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Abstract In this note, we prove that every Salem number is expressible as a difference of two Pisot
numbers. More precisely, we show that for each Salem number α of degree d, there are infinitely many
positive integers n for which α2n−1 − αn + α and α2n−1 − αn are both Pisot numbers of degree d and
that the smallest such n is at most 6d/2−1 + 1. We also prove that every real positive algebraic number
can be expressed as a quotient of two Pisot numbers. Earlier, Salem himself had proved that every Salem
number can be written in this way.
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1. Introduction

Recall that a Salem number is a real algebraic integer α> 1 whose conjugates over Q
except for α itself all lie in the disc |z| ≤ 1 with at least one conjugate lying on the
boundary |z| = 1. The Salem number α is reciprocal, so it has even degree d ≥ 4 over Q,

the conjugate α−1 and d − 2 unimodular conjugates of the form e±iφj , j = 1, . . . , d/2−1,
where 0 < φ1 < · · · < φd/2−1 < π. A Pisot number is a real algebraic integer greater
than 1 whose other conjugates over Q (if any) all lie in the open disc |z| < 1.
Various properties of Salem numbers have been investigated in [6–8, 12, 13, 15, 17]

(see also a survey [16]), while their relations with Pisot numbers have been explored in,
for example, [1, 2, 5, 9, 10, 18, 19]. For example, an old result of Salem [12] asserts that
every Pisot number is a limit point of the set of Salem numbers. In [14], Siegel showed
that the smallest Pisot number is the root θ = 1.3247 . . . of x3 − x − 1 = 0, while the
smallest Salem number is not known, and it is not even known whether the set of Salem
numbers is bounded away from 1.
In [5], the author investigated various sumsets and difference sets involving Salem and

Pisot numbers. In this note, we will prove the following new result in this direction.
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Theorem 1. Every Salem number is expressible as a difference of two Pisot numbers.

More explicitly, we will show the following:

Theorem 2. For each Salem number α of degree d ≥ 4, there exist infinitely many
n ∈ N for which α2n−1−αn+α and α2n−1−αn are both Pisot numbers of degree d. The
smallest such n is at most 6d/2−1 + 1.

In [12, p. 69] (see also [13, p. 35]), Salem himself proved that every Salem number is
expressible as a quotient of two Pisot numbers. On the other hand, the author showed
that every positive algebraic number is a quotient of two Mahler measures [4, Theorem 1].
Recall that the Mahler measure M(α) of a non-zero algebraic number α is the modulus of
the product of its conjugates lying outside the unit circle and the leading coefficient of its
minimal polynomial in Z[x]. Thus, for a real algebraic number α> 1, we have M(α) ≥ α
with equality if and only if α is a Salem or a Pisot number. Therefore, the following
theorem generalizes both these results.

Theorem 3. Every real positive algebraic number α of degree d is expressible as a
quotient of two Pisot numbers of degree d from the field Q(α).

In the next section, we will recall a few simple results, which will be used in the proofs.
Then, in § 3, we will prove Theorems 2 and 3. Evidently, Theorem 2 implies Theorem 1.

2. Auxiliary results

In the proof of Theorem 2, we will use the next version of Dirichlet’s approximation
theorem [4] (see, e.g., [11, p. 423]).

Lemma 4. Let λ1, λ2, . . . , λN be real numbers. Then, for each Q> 1, there is a positive
integer q ≤ Q such that

‖λjq‖ < Q−1/N

for j = 1, 2, . . . , N .

Throughout, ‖y‖ stands for the distance between y ∈ R and the nearest integer.

Let α be a Salem number of degree d ≥ 4 with conjugates α−1 and e±iφj , j = 1, . . . , N ,
over Q, where 0 < φ1 < · · · < φN < π and d = 2N +2. In [13, p. 32], Salem showed that
the numbers π, φ1, . . . , φN are linearly independent over Q (the argument is attributed
to Pisot). In particular, Salem’s result implies that

Lemma 5. The numbers φj/π, j = 1, . . . , N , are all irrational.

Note that in case φj/π ∈ Q, the conjugate eiφj of a Salem number must be a root
of unity, which is impossible, because all the conjugates of a root of unity over Q must
be roots of unity themselves, but Salem number is not a root of unity. This also implies
Lemma 5.
Next, we record the following observation:
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Lemma 6. Let α be a real algebraic number of degree d ≥ 2 with conjugates
α1 = α, α2, . . . , αd over Q, and let f be a non-constant polynomial with rational coef-
ficients such that f(α) > 0 and |f(αj)| < 1 for j = 2, . . . , d. If f(α) ∈ Q(α) is an
algebraic integer, then it is a Pisot number of degree d.

Proof. Note that

f(α), f(α2), . . . , f(αd)

is the list of conjugates of an algebraic integer f(α) over Q, possibly repeated several
times. In particular, this implies that f(αj) 6= 0 for j = 2, . . . , d. Furthermore, f(α) ≥ 1,
since otherwise 0 < f(α) < 1, and hence there is a non-zero algebraic integer f(α) with
all conjugates in |z| < 1, including f(α). But then the modulus of the product of the
conjugates of f(α) must be smaller than 1, which is impossible. Also, if f(α) = 1, then
its conjugates f(αj), j = 2, . . . , d, are all equal to 1, which is not the case. Consequently,
f(α) > 1. Since f(α) is the only conjugate of f(α) outside the unit circle, all f(αj),
j = 2, . . . , d, lying in |z| < 1 must be distinct, whence the result. �

3. Proofs of Theorems 2 and 3

Proof of Theorem 2. Let α be a Salem number of degree d ≥ 4 with conjugates
α2 = α−1 and {α3, . . . , αd} = {e±iφ1 , . . . , e±iφN }, where N = d/2−1. Applying Lemma 4
to the N irrational numbers λ1 = φ1/(2π), . . . , λN = φN/(2π) (see Lemma 5), we derive
that for any Q > 1, there is an integer q in the range 1 ≤ q ≤ Q for which

0 < ‖qφj/(2π)‖ < Q−1/N = Q−2/(d−2). (1)

Put n = q + 1 and consider the numbers

β = α2n−1 − αn + α and γ = α2n−1 − αn. (2)

We will show that β and γ are both Pisot numbers of degree d in the field Q(α), provided
that

Q−2/(d−2) ≤ 1

6
, (3)

that is, Q ≥ 6d/2−1. Of course, by letting Q → ∞ in Equation (1), we will produce
infinitely many q satisfying Equation (1), and so infinitely many n ∈ N for which β, γ ∈
Q(α) defined in Equation (2) are both Pisot numbers of degree d.
We begin with the number γ = f(α), where f(x) = x2n−1 − xn due to Equation (2).

First, γ = f(α) > 0 is an algebraic integer lying in the field Q(α). In order to apply
Lemma 6, we need to show that |f(αj)| < 1 for j = 2, . . . , d.
Observe that, by Equation (2),

f(α2) = f(α−1) = α−2n+1 − α−n.

It is clear that −1 < α−2n+1 − α−n < 0 because α> 1. So f(α2) lies in |z| < 1. Next,

fix a conjugate α′ = e±iφj of α. It remains to check that for any choice of the sign ± the
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number

f(α′) = (α′)2n−1 − (α′)n = e±iφjn(e±iφj(n−1) − 1) = e±iφj(q+1)(e±iφjq − 1)

lies in |z| < 1. In view of |f(α′)| = 2| sin(qφj/2)|, this is equivalent to | sin(qφj/2)| < 1/2.
This happens if and only if

|qφj/2− πk| < π/6

for some k ∈ Z or, equivalently, ‖qφj/(2π)‖ < 1/6, which is indeed the case
by Equations (1) and (3). This completes our verification. Therefore, γ = f(α) ∈ Q(α)
is a Pisot number of degree d by Lemma 6.
Now, let us consider the number β = f(α) defined in Equation (2), where

f(x) = x2n−1 − xn + x. It is clear that f(α) > α > 1 is an algebraic integer. This
time, we find that

f(α2) = f(α−1) = α−2n+1 − α−n + α−1.

In view of α> 1 and n ≥ 2, we obtain 0 < α−2n+1−α−n+α−1 < 1, so f(α2) is in |z| < 1.

Next, as above, fix a conjugate α′ = e±iφj of α. This time, we need to show that for any
choice of the sign ± the number

f(α′) = (α′)2n−1 − (α′)n + α′ = e±iφjn
(
e±iφj(n−1) − 1 + e∓iφj(n−1)

)
= e±iφj(q+1)(2 cos(qφj)− 1)

lies in the open disc |z| < 1. This is true if and only if 0 < cos(qφj) < 1. The latter
inequalities hold whenever

0 < |qφj − 2πk| < π/2

for some k ∈ Z or, equivalently, 0 < ‖qφj/(2π)‖ < 1/4. This is true by Equations (1),
(3) and 1/6 < 1/4. As before, by Lemma 6, we conclude that β = f(α) > 1 is a Pisot
number of degree d.
Finally, selecting Q = 6d/2−1, by Equations (1) and (3), we see that the smallest

q ∈ N for which Equation (1) is true satisfies 1 ≤ q ≤ 6d/2−1. This completes the
proof of the last assertion of the theorem because the integer n = q + 1 is in the
range 2 ≤ n ≤ 6d/2−1 + 1. �

Proof of Theorem 3. Let α be a positive algebraic number of degree d over Q with
conjugates α1 = α, α2, . . . , αd. The claim is trivial for d =1, since every integer k ≥ 2 is
a Pisot number and every positive rational number is a quotient of two such numbers.
Assume that d ≥ 2, and let m be a positive integer for which mα is an algebraic integer.
Fix a positive number u < 1 satisfying

mumax(1, |α2|, . . . , |αd|) < 1, (4)

and a positive number v > 1 satisfying

mvα > 1. (5)
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Select a Pisot number β ∈ Q(α) of degree d (see Theorem 2 in [13, p. 3]). A natural
power of β is also a Pisot number of degree d, so by replacing β by its large power if
necessary, we can assume that β > v and that the other d − 1 conjugates of β over Q are
all in |z| < u.
Write this β in the form β = f(α), where f is a non-constant polynomial of degree at

most d − 1 with rational coefficients. Then, the numbers βj = f(αj), j = 1, . . . , d, are
the conjugates of β = β1 over Q. Recall that, by the choice of β, we have

β = f(α) > v and |βj | = |f(αj)| < u for j = 2, . . . , d.

We claim that under assumption on the constants u ∈ (0, 1) as in Equation (4) and v > 1
as in Equation (5), the numbers mαβ ∈ Q(α) and mβ ∈ Q(α) are both Pisot numbers
of degree d. This will complete our proof, since their quotient is α.
First, mβ is a Pisot number, since it is an algebraic integer greater than m > 1, whose

other conjugates mβj , j = 2, . . . , d, all lie in |z| < 1 by |βj | < u and Equation (4). Of
course, mβ ∈ Q(α) is of degree d over Q, since so is β.
Second, the number mαβ = mαf(α) ∈ Q(α) is a positive algebraic integer, since so

are mα and β. It is greater than 1 by β > v and Equation (5). Its other conjugates
are mαjf(αj) = mαjβj , j = 2, . . . , d. They are all in |z| < 1 due to |βj | < u and
Equation (4). Hence, mαf(α) ∈ Q(α) is a Pisot number of degree d over Q by Lemma 6
applied to the polynomial mxf(x) ∈ Q[x].
Therefore, mαβ ∈ Q(α) and mβ ∈ Q(α) indeed are both Pisot numbers of degree d,

which finishes the proof. �
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