1. In the

latter case, the duplication factor is positive, so also low (D) � 1. �

Next, let us see that rules (Y ) and (λ) does not change costs.
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Proposition 19
Let D be a derivation tree using either the (Y ) rule or the (λ) rule in its root, and

let D′ be the subtree of D which starts just above the root. Then, low (D) = low (D′)

and higha(D) = higha(D
′) for each a ∈ �.

Proof
The part about lower costs is obvious. For the other part, we notice that the

duplication flag F from the root of D and the duplication flag F ′ from the root

of D′ satisfy F(∅) = F ′(∅). It holds that higha(D) = shD,a

(
(highb(D

′))b∈�

)
, and

highb(D
′) = 0 for all b > F ′(∅) = F(∅). In consequence, the shift shD,a does not

change anything, and we just have higha(D) = higha(D
′). �

We also need an auxiliary lemma concerning sequences of natural numbers.

Lemma 20
Let (ma)a∈�, (na)a∈�, (ka)a∈� be sequences of natural numbers in which only finitely

many elements are positive. Suppose that for each a ∈ �, it holds that na =(
1 +

∑
b>a kb

)
· (ma − ka). Then, cuma((mb)b∈�) � cuma((nb)b∈�), for each a ∈ �.

Proof
Let us denote xa = cuma((mb)b∈�) and ya = cuma((nb)b∈�). We prove by reversed

induction that xa � ya+
∑

b�a kb. For very big a, all numbers are 0 and the inequality

holds. Suppose that xa+1 � ya+1 +
∑

b>a kb. Observing that 2n � n+ 1 for n ∈ �, we

obtain

xa = (ma + 1) · 2xa+1 − 1 � (ma + 1) · 2ya+1+
∑

b>a kb − 1

� (ma − ka + ka + 1)(1 +
∑
b>a

kb) · 2ya+1 − 1

� (ma − ka)(1 +
∑
b>a

kb) · 2ya+1 + ka + (
∑
b>a

kb) − 1 = ya +
∑
b�a

kb. �

In order to prove Lemma 17, we have to analyze what happens during a

substitution.

Lemma 21
Suppose that we can derive Γ � M[N/x] : (F, τ) with a derivation tree D, where N

is closed. Then, there exist F ′, a set of types S , and Gσ for each σ ∈ S such that

1. we can derive Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � M : (F ′, τ) with a derivation tree

D′, and � N : (Gσ, σ) for each σ ∈ S with a derivation tree Cσ , and
2. F(X) = F ′(X ∪

⋃
σ∈S{x}) for each X ⊆ dom(Γ), and3

3. max({F ′(∅)} ∪ {Gσ(∅) | σ ∈ S}) � F(∅), and
4. for each a ∈ � the following holds:

low (D′) +
∑
σ∈S

low (Cσ) � low (D), and (4)

cuma

((
highb(D

′) +
∑
σ∈S

highb(Cσ)
)
b∈�

)
� cuma ((highb(D))b∈�) . (5)

3 The set
⋃

σ∈S {x} is empty if S is empty; otherwise this is {x}.
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Proof

We prove the lemma by induction on the structure of the derivation tree D. If x

is not free in M, we have M[N/x] = M, so we can take S = ∅, and F ′ = F , and

D′ = D; then points 1–4 hold trivially (in the inequalities both sides are equal). In

all the cases below, we assume that x is free in M.

Suppose that M = x. Then, we take S = {τ}, and Gτ = F , and F ′(∅) = −∞ and

F ′({x}) = F(∅). Since M[N/x] = N and N is closed, the original tree D derives

� N : (Gτ, τ). On the other hand, Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � M : (F ′, τ) is derived

by simply using the (Var) rule; the higher cost of this derivation tree is 0 at each

order. Again, points 2–4 follow immediately, where in all inequalities both sides are

equal.

Suppose that M = Y K . In the root of the derivation tree, we use the (Y ) rule,

above which we have a derivation tree for Γ � (K (Y K))[N/x] : (F, τ). Using the

induction assumption for this subtree, we obtain almost everything as expected,

we have only to apply the (Y ) rule again to the obtained derivation tree for

Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � K (Y K) : (F ′, τ), which gives us a derivation tree D′

for Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � M : (F ′, τ). Notice that after appending the (Y )

rule, the duplication flag and the costs stay the same (Proposition 19), so points 2–4

of the thesis follow immediately from the induction assumption.

The case M = λy.K is very similar. W.l.o.g. we can assume that y �= x. Denote τ =∧
i∈I (gi, ρi)→τ′. Our derivation tree starts by the (λ) rule, above which a derivation

tree Dλ derives Γ ∪ {y : (gi, ρi) | i ∈ I} � K[N/x] : (Fλ, τ
′). We use the induction

assumption for Dλ, obtaining a derivation tree D′
λ for Γ ∪ {y : (gi, ρi) | i ∈ I} ∪ {x :

(Gσ(∅), σ) | σ ∈ S} � K : (F ′
λ, τ

′) and derivation trees Cσ for � N : (Gσ, σ) for

each σ ∈ S . By applying the (λ) rule to D′
λ, we obtain a derivation tree D′ for

Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � M : (F ′, τ), where F ′ = F ′
λ�P(dom(Γ)∪{x}). Using

the induction assumption, for each X ⊆ dom(Γ), we obtain F(X) = Fλ(X) =

F ′
λ(X ∪ {x}) = F ′(X ∪ {x}), as well as

max({F ′(∅)} ∪ {Gσ(∅) | σ ∈ S}) = max({F ′
λ(∅)} ∪ {Gσ(∅) | σ ∈ S}) � Fλ(∅) = F(∅).

We also obtain point 4, since the costs does not change after appending the (λ) rule

(Proposition 19).

Finally, we have the most complicated case M = K L. Here, above the (@) rule in

the derivation tree D, we have a subtree D0 for Γ0 � K[N/x] : (F0,
∧

i∈I (Fi(dom(Γi)),

ρi)→τ) and subtrees Di for Γi � L[N/x] : (Fi, ρi) for each i ∈ I (where, by convention,

0 �∈ I). We use the induction assumption for all these subtrees. We obtain: sets Si
for i ∈ {0} ∪ I , a derivation tree D′

0 for Γ0 ∪ {x : (Gσ(∅), σ) | σ ∈ S0} � K :

(F ′
0,

∧
i∈I (Fi(dom(Γi)), ρi)→τ), and derivation trees D′

i for Γi ∪ {x : (Gσ(∅), σ) | σ ∈
Si} � L : (F ′

i , ρi) for each i ∈ I . Moreover, for each σ ∈
⋃

i∈{0}∪I Si, we obtain a

derivation tree Cσ for � N : (Gσ, σ). Potentially the obtained derivation trees Cσ

(and duplication flags Gσ) could depend not only on σ, but also on i. However,

Lemma 7 ensures that for each fixed σ, there is at most one derivation tree for a

type judgment of the form � N : (Gσ, σ), so indeed the derivation trees coming from

different calls to the induction assumption are identical.

https://doi.org/10.1017/S0956796816000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000113


28 P. Parys

We take S =
⋃

i∈{0}∪I Si. The induction assumption (point 2) ensures that

Fi(dom(Γi)) = F ′
i (dom(Γi) ∪

⋃
σ∈Si{x}), thus we can apply the (@) rule to our

derivation trees D′
i (where i ∈ {0} ∪ I). We obtain a derivation tree D′ for

Γ ∪ {x : (Gσ(∅), σ) | σ ∈ S} � M : (F ′, τ), for appropriate F ′.

In order to prove point 2, take a set X ⊆ dom(Γ). Let us compare formula (1) for

F(X) with analogous formula for F ′(X ∪ {x}). The first set {Fi(X ∩ dom(Γi)) | i ∈
{0}∪I} is replaced by {F ′

i ((X∪{x})∩dom(Γi ∪{x : (Gσ(∅), σ) | σ ∈ Si})) | i ∈ {0}∪I},

but both sets are identical since Fi(X ∩ dom(Γi)) = F ′
i ((X ∩ dom(Γi)) ∪

⋃
σ∈Si{x}) by

the induction assumption. Next, in the formula for F(X), we have a set of those n for

which some binding y : (n−1, ρ) with y �∈ X belongs to at least two type environments

Γi. For F ′(X ∪ {x}), the type environments contain additionally bindings for the

variable x. These bindings are not taken into account since x ∈ X ∪ {x}, so this set

also remains unchanged. The situation with the set {n | ∃y �∈ X. ∃σ. (y : (n−1, ρ)) ∈ Γ}
is the same. The last set {n | ∃ρ. (n − 1, ρ) ∈

⋃
i∈{1,...,k} Ti} also remains unchanged,

since in both D and D′, we have the same type τ.

Next, we prove point 3. Again, we compare how F(∅) and F ′(∅) and computed by

formula (1). Denote the first maximum in this formula for F(∅) by n1, the second

maximum by n2, and similarly n′
1, n′

2 for F ′(∅). To compute n1, we take into account

all Fi(∅) and all numbers n such that some binding with duplication order n − 1

appears in at least two environments Γi. To compute n′
1, we take into account all

F ′
i (∅), all numbers n as above, and also some other numbers referring to bindings of

the variable x. From the induction assumption, we have max({F ′
i (∅)} ∪ {Gσ(∅) | σ ∈

Si}) � Fi(∅) for each i ∈ I , so we obtain max({n′
1} ∪ {Gσ(∅) | σ ∈ S}) � n1. For the

second maximum, we simply have n′
2 � n2, since the roots of D and of D′ use the

same type τ, and all bindings from Γ are also present in Γ ∪ {x : (Fσ(∅), σ) | σ ∈ S}.

Thus, indeed max({F ′(∅)} ∪ {Gσ(∅) | σ ∈ S}) � F(∅).

It remains to prove inequalities (4) and (5). On the left side of Equation (4), we

have

low (D′) +
∑
σ∈S

low (Cσ) =

⎛
⎝ ∑

i∈{0}∪I

low (D′
i)

⎞
⎠ +

(∑
a∈�

loca(D
′)

)
+

(∑
σ∈S

low (Cσ)

)
.

The type environment of D′ is split into type environments of D′
i almost in the same

way as the type environment of D is split into type environments of Di, only in D′

we additionally have bindings for the variable x, thus

∑
a∈�

loca(D
′) =

(∑
a∈�

loca(D)

)
+

⎛
⎝ ∑

i∈{0}∪I

|{σ ∈ Si | Gσ(∅) � 0}|

⎞
⎠

− |{σ ∈ S | Gσ(∅) � 0}|

�

(∑
a∈�

loca(D)

)
+

⎛
⎝ ∑

i∈{0}∪I

∑
σ∈Si

low (Cσ)

⎞
⎠ −

(∑
σ∈S

low (Cσ)

)
.

https://doi.org/10.1017/S0956796816000113 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000113


A characterization of lambda-terms transforming numerals 29

The last inequality holds because Gσ(∅) � 0 implies low (Cσ) � 1 (Proposition 18).

In consequence, we obtain

low (D′) +
∑
σ∈S

low (Cσ) �

⎛
⎝ ∑

i∈{0}∪I

(
low (D′

i) +
∑
σ∈Si

low (Cσ)

)⎞
⎠ +

(∑
a∈�

loca(D)

)
.

From the induction assumption, we know that low (D′
i) +

∑
σ∈Si low (Cσ) � low (Di)

for each i ∈ {0} ∪ I . It follows that

low (D′) +
∑
σ∈S

low (Cσ) �

⎛
⎝ ∑

i∈{0}∪I

low (Di)

⎞
⎠ +

(∑
a∈�

loca(D)

)
= low (D).

Before proving Equation (5), let us observe that we always fall into one of the

following two cases:

1. F ′(∅) � F(∅) and F ′(∅) > Gσ(∅) for each σ ∈ S , or

2. F ′(∅) � F ′
i (∅) for each i ∈ {0} ∪ I and locb(D

′) = 0 for each b > F ′(∅).

This dichotomy comes from formula (1) defining F ′(∅): either F ′(∅) equals the first

maximum in this formula, or the second. The first maximum takes into account

all F ′
i (∅) and all b such that locb(D

′) > 0. Thus, if F ′(X) equals that maximum,

we have case 2. On the other hand, the second maximum takes into account in

particular all numbers Gσ(∅) + 1, since in the type environment in the root of D′,

there are bindings x : (Gσ(∅), σ). Thus, if F ′(X) equals that maximum, we have

F ′(∅) > Gσ(∅) for each σ ∈ S . The part F ′(∅) � F(∅) follows from the inequality

max({F ′(∅)} ∪ {Gσ(∅) | σ ∈ S}) � F(∅) proved in point 3.

We are now ready to prove inequality (5). Denote its left side by La. By definition,

we have higha(D
′) = shD′ ,a

(
(locb(D

′) +
∑

i∈{0}∪I highb(D
′
i))b∈�

)
. We distinguish the

two cases mentioned above. Suppose first that F ′(∅) � F(∅) and F ′(∅) > Gσ(∅) for

each σ ∈ S . Then, for a > F ′(∅) � F(∅) both sides of Equation (5) are zero. For

a = F ′(∅), it holds that higha(D
′) = cuma

(
(locb(D

′) +
∑

i∈{0}∪I highb(D
′
i))b∈�

)
, and

highb(D
′) = 0 for each b > a; moreover, highb(Cσ) = 0 for each b � a and each

σ ∈ S . Thus,

La = cuma

⎛
⎝(

locb(D
′) +

( ∑
i∈{0}∪I

highb(D
′
i)
)

+
( ∑
σ∈S

highb(Cσ)
))

b∈�

⎞
⎠ . (6)

For a < F ′(∅), the shift in the formula for higha(D
′) does not shift anything, so

again Equation (6) holds. The opposite possibility is that F ′(∅) � F ′
i (∅) for each

i ∈ {0} ∪ I and locb(D
′) = 0 for each b > F ′(∅). Then, also highb(D

′
i) = 0 for each

b > F ′(∅) � F ′
i (∅) and each i ∈ {0} ∪ I . Thus, the shift in the formula for higha(D

′)

does not shift anything (it shifts zeroes). As a consequence, Equation (6) holds for

each a ∈ �.

For each a ∈ �, let us denote ka = (
∑

i∈{0}∪I |{σ ∈ Si | Gσ(∅) = a− 1}|) − |{σ ∈ S |
Gσ(∅) = a − 1}|. We see that loca(D

′) = loca(D) + ka. For each a ∈ �, the following
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holds:(
1 +

∑
b>a

kb

)
·

⎛
⎝loca(D

′) +

⎛
⎝ ∑

i∈{0}∪I

higha(D
′
i)

⎞
⎠ +

(∑
σ∈S

higha(Cσ)

)
− ka

⎞
⎠

� loca(D) +

⎛
⎝ ∑

i∈{0}∪I

higha(D
′
i)

⎞
⎠ +

(
1 +

∑
b>a

kb

)
·
∑
σ∈S

higha(Cσ)

� loca(D) +
∑

i∈{0}∪I

(
higha(D

′
i) +

∑
σ∈Si

higha(Cσ)

)
.

The last inequality holds because higha(Cσ) may be positive only when Gσ(∅)+1 > a.

We are ready to apply Lemma 20 to Equation (6): we subtract ka and we multiply

by 1 +
∑

b>a ka. Using our last observation, we obtain

La � cuma

⎛
⎝(

locb(D) +
∑

i∈{0}∪I

(
highb(D

′
i) +

∑
σ∈Si

highb(Cσ)
))

b∈�

⎞
⎠ . (7)

The induction assumption tells us that for i ∈ {0} ∪ I ,

cuma

((
highb(D

′
i) +

∑
σ∈Si

highb(Cσ)
)
b∈�

)
� cuma ((highb(Di))b∈�) .

Using this inequality and Lemma 15, we replace highb(D
′
i) +

∑
σ∈Si highb(Cσ) by

highb(Di) (for each i separately) on the right side of Equation (7), and we obtain

La � cuma

⎛
⎝(

locb(D) +
∑

i∈{0}∪I

highb(Di)
)
b∈�

⎞
⎠

� cuma

⎛
⎝(

shD,b

((
locc(D) +

∑
i∈{0}∪I

highc(Di)
)
c∈�

))
b∈�

⎞
⎠

� cuma ((highb(D))b∈�) . �

Proof of Lemma 17

We proceed by induction on the size of K . We have four cases. One possibility is

that K = (λx.M)N and L = M[N/x]. Then, of course, we apply Lemma 21, out

of which we obtain a derivation tree B for {x : (Gσ(∅), σ) | σ ∈ S} � M : (G, τ)

and derivation trees Cσ for � N : (Gσ, σ) for each σ ∈ S . A derivation tree Bλ

deriving � λx.M : (G′,
∧

σ∈S (Gσ(∅), σ)→τ) is obtained by appending the (λ) rule

to B. To the trees Bλ and Cσ for σ ∈ S , we apply the (@) rule, which gives

us a derivation tree D′ for � (λx.M)N : (F ′, τ). Point 3 of Lemma 21 says that

max({G(∅)}∪{Gσ(∅) | σ ∈ S}) � F(∅), and we have G′(∅) = G(∅). Observe how F ′(∅) is

computed by formula (1). The first maximum is exactly max({G′(∅)}∪{Gσ(∅) | σ ∈ S})

(since there are no bindings in the environment), so it is not smaller than F(∅). The

second maximum is the same as in the formula for F(∅), since the roots of D and of

D′ use the same type τ. Thus, F ′(∅) � F(∅). Let us compare the costs. For the lower
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cost, we have low (Bλ) = low (B), so using Equation (4), we obtain

low (D′) = low (Bλ) +
∑
σ∈S

low (Cσ) � low (D).

For a > F ′(∅) � F(∅), we have cuma ((highb(D))b∈�) = 0. As observed in Proposition

19, highb(Bλ) = highb(B) for each b ∈ �. For a � F ′(∅) using inequality (5), we

obtain

cuma

(
(highb(D

′))b∈�

)
= cuma

((
highb(Bλ) +

∑
σ∈S

highb(Cσ)
)
b∈�

)

� cuma ((highb(D))b∈�) .

Another possibility is that K = Y M and L = M (Y M). Then, to obtain D′, we

just append one node using the (Y ) rule below the root of D. Recall that such D′,

when compared to D, has the same duplication flag, lower cost, and higher cost at

each order.

Next, it is possible that K = M ′ N and L = MN and M is obtained from M ′ in a

leftmost reduction. Then, above the root of D using the (@) rule, we have a subtree

D0 deriving � M : (F0,
∧

i∈I (Fi(∅), ρi)→τ) and subtrees Di deriving � N : (Fi, ρi) for

each i ∈ I . Notice that M ′ does not begin with a lambda, as then the leftmost

reduction should reduce the whole M ′ N. Using the induction assumption, we obtain

a derivation tree D′
0 for � M ′ : (F ′

0,
∧

i∈I (Fi(∅), ρi)→τ). We apply again the (@) rule

to trees D′
0 and Di for i ∈ I , and we obtain a derivation tree for � K : (F ′, τ).

Comparing formulas (1) for F ′(∅) and for F(∅), we see that the only difference is

that for F ′(∅) we take F ′
0(∅) instead of F0(∅). In consequence, F ′(∅) � F(∅), since

F ′
0(∅) � F0(∅) by the induction assumption. The inequality about lower costs also

follows trivially from the induction assumption:

low (D′) = low (D′
0) +

∑
i∈I

low (Di) � low (D0) +
∑
i∈I

low (Di) = low (D).

The induction assumption says also that cuma

(
(highb(D

′
0))b∈�

)
�

cuma ((highb(D0))b∈�) for each a ∈ �. For a > F ′(∅) � F(∅), we have

cuma ((highb(D))b∈�) = 0. For a � F ′(∅) using the induction assumption and Lemma

15, we obtain

cuma

(
(highb(D

′))b∈�

)
= cuma

((
highb(D

′
0) +

∑
i∈I

highb(Di)
)
b∈�

)

� cuma

((
highb(D0) +

∑
i∈I

highb(Di)
)
b∈�

)
� cuma ((highb(D))b∈�) .

Finally, it is possible that K = cN1 . . . Nk M
′ and L = cN1 . . . Nk M and M is

obtained from M ′ in a leftmost reduction. Recall that we only consider constants

of order at most one, so necessarily M ′ is of order 0; in particular, M ′ does not

begin with a lambda. Above the root of D using the (@) rule, we have a subtree D0

deriving � cN1 . . . Nk : (F0,
∧

i∈I (Fi(∅), r)→τ) and subtrees Di deriving � M : (Fi, r)

for each i ∈ I (in fact, I contains exactly one element, but this is not important for
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us). Using the induction assumption for each i ∈ I , we obtain a derivation tree D′
i

for � M ′ : (F ′
i , r). Since the type in this tree is r (it takes no arguments), and there

are no bindings in the type environment, it holds that F ′
i (∅) � 0 and Fi(∅) � 0. We

also know that F ′
i (∅) � Fi(∅). If Fi(∅) = 0, then also F ′

i (∅) = 0. If Fi(∅) = −∞, then

higha(Di) = 0 for each a ∈ �, so 0 = low (Di) � low (D′
i), which implies F ′

i (∅) = −∞.

Thus, we can apply again the (@) rule to trees D0 and D′
i for i ∈ I; we obtain a

derivation tree for � K : (F, τ). The duplication flag remains unchanged (it is still

F). Like previously, the inequalities about lower costs and higher costs follow from

the induction assumption (for the higher cost we use Lemma 15). �

4.4 Conclusion of the proof

We already have all ingredients needed to finish the proof of Lemma 8. As H , we

take the correction function defined by Lemma 13.

Let now M, N be closed terms that are of sort o and contain only constants

of order at most 1, where M →∗
βδ N and N is in βδ-normal form. Lemma 9

implies that (0, r) ∈ types(N), so we can derive � N : (F0, r) by a derivation tree D,

where F0(∅) = 0. Due to Fact 1, there is a sequence of leftmost reductions leading

from M to N. Starting from the end, we consecutively apply Lemma 17 to these

reductions, and we obtain a derivation tree D′ for � M : (F ′, r), where F ′(∅) � F0(∅),

and low (D′) � low (D), and cuma

(
(highb(D

′))b∈�

)
� cuma ((highb(D))b∈�) for each

a ∈ �. Since the type in the root of M is r (it takes no arguments), and there are

no bindings in the type environment, it holds that F ′(∅) � 0, so in fact F ′(∅) = 0. It

follows that (0, r) ∈ types(M).

Because F ′(0) = 0 = F0(0), our inequality about higher costs boils down to

high0(D′) � high0(D). Recall that low(M, (0, r)) = low (D′) and low(N, (0, r)) = low (D).

Thus, using Proposition 12 and Lemma 13, we obtain the required inequalities:

low (D′) � low (D) � high0(D) � high0(D′) � H(low (D′)).

5 A longer example

In this section, we present a longer example illustrating notions introduced in the

former sections, such as derivation trees, the lower cost and the higher cost.

5.1 Derivation trees

We begin with few examples of derivation trees. To shorten the notation, a function

which maps Si to ni for each i ∈ {1, . . . , k} is denoted by [S1 �→n1, . . . , Sk �→nk]. We

denote by bx the binding x : (0, r), by b−∞
y the binding y : (−∞, (0, r)→r), and

by b1
y the binding y : (1, (0, r)→r). We also denote Fx = [∅ �→−∞, {x}�→0], and

F−∞
y = [∅ �→−∞, {y}�→−∞], and F1

y = [∅ �→−∞, {y}�→1]. The first tree, D1, derives
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a type judgment for the term λy.λx.y (y x).

b1
y � y : (F1

y , (0, r)→r)

b1
y � y : (F1

y , (0, r)→r) bx � x : (Fx, r)

bx, b
1
y � y x : ([∅ �→−∞, {x}�→0, {y}�→1, {x, y}�→0], r)

(@)

bx, b
1
y � y (y x) : ([∅ �→2, {x}�→2, {y}�→1, {x, y}�→0], r)

(@)

b1
y � λx.y (y x) : ([∅ �→2, {y}�→1], (0, r)→r)

(λ)

� λy.λx.y (y x) : ([∅ �→2], (1, (0, r)→r)→(0, r)→r)
(λ)

The next tree, D2, derives another type judgment for the same term.

b−∞
y � y : (F−∞

y , (0, r)→r)

b−∞
y � y : (F−∞

y , (0, r)→r) bx � x : (Fx, r)

bx, b
−∞
y � y x : ([∅ �→−∞, {x}�→0, {y}�→−∞, {x, y}�→0], r)

(@)

bx, b
−∞
y � y (y x) : ([∅ �→−∞, {x}�→0, {y}�→−∞, {x, y}�→0], r)

(@)

b−∞
y � λx.y (y x) : ([∅ �→−∞, {y}�→−∞], (0, r)→r)

(λ)

� λy.λx.y (y x) : ([∅ �→−∞], (−∞, (0, r)→r)→(0, r)→r)
(λ)

Next, consider the term M3 = λz.λt.z (λx.x) (z (λx.cx x) t), where c is a constant of

sort o→o→o, and types τ1 = (1, (0, r)→r)→(0, r)→r and τ2 = (−∞, (0, r)→r)→(0, r)→r

(these are the types in the conclusions of D1 and D2). Then, there exists a derivation

tree D3 for the type judgment � M3 : (0, (τ1 ∧ τ2)→(0, r)→r). We can merge all these

trees into D5 as follows:

D3 D1 D2

� M3 (λy.λx.y (y x)) : ([∅ �→1], (0, r)→r)
(@)

� d : ([∅ �→0], r)

� M3 (λy.λx.y (y x)) d : ([∅ �→0], r)
(@)

For further use, denote its subtree ending at the first (@) rule by D4.

5.2 Lower cost

Let us see what is the lower cost of the derivation trees from Section 5.1. In D1, the

binding b1
y is duplicated in the lower (@) rule, so we have low (D1) = 1. In D2, the

binding b−∞
y is also duplicated, but it has duplication order −∞, so this duplication

is not included to the duplication factor and hence low (D2) = 0. Let us analyze the

tree D3, which is not written explicitly. There will be a node describing the subterm

cx x in which a binding for x will be duplicated. There will be also a (Con) node

for the constant c. Notice that bindings for variable z are not duplicated, since the

two appearances of z use two different bindings. Thus, low (D3) = 2. Altogether, we

obtain low (D4) = 3 and low (D5) = 4 (because of another (Con) node).

Notice that the βδ-normal form of the term described by D5 is c (c d d) (c d d). It

contains seven constants, so the lower cost of the derivation tree for this term will

be 7.

5.3 Higher cost

Next, let us analyze the higher cost of the derivation trees from Section 5.1. We see

that the duplication of b1
y in D1 is on duplication order 2 (b1

y has duplication order
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1), that is high2(D1) = 1 and higha(D1) = 0 for a �= 2. In D2, all higher costs are 0.

In D3, the duplication of x is on duplication order 1, and we have a (Con) node for

c, so high0(D3) = high1(D3) = 1 and higha(D3) = 0 for a � 2. Notice that there were

no non-trivial shifts (cumulations) of higher costs in D1 and in D3, since always we

had either an argument or a type binding of high-enough duplication order. But

the conclusion of D4 has empty type environment and takes only an argument of

duplication order 0, thus higher costs from order 2 will be now shifted to order 1:

high0(D4) = 1, and high1(D4) = (1 + 1) · 21 − 1 = 3, and higha(D4) = 0 for a � 2.

Finally, in D5, we add 1 to the higher cost at order 0 because of the constant d, and

we shift everything to order 0: high0(D3) = (2 + 1) · 23 − 1 = 23. Surely this is greater

than 7, the lower cost of the βδ-normal form of M3 (λy.λx.y (y x)) d.

6 Consequences

In this section, we present two example consequences of Theorem 10. We define

dim(α) to be the number of possible sets types(M) over all closed terms M of

sort α→α�. As already observed, this number is finite (and is not greater than

|Pcons ({−∞, 0, . . . , ord (α→α�)}×Tα→α�)|). In particular, dim(α) assigns some natural

number to each sort α.

Recall that for a term M of sort α� representing a natural number in a numeral

system val , we write val(M) for this number. We obtain the following theorem.

Theorem 22

Let val be a numeral system using terms of sort α�, let α be a sort, let F (functions)

be a set of closed terms of sort α→α�, and let A (arguments) be a set of closed

terms of sort α such that val (K N) is defined for all K ∈ F, N ∈ A. We define an

equivalence relation over elements of F: we have K ∼ L, when for each M ⊆ A
the set {val(K N) | N ∈ M} is bounded if and only if the set {val(LN) | N ∈ M} is

bounded. Then, this relation has at most dim(α) equivalence classes.

Proof

We will show that when types(K) = types(L), then also K ∼ L; the thesis of the

theorem will follow, since we have at most dim(α) possible sets types(K).

Thus, suppose types(K) = types(L), and consider a set M of terms of sort

α such that K N and LN represent a number for each N ∈ M, and such

that {val(K N) | N ∈ M} is bounded. Theorem 10 gives us a choice function t

and a correction function H such that low(K N, t(types(K N))) ≈H val(K N) for

each N ∈ M. This implies that the set {low(K N, t(types(K N))) | N ∈ M} is

bounded as well. Because types(K) = types(L), by compositionality of types , we

have types(K N) = types(LN). Thus, Theorem 10 applied to the term LN gives us

the equivalence val(LN) ≈H low(LN, t(types(K N))). Recall the property that the

vector of lower costs assigned to a composition K N is computed basing on the lower

costs assigned to K and to N in a way depending only on types(K) and types(N):

there is an element uN and a set UN such that low(K N, t(types(K N))) = low(K, uN)+∑
u∈UN

low(N, u) and low(LN, t(types(K N))) = low(L, uN)+
∑

u∈UN
low(N, u). In con-

sequence, low(LN, t(types(K N))) = low(K N, t(types(K N)))+low(L, uN)−low(K, uN).
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Because uN comes from a finite set, the set {low(LN, t(types(K N))) | N ∈ M} is

bounded, so the set {val(LN) | N ∈ M} is bounded as well thanks to the equivalence

val(LN) ≈H low(LN, t(types(K N))). The opposite implication (from L to K) is

completely symmetric. �

The second theorem says that in terms of type α we can represent k-tuples of

natural numbers only for k � dim(α) in such a way that the numbers can be extracted

out of the k-tuples using λ-terms. That is, while representing k-tuples in terms of

sort α, we want to have closed terms M1, . . . ,Mk , all of the same sort α→α�. Then,

the k-tuple represented by a term N of sort α will be (val(M1 N), . . . , val(Mk N)). Our

result is described by the following theorem.

Theorem 23

Let val be a numeral system using terms of sort α�, and let α be a sort. Let

M1, . . . ,Mk be closed terms of sort α→α�, for k > dim(α). Let X be the set of

k-tuples

(val(M1 N), . . . , val(Mk N))

over all closed terms N of sort α such that val(Mi N) is defined for each i. Then,

X �= �k . Moreover, there exist at most dim(α) indices i ∈ {1, . . . , k} for which there

exists a subset Xi ⊆ X containing tuples with arbitrarily big numbers on the i-th

coordinate, but such that all numbers on all other coordinates are bounded.

Proof

This is an immediate consequence of Theorem 22. Suppose that for some i, there

exists a set Xi as in the statement of the theorem. This means that there is a set

Mi of terms such that the set {val(Mi N) | N ∈ Mi} is unbounded, but the sets

{val(Mj N) | N ∈ Mi} are bounded for each j �= i. Then, by definition Mi �∼ Mj for

each j �= i. Since we only have dim(α) equivalence classes of ∼, we can have at most

dim(α) such indices i. In particular, it holds that X �= �k . �

6.1 Polymorphic types

We notice that the results given in our paper for simply typed λ-calculus do not

extend to polymorphic λ-calculus, already with the Hindley–Milner type system. We

will show that we can represent tuples of arbitrarily many natural numbers in terms

of the polymorphic sort ∀β.(β→α�)→(α�→β→β)→β→α�. This would contradict

an appropriate formulation of Theorem 23 for polymorphic λ-calculus.

For a number n, let �n� be some term representing n. We represent a k-tuple

(n1, . . . , nk) in the term listn1 ,...,nk = λe.λf.λz.e(f �n1� (f �n2� (. . . (f �nk� z) . . . ))), having

the polymorphic sort as declared above.

Now, we show how to extract particular numbers from such a tuple. We need the

term tupn1 ,...,nk
= λf.f �n1� . . . �nk� (whose sort depends on k), that is usually used to

represent a k-tuple (n1, . . . , nk). Then, the term extr i,k = λt.t (λx1. · · · .λxk.xi) extracts

the number ni, that is extr i,k tupn1 ,...,nk
→∗

β �ni�. We also need a term that shifts

numbers in a k-tuple, ignores the last number, and places a new one on the first
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position: shiftk = λt.λn.λf.f n (extr1,k t) . . . (extrk−1,k t). To extract the i-th element

from our list, we use the term Mi = λx.x extr i,i shift i tup1,...,i. It is easy to see that for

i � k, we indeed have

Mi listn1 ,...,nk →∗
β extr i,i (shift i �n1� (shift i �n2� (. . . (shift i �nk� tup1,...,i) . . . )))

→∗
β extr i,i tupn1 ,...,ni

→∗
β �ni�.
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