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Abstract

Enhanced by the global financial crisis, the discussion about an accurate estimation
of regulatory (risk) capital a financial institution needs to hold in order to safeguard
against unexpected losses has become highly relevant again. The presence of heavy
tails in combination with small sample sizes turns estimation at such extreme quantile
levels into an inherently difficult statistical issue. We discuss some of the problems and
pitfalls that may arise. In particular, based on the framework of second-order extended
regular variation, we compare different high-quantile estimators and propose methods
for the improvement of standard methods by focusing on the concept of penultimate
approximations.
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1. Introduction

It is fair to say that the global financial system is going through a deep crisis. Whereas
for some time a regulatory framework was put into place to avoid systemic risk, the current
problems highlight the total insufficiency of this (so-called) Basel framework. Warnings for
this were voiced early on; see, for instance, [9]. Also, the weaknesses of value-at-risk (VaR),
the risk measure required by the Basel framework, were discussed over and over again; see,
for instance, [21] and the references therein. Nevertheless, it has turned out to be extremely
difficult to convince regulators to ‘think again’. As a consequence, and mainly spurred on
by the subprime crisis, statisticians are increasingly called upon to single out research themes
with considerable practical usefulness. A key example of this is the long-term joint project
between the Office of the Comptroller of the Currency (OCC) and the National Institute of
Statistical Sciences (NISS) on the topic of ‘Financial Risk Modeling and Banking Regulation’.
The current paper is motivated by this research program.

Our starting point is the discussion about the estimation of regulatory (risk) capital a financial
institution needs to hold in order to safeguard against unexpected losses. Without going into a
full description of financial data—be it market risk (MR), credit risk (CR), or operational risk
(OR)—it suffices to know that, according to the current regulatory standards in the banking
industry (Basel II/III framework), risk capital has to be calculated (statistically estimated) using
the concept of VaR at very high levels of confidence (for MR, usually 99% at a 10-day horizon;
for CR and OR, 99.9% and, for economic capital, 99.97%, all three at a one-year horizon).
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The credit crisis prompted the introduction of an extra 99.9%, one-year capital charge for
MR, the so-called incremental risk charge; see Basel Committee [3]. Because of the extreme
quantile levels required, early on extreme value theory (EVT) was recognized as a potentially
useful tool. However, and this often from practice, critical voices have been raised against an
imprudent use of (standard) EVT. In the context of quantitative risk management (QRM), the
use of EVT-based high-quantile estimators may indeed be a delicate issue and warrants careful
further study.

The aim of our paper is twofold. In the first and more theoretical part, we analyze different
choices of normalization and their influence on the rate of convergence in certain limit laws
underlying EVT. In the second part, concrete applications of the methodology developed in the
first part are discussed.

The paper is organized as follows. In Section 2 we introduce some basic concepts from
EVT. In Section 3 we discuss the concept of normalized high-risk scenarios and, in Section 4,
compare the effects of linear versus power norming for high-risk scenarios and quantiles using
the framework of first- and second-order extended regular variation. Based on the findings
from these asymptotic results, we propose the use of so-called penultimate approximations to
estimate extreme quantiles. In Section 5 we compare the performance of different high-quantile
estimators. One method increasingly championed in practice estimates quantiles at a lower level
(e.g. 99%) and then scales up to the desired higher level (e.g. 99.9%) according to some scaling
procedure to be specified. In this context, the usefulness of penultimate approximations in
situations of very heavy tails together with small sample sizes (typical for OR) is highlighted.

2. Univariate EVT

We assume that the reader is familiar with univariate EVT, as presented for instance in [11]
or [13]. Throughout, we assume that our loss data X > 0 are modeled by a continuous
distribution function (DF) F with upper endpoint xF ≤ ∞ and standardly write F̄ = 1 − F .
The corresponding tail quantile function is denoted by U(t) = F←(1 − 1/t), where F←
denotes the (generalized) inverse of F . For properties of F←, see, for instance, [12]. To avoid
confusion, we will—where necessary—denote the DF and the tail quantile function of a random
variable (RV) X by FX and UX, respectively.

As our focus is on the application of EVT-based methods to quantitative risk management, we
prefer to work within the framework of exceedances (the peaks over threshold (POT) method)
rather than within the classical framework of block maxima. The two concepts however are
closely linked as the next result shows; see [11, Theorem 1.1.6].

Proposition 2.1. For ξ ∈ R, the following statements are equivalent.

(i) There exist constants an > 0 and bn ∈ R such that

lim
n→∞Fn(anx + bn) = Hξ(x) = exp{−(1+ ξx)−1/ξ } (2.1)

for all x with 1+ ξx > 0.

(ii) There exists a measurable function a(·) > 0 such that, for x > 0,

lim
t→∞

U(tx)− U(t)

a(t)
= Dξ(x) = xξ − 1

ξ
. (2.2)
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(iii) There exists a measurable function f (·) > 0 such that

lim
t→xF

F̄ (t + xf (t))

F̄ (t)
= (1+ ξx)−1/ξ (2.3)

for all x for which 1+ ξx > 0.

Moreover, (2.1) holds with bn = U(n) and an = a(n). Also, (2.3) holds with f (t) = a(1/F̄ (t)).

Definition 2.1. A DF F satisfying (2.1) is said to belong to the linear maximum (l-max) domain
of attraction of the extreme value distribution Hξ and we write F ∈ Dmax

l (Hξ ). For necessary
and sufficient conditions for distributions F to belong to Dmax

l (Hξ ), we refer the reader to [11,
Chapter 1].

Domain of attraction conditions have been formulated directly in terms of regular variation of
F̄ at xF ≤ ∞ for the cases ξ > 0 and ξ < 0, but not for the case ξ = 0; see [15]. The novelty
of Proposition 2.1 (originally due to de Haan [10]) is that it treats the domain of attraction
conditions for the three cases in a unified way by making use of the more general concept of
extended regular variation (ERV) for U . Recall that a function U is said to be of ERV with
index ξ ∈ R and with auxiliary function a(·) if it satisfies (2.2); see [11, Appendix B.2]. In that
case we write U ∈ ERVξ (a).

Remark 2.1. Even within the unified framework of ERV, the case ξ = 0 is still somewhat
special. Acting as limiting cases, the right-hand sides of (2.2) and (2.3) are interpreted as log x

and e−x , respectively. In that case, U and 1/F̄ are said to be of �-variation and �-variation,
respectively, and we write U ∈ �(a) (or U ∈ ERV0) and 1/F̄ ∈ �(f ).

From a theoretical point of view, this full generality of the framework of ERV is certainly to
be appreciated. For applications to QRM however, a framework treating ξ ≥ 0 but not ξ < 0
in an as simple as possible way is to be preferred. This is done below by basically working
with log U instead of U .

3. First-order asymptotics of normalized high-risk scenarios and quantiles

For a positive RV X ∼ F , we introduce the notation Xt , which is defined as the RV X,
conditioned to exceed the threshold t > 0. Within QRM, Xt is often referred to as a high-risk
scenario; see also [1] for this terminology.

With this notation, Proposition 2.1(iii) states that high-risk scenarios, linearly normalized,
converge weakly to a nondegenerate limit, i.e. for ξ ∈ R and x > 0,

P

(
Xt − t

f (t)
> x

)
= F̄ (t + xf (t))

F̄ (t)
→− log Hξ(x) = (1+ ξx)−1/ξ as t → xF

for some measurable function f (·) > 0. In this case we will say that F belongs to the linear
POT (l-POT) domain of attraction of Hξ and write F ∈ DPOT

l (Hξ ).
While the limit behavior of random variables (exceedances as well as block maxima) under

linear normalizations is well understood and frequently used in applications, the theory under
nonlinear normalizations has been studied less. Pantcheva [22] and Mohan and Ravi [19]
developed a theory of power norming within the block-maxima framework.

We will adopt this idea of nonlinear norming and study the limit behavior of power normalized
high-risk scenarios. Inspired by Barakat et al. [2], who compared the convergence rates under

https://doi.org/10.1239/jap/1324046013 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046013


Scaling of high-quantile estimators 971

linear and power normalizations within the block-maxima setting, we study the first- and second-
order asymptotic behaviors of power-normalized high-risk scenarios and quantiles.

Definition 3.1. We say that a DF F belongs to the power POT (p-POT) domain of attraction
of some nondegenerate DF K and write F ∈ DPOT

p (K), if there exists a measurable function
g(·) > 0 such that the (power) normalized high-risk scenario (Xt/t)1/g(t) converges weakly
to K , in the sense that

P((Xt/t)1/g(t) > x)→ K̄(x) as t → xF

for every continuity point x > 0 of K .

From the classical convergence to types theorem (see [23, Proposition 0.2]), it follows that,
for F ∈ DPOT

p (K), the possible limit laws K are unique up to what we might call p-types (in
the POT setting), where we call two DFs K1 and K2 of the same p-type if K1(x) = K2(x

p) for
some p > 0.

In the result below we exploit the link between the two concepts of linear and power norming
for high-risk scenarios. It connects the respective domains of attraction DPOT

l and DPOT
p .

Proposition 3.1. For X > 0 with DF FX and for ξ ∈ R the following statements hold:

(i) Flog X ∈ DPOT
l (Hξ ) ⇐⇒ FX ∈ DPOT

p (Kξ ),

(ii) FX ∈ DPOT
l (Hξ ) �⇒ FX ∈ DPOT

p (Kξ−),

where K̄ξ (x) = − log Hξ(log x) for x > 0 and ξ− = ξ ∧ 0.

Proof. (i) Let ξ ∈ R and x > 0. Setting Y = log X, the corresponding high-risk scenario
satisfies Y s = log (Xt ) for s = log t and, thus, it immediately follows that

lim
s→xF

P

(
Y s − s

f (s)
> x

)
= − log Hξ(x) ⇐⇒ lim

t→xF

P

((
Xt

t

)1/g(t)

> x

)
= K̄ξ (x),

where f (s) = g(t) and s = log t .
(ii) Let x > 0, and assume that F ∈ DPOT

l (Hξ ), i.e. for some f (·) > 0 and with x > 0,

P

(
Xt − t

f (t)
> x

)
→ (1+ ξx)−1/ξ as t → xF .

We make use of the fact that the convergence above is uniformly in t . Moreover, define
λt (x) = (txg(t) − t)/f (t) and observe that if limt→xF

λt (x) =: λ∞(x) exists, we have, for
every x > 0,

P

((
Xt

t

)1/g(t)

> x

)
= F̄ (txg(t))

F̄ (t)

= F̄ (t + λt (x)f (t))

F̄ (t)

→ (1+ ξλ∞(x))−1/ξ as t → xF .

Now, set g(t) = f (t)/t so that λt (x) = t (xf (t)/t − 1)/f (t) for x > 0.

Case 1: ξ > 0. In this case g(t) → ξ as t → xF ; see [11, Theorem 1.2.5]. Therefore, the
limit λ∞ exists, is finite, and we have limt→xF

λt (x) = (xξ − 1)/ξ .

https://doi.org/10.1239/jap/1324046013 Published online by Cambridge University Press

https://doi.org/10.1239/jap/1324046013


972 M. DEGEN AND P. EMBRECHTS

Case 2: ξ < 0. Note first that xF <∞. Moreover, we have f (t)/(xF − t)→−ξ as t → xF

(see [11, Theorem 1.2.5]), and, hence, g(t) → 0 for t → xF . Therefore, we obtain
limt→xF

λt (x) = log x.

Case 3: ξ = 0. For ξ = 0, the right endpoint xF may be finite or infinite. Moreover, f (·) is
asymptotically equivalent to a function f̃ (·), whose derivative vanishes at xF . For the
case xF = ∞, we thus have

f̃ (t)− f̃ (t0)

t
= 1

t

∫ t

t0

f̃ ′(s) ds → 0 as t →∞.

Therefore, f̃ (t)/t → 0 as t → xF (and, hence, also g(t) → 0), which in turn implies
that limt→xF

λt (x) = log x.
In the case xF < ∞, f̃ (t) → 0 as t → xF (and, hence, also g(t) → 0); see [11,

Theorem 1.2.6]. Therefore, we obtain limt→xF
λt (x) = log x.

Altogether, F ∈ DPOT
l (Hξ ) with ξ ∈ R implies that, for every x > 0 and as t → xF ,

P

((
Xt

t

)1/g(t)

> x

)
→

⎧⎪⎨⎪⎩(1+ ξλ∞(x))−1/ξ =
{

x−1, ξ > 0,

(1+ ξ log x)−1/ξ , ξ < 0,

e−λ∞(x) = x−1, ξ = 0,

i.e. F ∈ DPOT
p (Kξ−), where ξ− = ξ ∧ 0. This completes the proof.

As we subsequently prefer to work within a quantile setting, a reformulation of Proposi-
tion 3.1 in terms of quantile functions is useful. Owing to the convergence properties of inverse
functions (see [23, Proposition 0.1]), this is immediate and we have the following result.

Corollary 3.1. For X > 0 with tail quantile function UX and ξ ∈ R, the following statements
hold:

(i) Ulog X ∈ ERVξ (a) ⇐⇒ log UX ∈ ERVξ (a),

(ii) UX ∈ ERVξ (a) �⇒ log UX ∈ ERVξ−(b),

where ξ− = ξ ∧ 0 and b(t) = a(t)/U(t) for some measurable function a(·) > 0.

Remark 3.1. The respective converse implications of Proposition 3.1(ii) and Corollary 3.1(ii)
do not hold; DPOT

p attracts in fact more distributions than DPOT
l . Consider, for example,

F̄X(x) = (log x)−1 with x > e; hence, FX /∈ DPOT
l but FX ∈ DPOT

p .

4. Second-order asymptotics of normalized quantiles

The results below are expressed in terms of quantiles U rather than distribution tails F̄ .
However, any statement formulated in the U -framework may equivalently be expressed in the
F̄ -framework. Moreover, while we worked in full generality (i.e. ξ ∈ R) so far, we shall
henceforth restrict ourselves to the case ξ ≥ 0, of most interest for applications in insurance
and finance. Similar results for the case ξ < 0 may be worked out.

Assuming that U ∈ ERVξ (a) for some ξ ≥ 0, i.e. for x > 0,

U(tx)− U(t)

a(t)
→ Dξ(x) := xξ − 1

ξ
as t →∞ (4.1)
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for some measurable function a(·) > 0, Corollary 3.1 implies that log U ∈ �(b) and, hence,(
U(tx)

U(t)

)1/b(t)

→ x as t →∞, (4.2)

where b(t) = a(t)/U(t) > 0, such that b(t) → ξ . As a consequence, the (high) quantile
U(tx) may, for large values of t , either be approximated by

U(tx) ≈ U(t)+ a(t)Dξ (x) (4.3)

or by
U(tx) ≈ xb(t)U(t). (4.4)

While the former approximation is well studied (see, for instance, [11, Section 3]), the latter
is less known and, hence, of main interest in the sequel. The two approximations (4.3) and
(4.4) will in general yield different results (unless b(t) ≡ ξ for some ξ > 0, in which case they
coincide). In order to exploit the potential of approximation (4.4), we compare its performance
with the standardly used approximation (4.3) by means of comparing the respective relative
approximation errors in an asymptotic framework, followed by a simulation study in Section 5.

Proposition 4.1. Suppose that there exist functions b, with limt→∞ b(t) = ξ for some ξ ≥ 0,
and B, ultimately monotone and with limt→∞ B(t) = 0 such that, for some ρ ≤ 0 and x > 0,

lim
t→∞

xb(t)U(t)/U(tx)− 1

B(t)
= −Tρ(x), (4.5)

where

Tρ(x) =

⎧⎪⎨⎪⎩
1

ρ
(Dρ(x)− log x), ρ < 0,

1
2 (log x)2, ρ = 0.

In the case that ξ = ρ = 0, we further assume that limt→∞ B(t)/(b(t))2 = c ∈ R. Then we
have, for x > 0,

lim
t→∞

(U(t)+ a(t)Dξ (x))/U(tx)− 1

A(t)
= −Sξ,ρ(x),

where a(t) = b(t)U(t),

A(t) =

⎧⎪⎨⎪⎩
b(t)− ξ, ρ = 0 < ξ,

B(t), ρ < 0, or ξ = ρ = 0 and c �= 0,

(b(t))2, ξ = ρ = 0, c = 0,

and

Sξ,ρ(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1

ρ
(log x − x−ξDξ (x))+ Tρ(x), ρ < 0,

log x − x−ξDξ (x), ρ = 0 < ξ,(
1+ 1

c

)
T0(x), ξ = ρ = 0, c �= 0,

T0(x), ξ = ρ = 0, c = 0.
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Proof. First, recall that a function U is said to be of second-order ERV if there exists positive
functions a and A with limt→∞A(t) = 0 such that, for some ξ ∈ R, the limit

H(x) = lim
t→∞

(U(tx)− U(t))/a(t)− (xξ − 1)/ξ

A(t)

exists for all x > 0 and is not a multiple of (xξ−1)/ξ . In this case we write U ∈ 2ERVξ,ρ(a, A),
where ρ ≤ 0 denotes the so-called second-order parameter; see, for instance, [11, Appendix B]
for details.

Now, note that (4.5) can be rewritten as, for x > 0,

lim
t→∞
−(xb(t)U(t)/U(tx)− 1)

B(t)
= lim

t→∞
log U(tx)− log U(t)− b(t) log x

B(t)
= Tρ(x). (4.6)

Since limt→∞ B(t)/b(t) = 0, we thus have log U ∈ 2ERV0,ρ(b, B/b). The assumed form
of the limit Tρ(x) implies that b ∈ ERVρ(B) and, hence, also that (b(t) − ξ) ∈ ERVρ(B).
Moreover, we have

lim
t→∞

B(t)

b(t)− ξ
= ρ, ρ ≤ 0 ≤ ξ ; (4.7)

see [11, Theorem B.2.2 and Corollary B.2.13].
In the case ξ > 0, observe that, as t →∞,

−
(

U(t)+ a(t)Dξ (x)

U(tx)
− 1

)
∼ U(tx)

U(t)(1+ b(t)Dξ (x))
− 1

∼ x−ξ

(
U(tx)

U(t)
− 1− b(t)Dξ (x)

)
= U(tx)

xξU(t)
− 1− (b(t)− ξ)x−ξDξ (x)

= (log U(tx)− log U(t)− ξ log x)(1+ o(1))

− (b(t)− ξ)x−ξDξ (x)

= b(t) log x + Tρ(x)B(t)− ξ log x − (b(t)− ξ)x−ξDξ (x)

+ o(B(t))+ o(b(t)− ξ)

= (log x − x−ξDξ (x))(b(t)− ξ)+ Tρ(x)B(t)

+ o(B(t))+ o(b(t)− ξ),

where we have used a Taylor expansion for exp(·) and (4.6). Therefore, we have

U(t)(1+ b(t)Dξ (x))/U(tx)− 1

A(t)
∼ −(log x − x−ξDξ (x))

b(t)− ξ

A(t)
− Tρ(x)

B(t)

A(t)

+ (o(B(t))+ o(b(t)− ξ))
1

A(t)
,

so the result follows in view of (4.7).
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Now let ξ = 0 and recall that limt→∞ B(t)/b(t) = 0. On the other hand, b ∈ ERVρ(B)

implies that B(t)/b(t) → ρ and, therefore, the case ξ = 0 necessitates ρ = 0. Then, as
t →∞,

−
(

U(t)(1+ b(t)Dξ (x))

U(tx)
− 1

)
∼ log U(tx)− log U(t)− log (1+ b(t) log x)

= b(t) log x + T0(x)B(t)+ o(B(t))

− (
b(t) log x − 1

2 (log x)2(b(t))2 + o((b(t))2)
)
,

and, hence,

(U(t)(1+ b(t)Dξ (x))/U(tx)− 1)

A(t)
∼ −T0(x)

B(t)

A(t)
− 1

2
(log x)2 (b(t))2

A(t)

+ o(B(t))+ o((b(t))2)

A(t)
,

which completes the proof.

Remarks 4.1. (i) From Proposition 4.1 and its proof, we may conclude that the (less known)
approximation (4.4) performs asymptotically at least as well as approximation (4.3). Indeed, in
the case ρ < 0 the approximation errors tend to 0 at the same rate B(t) (except for the special
case −ρ = ξ > 0 for which Sξ,−ξ (x) ≡ 0 or if c = −1). In the case ρ = 0, the error rate in
(4.4) tends to 0 faster than in (4.3), except for ρ = ξ = 0 �= c, in which case both rates are the
same. The potential improvement in the convergence rate in cases where ρ = 0 is of particular
interest because of the possible applications to quantitative risk management, where frequently
used models (E. Balta, OCC, personal communication) include, for instance, the lognormal
(ξ = ρ = 0), the loggamma, or the g-and-h (both ρ = 0).

(ii) In cases where the relative approximation error of (4.4) vanishes faster than that of (4.3),
the gain is not spectacular since these cases necessitate ρ = 0. The corresponding convergence
rate B(t) in (4.5) is slowly varying and, thus, may tend to 0 arbitrarily slow. Similar conclusions
are found in [16] in the context of penultimate approximations in the block-maxima setting.

(iii) From a methodological viewpoint, Proposition 4.1 may be seen as a partial converse of
Lemma B.3.16 of de Haan and Ferreira [11]. While these authors showed how the assumption
of U ∈ 2ERVξ,ρ implies a second-order condition for log U , we basically assume that log U ∈
2ERV0,ρ and analyze the implications on the second-order behavior of U . Note that in their
framework the case ξ = ρ (e.g. lognormal) is not treated. Also, in the caseρ = 0 (e.g. loggamma
and g-and-h) no nondegenerate second-order result for log U is obtained.

In summary, while Proposition 4.1 highlights the potential usefulness of approximation
(4.4), the findings are asymptotic and, hence, do not guarantee a good performance for finite
samples. Therefore, numerical simulations are needed in order to evaluate the potential of (4.4)
for practical applications. To this end, we must first identify candidates b(·) satisfying (4.5).
Below we consider two different choices of b(·) and derive sufficient conditions for (4.5) to
hold.

4.1. Sufficient conditions

In order to avoid unnecessary technicalities and to exclude pathological cases, we will assume
throughout sufficient smoothness for U . For our purposes, the following representation for U
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turns out to be convenient to work with:

U(t) = eϕ(log t), ϕ(t) =
∫ et

1

ds

u(s)
+ c.

Here u(s) = U(s)/U ′(s) and c = log U(1). Furthermore, we assume that

(A1) the von Mises condition holds, i.e. tU ′′(t)/U ′(t)→ ξ − 1 for some ξ ≥ 0; see [11] for
details.

Assumption (A1) is equivalent to assuming that ϕ′ → ξ ≥ 0 together with ϕ′′/ϕ′ → 0. It
reflects the fact that the log-log plot ϕ of U is assumed to behave ‘nicely’ in the sense of being
ultimately linear, i.e. with converging slope ϕ′ and vanishing convexity ϕ′′. With this notation
introduced, we have the following result on sufficient conditions for Proposition 4.1 to hold.

Proposition 4.2. Suppose that U(t) = eϕ(log t) is three times differentiable and satisfies (A1).

(i) Let b1(t) = ϕ′(log t), and assume that b′1 is ultimately monotone and that

lim
t→∞

ϕ′′′(t)
ϕ′′(t)

= ρ

for some ρ ≤ 0. Then (4.5) holds with b(t) = b1(t) and B(t) = tb′1(t) = ϕ′′(log t).

(ii) Let b2(t) = log U(t)− 1/t
∫ t

t0
log U(s) ds for some t0 > 0, and assume that b′2 is

ultimately monotone and that limt→∞ ϕ′′′(log t)/(ϕ′′(log t)− tb′2(t))− 1 = ρ for some
ρ ≤ 0. If ρ �= −1 then (4.5) holds with b(t) = b2(t), B(t) = tb′2(t), and the limit
Tρ(x)+Dρ(x).

Proof. For (i), we may rewrite (4.5) for x > 0 and with t →∞ as

lim
t→∞
−(xb1(t)U(t)/U(tx)− 1)

B(t)
= lim

t→∞
log U(tx)− log U(t)− b1(t) log x

B(t)

=
∫ x

1

b1(ts)− b1(t)

B(t)

1

s
ds.

With b1 as given, ϕ′′′/ϕ′′ → ρ is equivalent to tb′′1(t)/b′1(t) → ρ − 1 and together with the
ultimate monotonicity of b′1 ensures that b1 ∈ ERVρ(B) for some ρ ≤ 0, such that we may
choose B(t) = tb′1(t). While clear for the ρ < 0 case, this follows from the monotone density
theorem for �-variation for the ρ = 0 case; see [5, Theorem 3.6.8]. Finally, by the uniform
convergence theorem for ERV (see [5, Theorem 3.1.7a]), the convergence

lim
t→∞

b1(ts)− b1(t)

tb′1(t)
=

⎧⎨⎩
sρ − 1

ρ
, ρ < 0,

log s, ρ = 0,

holds locally uniformly on (0,∞), completing the proof of part (i).
The proof for (ii) is similar to (i); the main steps are as follows. With b2 as given, the

assumptions guarantee that b2 ∈ ERVρ(c) with c(t) = tb′2(t). Furthermore, using partial
integration, we obtain

log U(x) = b2(x)+
∫ x

t0

b2(t)

t
dt.
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Therefore, again by the uniform convergence theorem for ERV, we obtain, for x > 0 and as
t →∞,

−
(

U(tx)/xb2(t)U(t)− 1

tb′2(t)

)
∼ log U(tx)− log U(t)− b2(t) log x

tb′2(t)

= b2(tx)− b2(t)

tb′2(t)
+

∫ x

1

b2(ts)− b2(t)

tb′2(t)
1

s
ds

→ xρ − 1

ρ
+ Tρ(x),

which completes the proof.

The rationale behind the choice of normalization b1 in Proposition 4.2(i) is rather intuitive
once we note that b1(t) = tU ′(t)/U(t) = ϕ′(log t) is the slope of the log-log plot of U(t) =
eϕ(log t). Under (A1), obviously, ϕ′(log t)→ ϕ′(∞) = ξ , and, hence, we will refer to b(t) =
ϕ′(log t) as the local or penultimate tail index of the log-log plot of U at points t (as opposed
to the ultimate tail index ϕ′(∞) = ξ ). Furthermore, we remark that the sufficient conditions
given in Proposition 4.2(i) are, under suitable smoothness and monotonicity assumptions on U ,
close to also being necessary for (4.5).

In contrast, the choice of normalization b2 in Proposition 4.2(ii) presents a special case. We
include it in this asymptotic analysis merely to present an alternative way of choosing b(·).
This in turn will result in a different high-quantile estimator. Unlike b1, the rationale behind
b2 does not seem to be very intuitive at first. It may be motivated by Karamata’s theorem,
according to which ϕ(log t) is of the same order as its average ϕ̃(log t) := (1/t)

∫ t

t0
ϕ(log s) ds

for some 0 < t0 < t , i.e. ϕ̃(log t)/ϕ(log t) → 1 as t → ∞. Therefore, we may choose
b(t) = ϕ̃′(log t) = ϕ(log t)− (1/t)

∫ t

t0
ϕ(log s) ds with 0 < t0 < t .

In view of the discussion above, we will refer to the approximation U(tx) ≈ xb(t)U(t)

for some b(t) → ξ ≥ 0 as the penultimate approximation (as opposed to the ultimate
approximation U(tx) ≈ xξU(t)). The idea of penultimate approximations goes back to Fisher
and Tippett [14]. An early discussion of penultimate approximations in the context of block
maxima is found, for instance, in [7] or [16]. Nevertheless, the potential of penultimate
approximations for practical applications seems to have received limited attention so far.
Motivated by the asymptotic results above, below we analyze the potential of penultimate
approximations for high-quantile estimation by means of a simulation study.

5. Implications for quantitative risk management

We discuss the relevance of power norming, or more precisely of the corresponding penulti-
mate approximations as discussed in the previous section. In particular, we study the EVT-based
estimation of high quantiles together with possible fallacies it may bring with it. We hope that,
for the EVT community, our discussion will lead to further relevant research—especially for
the important case ρ = 0.

Recall the Basel II/III regulatory guidelines for CR and OR according to which risk capital
has to be calculated using VaR (i.e. quantiles) at the high level of 99.9%. Owing to the nature of
the problem, the use of EVT has emerged naturally; see [20] in the case of OR and [6] for CR.
However, accurate estimation of the tail index ξ is challenging, so some constructive scepticism
concerning the wiseness to base risk capital on high-level quantiles of some (profit and) loss
DF, even when using standard EVT methods, is still called for; see, for instance, [9] and [21].
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The asymptotic results discussed in Section 4 suggest that moving away from the tail index
ξ—the indicator of the ultimate heavy-tailedness of the loss model—and focusing instead on
the local tail index b(t) = ϕ′(log t) or on b(t) = ϕ̃′(log t), might prove useful at this point.
In particular, it motivates the consideration and comparison of estimation methods for high
quantiles based on what we would like to call (i) standard EVT, and (ii) advanced EVT (see
below for more details on this nomenclature).

As for (i), we incorporate two methods belonging to the standard EVT toolkit. Recall from
the asymptotics for quantiles under linear norming (see relation (4.1)) that we may consider
U(tx) ≈ U(t)+a(t)(xξ −1)/ξ and, owing to the regular variation of U , also U(tx) ≈ xξU(t)

for x > 1 and large values of t . This suggests the following scaling properties of high-quantile
estimators. For some quantile levels α̃, α ∈ (0, 1) with α̃ < α,

V̂aRα = V̂aRα̃ + â(t)
xξ̂ − 1

ξ̂
, (5.1)

and, similarly,

V̂aRα = xξ̂V̂aRα̃, (5.2)

with x = (1− α̃)/(1− α) > 1 and some estimates of ξ , a(t), and VaRα̃ at the lower level α̃.
Relation (5.1) is better known as the POT estimator of VaRα . Indeed, setting u = V̂aRα̃ ,

and using Proposition 2.1, we arrive at a natural estimator

V̂aRα = u+ f̂ (u)
(Nu/n(1− α))̂ξ − 1

ξ̂
(5.3)

for some estimates ξ̂ and f̂ (u) of ξ and of f (u). Here Nu/n is an estimate of F̄ (u), where Nu

denotes the number of exceedances over the threshold u (set by the user) of a total number of
n data points; see, for instance, [13, Chapter 6.5].

In the simulation study below, (5.3) and (5.2) are referred to as the standard EVT I and II
methods, respectively. The tail index ξ and (threshold-dependent) scale parameter f (u) are
estimated using the POT maximum likelihood estimator method (POT-MLE method) with an
ad hoc threshold choice of 10% for upper order statistics; extensive simulations (V. Chavez-
Demoulin, personal communication) have shown that this is an overall good first threshold
choice. Compared to the POT-MLE, the performance of other implemented tail index estimators
such as the Hill, the method of moments, and the exponential regression model (see, for
instance, [4]) did not show significant differences.

The so-called advanced EVT approach (ii) makes use of penultimate approximations. Based
on relation (4.2), with a nonconstant power normalization b(·), we suggest the following scaling
procedure for high-quantile estimators. For quantile levels α̃, α ∈ (0, 1) with α̃ < α,

V̂aRα = xb̂(t)V̂aRα̃, (5.4)

with t = 1/(1− α̃), x = (1− α̃)/(1− α) > 1, and some estimates of b(t) and VaRα̃ . For the
simulation study, we incorporate the two choices b(t) = ϕ′(log t) as well as b(t) = ϕ̃′(log t)

and will refer to these methods as the advanced EVT I and II methods, respectively.
The advanced EVT methods are included in the simulation study in order to outline the

potential of penultimate approximations for practical applications. For the aim of this paper,
we do not elaborate on the respective estimation procedures for ϕ′ and ϕ̃′. In both cases, the
estimates are based on a prior local regression procedure for the log data. This is done with
the ‘locfit’ function (with a tricube weight function and smoothing parameter of 3

4 ) provided in
S-Plus (see [18, Chapter 3 and Section 6.1]). The integral appearing in ϕ̃′ is approximated by a
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composite trapezoidal rule. Finally, the (lower) quantile VaRα̃ for (5.2) and (5.4) is estimated
by the empirical quantile.

Remark 5.1. (Local tail index.) The two scaling procedures (5.2) and (5.4) use the idea of a
linear extrapolation of the log-log plot ϕ of U , but with slopes ϕ′ at different quantile levels.
While the penultimate approximation (5.4) requires the estimation of the local tail indexϕ′(log t)

(or of ϕ̃′(log t)) at a specified level t , the ultimate approximation (5.2)—in theory—makes use
of estimates of the ultimate tail index ϕ′(∞) = ξ .

In practice, given a sample of size 1000, say, a number of largest order statistics (above a
certain threshold t0) are used to estimate ξ in (5.2). It is clear that this yields an estimate of
ϕ′(log u) at some (unknown) level u > t0 rather than of ξ = ϕ′(∞). One of the differences
between (5.2) and (5.4) is thus that in the former case the level u is random (u depends on the
underlying data), while the latter case uses estimates of the slope ϕ′(log t) at predefined levels
t = 1/(1− α̃), set by the user.

5.1. Simulation study

The simulation study is based on sample data from six frequently used OR loss models, such
as the loggamma, the lognormal, the g-and-h, the Pareto, the Burr, and the generalized beta
distribution of the second kind (GB2). For convenience, we recall the definition of a g-and-h
RV X which is obtained from a standard normal RV Z through

X = a + b
egZ − 1

g
ehZ2/2,

with parameters a, g, h ∈ R and b �= 0. Note that in the case h = 0 we obtain a (shifted)
lognormal RV. For the Pareto DF, we use the parameterization F̄ (x) = (x/x0)

−1/ξ for x >

x0 > 0 and some ξ > 0. The GB2 is parameterized as in [17, p. 184], while the remaining
three loss models are as in [13, p. 35].

For the results of Table 1, we simulated 200 samples of 1000 observations from each of the
six loss models. For each of the four abovementioned EVT-based estimation methods, we then
calculated estimates (̂q

(i)
0.999)1≤i≤200 of VaR at level 99.9% and compared the respective bias

and the standardized root mean square error (SRMSE), which is defined as

1

q0.999

√√√√ 1

200

200∑
i=1

(̂q
(i)
0.999 − q0.999)2.

Several simulations with different choices (for risk management practice relevance) of param-
eter values were performed, all of them showing a similar pattern concerning the performance
of the different estimation methods; see Table 1.

Remark 5.2. Despite its inconsistency with the well-known stylized facts of OR data (power
tail, i.e. ξ > 0), the lognormal distribution (semi heavy tailed, i.e. ξ = 0) is widely used in OR
practice as a loss severity model. We include it in our simulation study primarily to question
its omnipresence by highlighting some of the problems its use may bring with it.

As mentioned above, estimation at very high quantile levels by means of fitting a parametric
loss model may be hard to justify. For illustrative purposes, we nevertheless perform a
simulation for the six resulting parametric high-quantile estimators, based on the same data
sample. An excerpt of these (expectedly) disappointing results is given in Table 2. Here, the
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Table 1: Bias and SRMSE (in %) of four EVT-based estimators for VaR at the 99.9% level based on 200
datasets of 1000 observations of six different loss models.

Bias SRMSE Bias SRMSE Bias SRMSE

Loss model g-and-h
Loggamma Lognormal (a = b = 3,

(α = 1.75, β = 2) (µ = 3.5, σ = 1.25) g = 0.8, h = 0.4)

Standard EVT I (POT) 8.41 52.88 5.20 32.93 9.65 57.63
Standard EVT II (α̃ = 0.99) 5.26 56.53 –8.88 39.24 4.97 62.62
Advanced EVT I (α̃ = 0.99) 5.69 35.51 14.34 35.23 7.77 44.80
Advanced EVT II (α̃ = 0.99) 7.60 36.84 42.44 53.21 9.53 44.36

Pareto Burr GB2
(x0 = 1.2, (α = 1, κ = 2, (a = b = 2,

ξ = 0.75) τ = 1.5) p = 1.5, q = 0.75)

Standard EVT I (POT) 13.73 62.73 7.79 54.12 1.20 45.80
Standard EVT II (α̃ = 0.99) 13.99 72.48 6.10 62.20 0.21 51.65
Advanced EVT I (α̃ = 0.99) –9.53 28.29 1.98 41.34 –5.10 29.94
Advanced EVT II (α̃ = 0.99) 2.66 41.95 3.60 39.80 –1.69 32.35

Table 2: Bias and SRMSE (in %) of parametric estimators for VaR at the 99.9% level based on 200
datasets of 1000 observations of three different loss models.

Bias SRMSE Bias SRMSE Bias SRMSE

Loss model GB2
Lognormal Burr (a = b = 2,

(µ = 3.5, σ = 1.25 (α = 1, κ = 2, τ = 1.5) p = 1.5, q = 0.75)

Loggamma 703.51 735.81 188.78 200.70 72.59 81.21
Lognormal 0.50 9.38 –57.86 58.08 –74.88 74.92
g-and-h –4.27 15.57 –45.33 47.59 –45.46 47.03
Pareto 1.04×1013 8.51×1013 7.87×1019 1.029×1021 2.57×1010 2.33×1011

Burr –89.77 89.81 1.69 26.73 20.12 34.35
GB2 91.42 300.91 1.26 32.09 –2.00 25.36

model parameters are estimated using MLE, except for the g-and-h distribution, for which there
is no agreed standard estimation method so far. For that case, we adapt a method suggested by
Tukey [24] based on log2 n so-called letter values, where n is the sample size.

A comparison of the results in Tables 1 and 2 clearly shows that the estimation of high
quantiles based on fitting parametric models may indeed be problematic. The model uncertainty
involved may be considerable (large fluctuation of the estimation errors). Moreover, from a
QRM regulatory point of view, a large negative bias (i.e. underestimation of risk capital) is to be
avoided. Not surprisingly, the lognormal parametric model underestimates risk capital charges
considerably. While intolerable from a sound regulatory perspective, this at the same time may
explain the ‘attractiveness’ of its use for a financial institution.

On the other hand, given the high level of 99.9%, the performance of all four EVT-based
methods is promising; see Table 1. A comparison within the EVT-based methods does not
yield a clear ranking. However, the advanced EVT methods seem to work at least as well as the
standard EVT methods, in particular exhibiting smaller SRMSE. This finding is not by accident.
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Table 3: Bias and SRMSE (in %) of four EVT-based estimators for VaR at the 99.97% level based on
200 datasets of 1000, 500, and 250 observations.

n = 1000, α̃ = 0.99 n = 500, α̃ = 0.98 n = 250, α̃ = 0.96
Loss model

Bias SRMSE Bias SRMSE Bias SRMSE

Loggamma (α = 1.25, β = 1.25)

Standard EVT I (POT) 39.47 159.44 81.57 265.64 839.68 8934.55
Standard EVT II 38.19 160.53 82.15 277.51 1150.21 11 944.19
Advanced EVT I –2.99 46.88 –3.93 54.19 –7.73 65.91
Advanced EVT II 7.49 68.89 1.94 65.52 –14.11 80.61

g-and-h (a = b = 1.5, g = 0.8, h = 0.6)

Standard EVT I (POT) 43.06 149.69 80.63 251.15 257.08 963.06
Standard EVT II 39.94 163.40 84.14 278.85 362.78 1426.99
Advanced EVT I 7.76 60.52 16.76 75.44 40.31 130.65
Advanced EVT II 17.52 83.57 18.38 92.22 8.62 121.65

Pareto (x0 = 1, ξ = 0.85)

Standard EVT I (POT) 33.31 120.47 105.22 317.70 176.93 1112.75
Standard EVT II 35.14 135.80 118.95 354.66 265.77 1734.51
Advanced EVT I –16.29 35.67 –29.95 43.54 –31.36 53.36
Advanced EVT II 5.46 63.49 –8.24 71.91 –22.20 65.45

Burr (α = 1, κ = 1.5, τ = 1.25)

Standard EVT I (POT) 29.94 159.70 68.72 263.39 244.88 1474.04
Standard EVT II 27.77 166.73 68.98 285.69 287.82 1566.36
Advanced EVT I 5.29 69.86 24.87 88.72 81.04 207.97
Advanced EVT II 9.26 75.01 16.09 79.27 19.82 99.54

GB2 (a = 1, b = 2, p = 1.5, q = 1.25)

Standard EVT I (POT) 12.93 88.16 104.19 589.04 143.92 613.16
Standard EVT II 11.63 93.63 108.70 661.79 207.61 970.47
Advanced EVT I 6.58 58.63 29.20 97.35 95.53 245.15
Advanced EVT II 12.96 59.20 24.79 81.35 49.89 144.99

Recall that the estimation of ϕ′ and ϕ̃′ in the advanced EVT I and II methods is based on a
local regression procedure (i.e. smoothing) of the log data. As a consequence, the estimates are
more robust, which leads to smaller SRMSE values. For smaller sample sizes, we expect this
behavior to become even more pronounced.

To confirm the above findings on EVT-based high-quantile estimators, we perform a second,
similar study and estimate quantiles at the even more extreme level of 99.97%, relevant for
the calculation of so-called economic capital; see, for instance, [8, Chapter 15]. Because of
Remark 5.2 we leave out the lognormal data sample. We again simulated 200 samples of 1000,
500, and 250 observations of very heavy-tailed data in Table 3.

From Table 3 we may draw the following conclusions. Most importantly, the potential
of an advanced EVT approach to estimate extreme quantiles in the presence of very heavy
tails and small sample sizes is clearly revealed. The performances of the advanced EVT I
and II methods are far superior to the two standard EVT approaches. This confirms that using
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penultimate approximations instead of ultimate approximations may indeed be promising in
certain situations relevant for practice (and not only from a second-order asymptotic viewpoint).
The estimation errors of the two advanced EVT methods remain comparably moderate, even
for small sample sizes. For the standard EVT methods on the other hand, the estimation errors
are considerable for small sample sizes. From a QRM perspective, this means that relying on
high-quantile estimates based on these conventional methods may become questionable.

6. Conclusion

In this paper we considered EVT-based high-quantile estimators and discussed scaling
properties and their influence on the estimation accuracy at very high quantile levels. The
scarcity of data together with the heavy-tailedness present in the data (especially for OR) turns
high-quantile estimation into an inherently difficult statistical task. The nature of the problem
calls for EVT in some form or other. The application of methods from the standard EVT toolkit
in such applied situations is however not without problems. Our main results are as follows.

First, from a methodological perspective, it is de Haan’s framework of �-variation that is
most useful for our purposes, as it allows for a unified treatment of the QRM important cases
ξ > 0 and ξ = 0. Inherent to �-variation is the notion of power norming (as opposed to
the standardly used linear norming) of quantiles and high-risk scenarios. The use of different
normalizations leads to different second-order asymptotics. It turns out that, in certain cases
relevant to practice, judicious choices of a (nonconstant) power normalization—instead of a
linear or a constant power normalization—may improve the rate of convergence in the respective
limit results.

Second, the theory of second-order extended regular variation provides a methodological
basis for the derivation of new high-quantile estimators. The application of different normal-
izations in the respective second-order relations translates into different scaling properties of
the resulting high-quantile estimators. Our findings motivate the derivation of new estimation
procedures for high quantiles by means of penultimate approximations. In particular, we
proposed two advanced EVT methods which are based on the estimation of the local (pseudo)
slope ϕ′ (and ϕ̃′) of the log-log plot ϕ of the underlying loss model U(t) = eϕ(log t). The methods
proposed are intended to complement, rather than to replace, methods from the standard EVT
toolkit. Their applications may be useful in situations in which the reliability of standard
methods seems questionable.

Third, by means of a simulation study we showed that, in the presence of heavy tails together
with data scarcity, reliable estimation at very high quantile levels, such as the 99.9% or 99.97%,
remains a very difficult task. Regulators as well as practitioners ought to become more aware of
this issue and consequently temper their aspiration of reaching very reliable capital estimation
so far in the tail of loss distributions. While our study highlights the limitations of standard EVT
approaches in such cases, given the above constraint, it reveals the potential of more advanced
EVT methods.

Further statistical research on advanced EVT approaches to estimate high quantiles, together
with a more in-depth study of their benefits as well as limitations for practical applications,
would be desirable.
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