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Abstract
Thirders sometimes feel compelled to give the same answer – a credence of 1/3 – to the original
and the duplicating Sleeping Beauty problem, which leads to some unwanted consequences.
I will argue that they do not have to feel compelled to give the same answer, because the ori-
ginal and the duplicating version of the Sleeping Beauty problem are different types of decision
problems. If one accepts that it is rationally permissible to give different answers to different
types of decision problems, both versions do not require the same solution.
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1. Introduction

Philosophers have formulated the duplicating (doppelgänger) Sleeping Beauty problem
to challenge the thirder position, i.e., the position that defends a credence of 1/3 in
Heads for the original Sleeping Beauty case; see Elga (2000) for the original problem
and, for example, Arntzenius (2003), Kierland and Monton (2005), Bostrom (2007),
and Titelbaum (2014) for a discussion about the doppelgänger problem and duplica-
tion. The challenge, roughly speaking, is that: “many of the people who give the 1/3
answer for the case of Sleeping Beauty feel compelled to give that answer for the
case of Duplicating Beauty” (Kierland and Monton 2005: 392), but the 1/3 answer
creates unwanted consequences in the duplicating scenario (e.g., see Kierland and
Monton 2005: 392; Bostrom 2007: 63; Leitgeb 2010).

I want to suggest an answer to that challenge. I believe that this wrong compulsion
originates in neglecting the underlying decision-theoretic structures of both problems.
I will employ game-theoretic tools to investigate the underlying decision-theoretic
structures of both decision problems; my reasons for choosing game theory are that
the Sleeping Beauty problem has its predecessors in game theory, game theory has
been used to analyse the Sleeping Beauty problem (and similar games), and the formu-
lation of the original Sleeping Beauty problem was inspired by game theory.1 I will
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1One might argue that game theory does not apply well to the Sleeping Beauty problem, since the
Sleeping Beauty problem concerns a single agent playing against Nature. So, one should instead talk
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argue that there are important structural differences between the classic and duplicating
Sleeping Beauty problem on the basis of which thirders do not have to feel compelled to
give the same answer to the duplicating and the original Sleeping Beauty problem.
Specifically, the original and the duplicating Sleeping Beauty scenarios are different
types of decision problems. The classic Sleeping Beauty problem is a game with absent-
mindedness, but the duplicating case is a game with imperfect recall (as understood in
standard game theory, see Osborne and Rubinstein 1994; Piccione and Rubinstein
1997a; Lambert et al. 2019).2 One could argue that, for the duplicating Sleeping
Beauty case, one needs to redefine the standard game-theoretic concepts (I will discuss
this point extensively in section 4). But the need to redefine the fundamental concepts
of game theory to model the duplicating case would only underline the difference
between the original and duplicating scenario since standard game-theoretic tools
have been used to model the classic Sleeping Beauty problem (e.g., see Halpern
2006). In either case, I will conclude, both Sleeping Beauty scenarios are different
types of decision problems, and if one accepts that it is rationally permissible to give
different answers to different types of decision problems, thirders do not need to feel
compelled to give the same answer to both scenarios. The goal of this paper is to
prove Proposition 1, and discuss its philosophical consequences.

about decision theory rather than game theory. I am happy to call the Sleeping Beauty problem a “decision
problem”, but I do not think that it should prevent one from analysing such decision situations with
game-theoretic tools. In fact, one can find multiple examples of decision situations that concern a single
player or a single agent playing against Nature analysed and solved using game-theoretic tools. For example,
decision situations in Osborne and Rubinstein (1994: 203) have only one player and one of them has one
player and a chance node (which is similar to the Sleeping Beauty problem), and Osborne and Rubinstein
(1994: 203) call them “one-player extensive games”. Similarly, look at game (i) in Bonanno (2018: 120),
Example 5 in Piccione and Rubinstein (1997b: 13), or the forgetful passenger in Aumann et al. (1997b).
The most famous one-player game that is relevant to the Sleeping Beauty case is, of course, the absent-
minded driver paradox and its modifications (see Piccione and Rubinstein 1997a; Rubinstein 1998:
Ch. 4, for overviews). The formulation of the original Sleeping Beauty problem was even inspired by a
game-theoretic discussion about the absentminded driver case (see footnote 1 in Elga 2000: 143).
Moreover, game-theoretic tools have already been applied to the Sleeping Beauty problem in Halpern
(2006) and inspired further philosophical discussion (see Meacham 2008: 247, fn. 4). So, I am also
happy to call the Sleeping Beauty problem a “game” and will do it from now on.

2First, the terms “game with absentmindedness” and “game with imperfect recall” are abbreviations for a
game with an absentminded agent and a game with an agent with imperfect recall, respectively. Also, the
game-theoretic terminology such as “imperfect recall” or “absentmindedness” might sound misleading
since it automatically evokes forgetfulness or memory loss. Those terms can indeed amount to the fact
that the agent forgets about her actions performed in the past. For example, in game theory, the usual inter-
pretation of absentmindedness is that the agent must have forgotten that she has already been to and played
in some part of the game (e.g., see Piccione and Rubinstein 1997a; Rubinstein 1998), but nothing hinges on
that specific interpretation. Imperfect recall or absentmindedness does not have to be caused only by for-
getfulness or memory loss. One can interpret imperfect recall or absentmindedness more generally as the
uncertainty of whether the agent has moved in the past without specifying a reason for that uncertainty
(Bonanno 2018: 120). Sleeping Beauty has been interpreted as a forgetful agent (e.g., see Monton 2002;
Dorr 2003; Schervish et al. 2004), but, in the duplicating story, Beauty does not suffer from memory
loss at any point, see Titelbaum (2014: 219). That is, Beauty might correctly remember that she reported
her credence on Sunday but still be uncertain whether she has moved in the past. So, in the duplicating case,
imperfect recall does not amount to forgetfulness but has a different cause, see Titelbaum (2014: 219–20).
What makes Beauty uncertain is not forgetfulness but knowing that her perfect duplicate would also recol-
lect the play on Sunday. This, I think, makes the duplicating case closely related to two roads to Shangri La
discussed in Arntzenius (2003) or Dr. Evil discussed in Elga (2004).
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Proposition 1. The original Sleeping Beauty problem is a game with absentmindedness,
but the duplicating Sleeping Beauty problem is a game with imperfect recall.

To clarify, it might happen that, in the end, the same answer will be optimal for both
scenarios, but it should not be an automatic requirement if my result is correct. One
might also worry that the distinction between a game with absentmindedness and a
game with imperfect recall is immaterial and has no impact on the properties and
solutions of decision situations or philosophical discussions. I will defend the meaning-
fulness of the drawn distinction and its philosophical relevancy at the end of the paper
(in section 5) by discussing its effect on some of the approaches to the Sleeping Beauty
problem and the duplicating scenario. Probably the most important part of that discus-
sion is showing that – if my arguments hold and the duplicating Sleeping Beauty prob-
lem is a game with imperfect recall – then thirders avoid the unpleasant consequences
of creating a large number of Beauty’s duplicates.

The paper is structured as follows. In section 2, I will discuss the game-theoretic
background. In section 3, I will show that the original Sleeping Beauty case is a
game with absentmindedness. In section 4, I will show that the duplicating scenario
is a game with imperfect recall and not with absentmindedness. In section 5, I will dis-
cuss the philosophical relevancy of the drawn difference between the two games.

2. Game-Theoretic Background

Let an extensive-form game Γ consist of the following components (see, for example,
Bonanno 2018: 75–6, or Osborne and Rubinstein 1994: 89–90, for further details).
First, a finite set of players P = {1, …, k}. Secondly, a finite rooted directed tree whose:

1. root has no directed edges leading to it, and
2. every other node has exactly one directed edge leading to it – there is a unique path

(a unique sequence of directed edges) leading from the root to any other node.

Further, there is a set A of actions and a function fA that assigns one action to every
directed edge. No two edges leading out of the same node are assigned the same
action. Usually, agents take pragmatic actions such as turn left, bet on horse number
23, etc. In this paper, the agent’s actions of interest will be reports of her epistemic
states, specifically, credences (mainly one’s credences in Heads when a fair coin is
tossed).

A node with no directed edges out of it – no further action is taken by any agent i∈
P – is called a terminal node. A game ends at terminal nodes. Every other node is called
a decision node. Let D be a set of all the decision nodes in Γ. The concept of one
decision node being a predecessor of another node will play an important part, so let
me define it.

Definition 1 (Predecessor). A node x is a predecessor of a node y, if there is a sequence
of directed edges from x to y.

The path from x to ymust be continuous (there are no jumps between nodes) for x to be
a predecessor of y.

Importantly, e.g., see Bonanno (2018: 119), I will assume that each decision node from
D belongs only to a single agent i∈ P, i.e., only that agent i makes a decision/plays at that
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node. Each agent i is thus assigned her own exclusive set of decision nodesDi # D, where
the equality holds if we have a one-player game even without any chance nodes. Such a
situation is rare but possible, e.g., see Osborne and Rubinstein (1994: 203–4).

An information set Ii # Di of player i is created by partitioning Di. So, Ii is a non-
empty collection of the decision nodes of the player i. So, the player concerned (and no
other) is making a decision at those nodes (Webb 2007: 93). A player can have one
or multiple information sets in Γ. Note that a single node forms an information set.
If an information set Ii has more than one node, the standard interpretation is as
follows, e.g., see Bonanno (2018: 117–18). Upon reaching Ii, the player i knows that
she has reached Ii, but she does not know which sequence of directed edges leading
to Ii is the actual one. In other words, she does not know at which of those nodes
in Ii she is currently making her decision, since, to her, nodes in Ii are qualitatively
identical and indistinguishable.

Games with imperfect recall and absentmindedness are defined negatively (they vio-
late requirements for games with perfect recall). So, let me first define the properties of
games with perfect recall, which are as follows (Bonanno 2018: 119):3

Condition 1 The actions available at any two nodes in the same information set Ii
must be the same.4

Condition 2 If x and y are two nodes in the same information set Ii, then it is not
the case that one node is a predecessor (see Definition 1) of the other.

Condition 3 If node x∈ Ii is a predecessor of node y [ I∗i (thus, by condition (2),
Ii = I∗i ), and a is the action assigned to the directed edge out of x in the sequence
of edges leading from x to y, then for every node t [ I∗i there is a predecessor w∈
Ii such that the action assigned to the directed edge out of w in the sequence of
edges leading from w to t is that same action a.5

Condition 1 is a technical requirement. Any game that violates Condition 3 is a game
with imperfect recall, e.g., see Bonanno (2004: 240; 2018: 119). A special case of imper-
fect recall is absentmindedness. Those games violate Condition 2 and are called games

3Traditionally (e.g., see Kuhn 1953), in game theory, one can interpret perfect recall as the following
condition: if player i takes action a in an information set Ii and later on has to move again, then at the
later time, she remembers that she took action a in that earlier information set (Bonanno 2018: 119). In
other words, perfect recall requires – as a necessary condition – that a player always remembers what
she knew in the past and what actions she herself took in the past. But, “to remember” is only a necessary
and not a sufficient condition for a game to be a game with perfect recall. Given the comments in footnote
2, an agent can have a perfect memory but still be uncertain whether she has moved in the past, i.e., play a
game without perfect recall. A possible alternative to my definition of perfect recall is in Osborne and
Rubinstein (1994: 203–4), but Osborne and Rubinstein use a concept of “experience” and give it a specific
technical meaning. Using a concept of experience, especially in the philosophical context, might be more
confusing than helpful. So, I avoid such terminology.

4Remember that nodes in a single information set Ii are indistinguishable for agent i. The first condition
makes sure that an agent cannot distinguish between different decision nodes in a single information set. If
decision nodes in a single information set had different possible actions, they would not be qualitatively
identical to that agent since she could use different sets of available actions to differentiate between
those nodes.

5Condition 3 secures that, after moving from Ii to I∗i , no matter at which node in I∗i agent i finds herself,
she knows that she must have played the action a. In other words, Condition 3 requires that for any node y
in I∗i , there is a predecessor node x in Ii such that they are connected – directly or indirectly – via a directed
edge leading from x that is assigned the action a.
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with absentmindedness, e.g., see Rubinstein (1998: 70) or Halpern and Pass (2016: 280).
Roughly speaking, in games with absentmindedness, agent i can take action in one
of her information sets Ii that will lead her back to that same information set Ii (e.g.,
see Halpern and Pass 2016: 280, or Aumann et al. 1997a, for an example with a
diagram).

3. The Original Beauty Is Absentminded

I will now show that the original Sleeping Beauty problem is a game with absentmind-
edness. Let me start by citing Elga’s original Sleeping Beauty problem to give a point of
reference:6 “Some researchers are going to put you to sleep. During the two days that
your sleep will last, they will briefly wake you up either once or twice, depending on
the toss of a fair coin (Heads: once; Tails: twice). After each waking, they will put
you to back to sleep with a drug that makes you forget that waking. When you are
first awakened, to what degree ought you believe that the outcome of the coin toss is
Heads?” (Elga 2000: 143).

Let me identify players, decision nodes, assign those nodes to the players, and deter-
mine information sets. In the original scenario, there is one player, Beauty, and Nature.
By assumption, Beauty reports her credence on Sunday before the experiment starts. Let
that node be called S, which will be the root of our decision tree (see Figure 1). Then,
Nature makes a chance move with a coin flip, with the probability p of Heads and the
probability 1− p of Tails. Let that node be called Stoss since I assume that the toss hap-
pens on Sunday. When Beauty wakes up, she knows she is going through one of the two
scenarios. In the first scenario, the coin lands Heads, she wakes up on Monday and
reports her credence in Heads. Let that node be called MH, i.e., Monday and Heads.
Then, the game ends. In the second scenario, the coin lands Tails, and she wakes up
and reports her credence twice. First, she wakes up and reports her credence on
Monday. Let that node be called MT, i.e., Monday and Tails. She is then put back to
sleep and wakes up on Tuesday to report her credence. Let that node be called TT,
i.e., Tuesday and Tails. Then, the game ends. So, D = {S, Stoss, MH, MT, TT} is the
set of all the decision nodes (including the chance node) in the original Sleeping
Beauty game. Clearly, Beauty’s set of decision nodes is DB = {S, MH, MT , TT} and
Nature gets DN = {Stoss}.

Now I need to determine information sets; I will focus on Beauty. By assumption,
Beauty can always tell when she is on Sunday before the experiment starts. That is,
she can distinguish S from any other node in DB, so {S} is one of her information
sets. Upon awakening, Beauty does not know the outcome of the coin toss, and the awa-
kenings at MH, MT, and TT are subjectively indistinguishable to her. So, {MH, MT, TT}
is Beauty’s other information set. Notice that, upon awakening, Beauty is uncertain
whether she has already moved (reported her credence) on Monday or not.
Moreover, reporting her credence at MT leads her to TT which is a node in the
same information set as MT. It should not be surprising that the original Sleeping
Beauty problem is a game with absentmindedness.

6There is a Sunday-toss and a Monday-toss version of the Sleeping Beauty problem. In this paper, I will
assume that the coin flip happens on Sunday; a toss on Monday should make (Elga 2000: 144–5) and does
make no difference to the final result (while some details, e.g., the structure of the decision tree, about how
one gets to the final result might differ in the Monday-toss scenario).
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Lemma 1. The original Sleeping Beauty problem is a game with absentmindedness.

One can visualise the original Sleeping Beauty problem with a decision tree in
Figure 1.7

4. A Doppelgänger Changes the Game

Modifications of the original Sleeping Beauty problem have been used to argue against
the thirder position; for example, see White (2006), Bostrom (2007), or Leitgeb (2010).
I am interested in the cases in which a perfect duplicate of the original Beauty is created
and woken up on Tuesday – instead of the original Beauty – if the coin lands Tails.
A formulation and discussion about the duplicating case can be found, for example,
in Kierland and Monton (2005: 391–3), Bostrom (2007: 62–5), Titelbaum (2014:
219), or Arntzenius (2003: 363–70). The following formulation comes from Builes
(2020: 3038): “On Sunday, Beauty will be put to sleep. She will be woken up on
Monday, and then let go. A coin will then be tossed on Monday night. If it lands
Heads, nothing happens. If it lands Tails, a perfect subjective duplicate of Beauty,
call her Tuesday Beauty, will be created, and this duplicate will be woken up on
Tuesday morning. Tuesday Beauty will then be let go. Beauty is told that her
Monday waking will be subjectively indistinguishable from the Tuesday waking of
Tuesday Beauty.”

Fig. 1. I start with S, i.e., Sunday, when Beauty
supposedly reports her credence in Heads. It is
generally agreed that, on Sunday, she should
report a credence of 1/2, so I use only one directed
edge. Then comes Nature’s chance node Stoss with
the probability p of the coin landing Heads and
the probability 1− p of the coin landing Tails.
Beauty’s decision nodes MH, MT, and TT form an
information set {MH, MT, TT}, which is depicted
by the dotted curves connecting the three nodes.
The triangles at Beauty’s decision nodes represent
the idea that she can choose to report any prob-
abilistic credence from the interval [0, 1] (see
Myerson 1997: 140–8, section 3.13) for further
details about similar decision problems).
Reporting the extreme credence 0 or 1 is depicted
by the edges of those triangles. The edges inside
the triangles represent examples of possible non-
extreme actions that Beauty may take; their cur-
rent central position is only one of the possibilities
and has no deeper meaning. Finally, the square
nodes represent the terminal nodes – the game
ends there.

7There is a precedence (see Halpern 2006) for modelling the Sleeping Beauty problem with a decision
tree as an extensive-form game. My interpretation in Figure 1 is very similar to Example 5 in Piccione and
Rubinstein (1997b: 13), which is the seminal game-theoretic paper that inspired the formulation of the ori-
ginal Sleeping Beauty problem.
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The main difference between the original and duplicating scenario is an addition of a
new player – a perfect subjective duplicate of the original Beauty – who wakes up on
Tuesday if the coin lands Tails. The question I want to explore is how to implement
this change into the original game. My point will be that one should be careful
about it because the chosen implementation has philosophical and game-theoretic
implications.

First, at face value, the duplicating and the original scenario share many traits, for
example, the following ones. A fair coin is tossed. There are two uncentred possibilities,
Heads and Tails. The Heads-world has only one centre, MH. The Tails-world has two
centres,MT and TT. Moreover, the awakening on Monday is still indistinguishable from
the awakening on Tuesday, so MH, MT, and TT are subjectively indistinguishable upon
awakening and thus belong to the same information set. So, one could be tempted to
introduce the duplicate to the game by re-interpreting one of the centred-possibilities
in Figure 1. Specifically, one assigns TT to the duplicate and keeps MH and MT for
the original Beauty as in Figure 2. So, the information set in Figure 2 is {MHorg,
MTorg, TTdup}, where org stands for “original” and “dup” for “duplicate” indicating to
whom those decision nodes belong. From the game-theoretic perspective, however,
this is a problematic move because the game in Figure 2 is ill-formulated. By definition
(see section 2), an information set is a collection of the decision nodes of a single player.
One creates an information set by partitioning the set Di of decision nodes of agent i, so
an information set cannot contain decision nodes of more than one player. That is, set
{MHorg, MTorg, TTdup} is not a well-formed information set, which leads to an ill-
formulated game.

One could argue that the ill-formulated game in Figure 2 results from the inad-
equacy of the “classic” game-theoretic tools. So, for cases in which agents are unsure
about who they are, as one of the reviewers suggested, one could aim at redefining

Fig. 2. A model for the duplicating Sleeping
Beauty problem with decision nodes of multiple
players belonging to a single information set.
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or extending the concept of an information set so that it can contain nodes of different
players. I think that this is a possible but problematic position. Let me clarify why I
think so. First, it slightly misrepresents my claim. I claim that if one uses a single infor-
mation set containing decision nodes of multiple players (e.g., as in Figure 2), one can-
not model the duplicating scenario using the classic game-theoretic tools such as
standardly defined information sets. But I am not claiming that standard game theory
with its “classic” tools cannot model the duplicating case at all. I argue that the standard
game theory already has all the tools needed to model the original Sleeping Beauty
problem (we have already seen that one in Figure 1) and the duplicating Sleeping
Beauty problem (I will suggest my model shortly). But, for the sake of argument, sup-
pose one wants to redefine the concept of an information set, so it can contain decision
nodes of multiple players. In that case, one has to show that such a modification is not
ad hoc to fit a specific case and why it is better than using the standardly defined con-
cepts. Moreover, one has to show how such a modification connects with the rest of the
game-theoretic tools and might need to modify other standard game-theoretic concepts
(see footnote 9). For example, the definitions of a game with absentmindedness and a
game with imperfect recall are formulated in terms of standard game-theoretic tools,
including information sets. So, one would have to redefine those games and what
their equilibria are. Even if one succeeds in all these modifications, the need for such
modifications and the inability to model the duplicating Sleeping Beauty problem
with the classic tools (while one can easily model the classic Sleeping Beauty problem
with the standard tools as in Figure 1) still underlines my point about the structural
difference between the classic and the duplicating scenario.

For the sake of argument, assume one overlooks all the required modifications (e.g.,
of the standard concept of an information set and possibly of other game-theoretic con-
cepts) and decides to use the model in Figure 2. I still think that this decision tree is
ill-fitted to model the duplicating scenario. By assumption, upon awakening, the ori-
ginal Beauty and her perfect duplicate cannot distinguish between possible awakenings
at MH, MT, and TT. This means that, upon awakening, the original Beauty considers
MH, MT, and TT to be possible but indistinguishable moments at which she makes
a report (i.e., decision nodes among which she cannot discriminate but considers pos-
sible moments at which she makes a decision). Similarly, the duplicate considers MH,
MT, and TT to be possible but indistinguishable moments at which she makes a report.8

If one uses Figure 2, which has only one set of nodes MH, MT, and TT, then every node
must have two players (the original Beauty and the duplicate) assigned to it (see
Figure 3).9 At the same time, one (including the original Beauty and the duplicate)
also knows that who is awake on Monday can never be woken up and report her cre-
dence on Tuesday. That is, the same agent cannot make a decision at MT and TT (that
the same agent reports on Monday and Tuesday cannot happen by the formulation of
the duplicating case). But if one assigns MT to both agents (as in Figure 3), then TT

8Of course, the duplicate cannot be awake on Monday and the original Beauty on Tuesday. But one now
models an agent’s uncertainty about where she finds herself upon awakening. From that perspective, for
example, Monday and Heads is a live possibility for the duplicate and Tuesday and Tails is a live possibility
for the original Beauty.

9Moreover, one either needs to assign the directed edge from MT (which represents one’s report at MT)
to both agents or draw two lines from MT to TT, each belonging to one of the agents. Assigning a single
node or directed edge to multiple players or drawing two edges from one node to another violates other
classic game-theoretic concepts, e.g., see Bonanno (2018: 119). So, as hinted earlier, further modifications
to the classic game-theoretic tools are needed.
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cannot be assigned to either of those agents because at least one same agent would be
assigned to MT and TT. And if, say, MT is assigned only to the original Beauty and TT
only to the duplicate, then the original Beauty does not consider TT a possible moment
for reporting her credence upon awakening. But the original Beauty should consider TT
a possible moment where she makes a report since, by the formulation of the duplicat-
ing case,MT,MH, and TT are (from her perspective upon awakening) indistinguishable
possible decision-making moments.

A conclusion from the previous discussion is that – if one wants to model the dupli-
cating case with any type of game theory – one needs to do the following. Introduce a
model (a decision tree) that allows both agents to be uncertain about who they are such
that it allows them (upon awakening) to consider MH, MT, and TT to be a live possi-
bility to each. Simultaneously, in that model, if a directed edge connects MT and TT,
those nodes must belong to different players. Despite the agent’s uncertainty about
who she is, she knows that if she reports her credence on Monday, and if Tails, it
will not be her who reports on Tuesday.

My suggested model (decision tree) for the duplicating Sleeping Beauty problem in
Figure 4 uses only the classic game-theoretic tools; it is inspired by Halpern (2006) and
Gilboa (1997). The model in Figure 4 uses two information sets: {MH1, MT1, TT1} that
belongs to player 1 and {MH2, MT2, TT2} that belongs to player 2. Whether one inter-
prets player 1 as the original Beauty and player 2 as the duplicate (or the other way
around) is immaterial. But, for the sake of argument, assume that player 1 is the original
Beauty, and player 2 is the duplicate. Consider {MH1, MT1, TT1} represented by the
doted lines in Figure 4. Monday and Heads, Monday and Tails, and Tuesday and
Tails are in the same information set belonging only to one player (original Beauty
in this case), so they are subjectively indistinguishable for the original Beauty upon awa-
kening. A similar case holds for the duplicate and {MH2, MT2, TT2} represented by the
dashed lines in Figure 4. Importantly, in Figure 4, there is no path of directed edges

Fig. 3. Multiple agents assigned to the
same nodes, where, e.g., MTorg,dup,
means that MT belongs to the original
Beauty and the duplicate at the same
time.
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between the Monday and Tuesday awakenings belonging to the same information set.
For example, the original Beauty (i.e., player 1) is, upon awakening, unsure whether she
is at MT1 or TT1 (they belong to the same information set), but MT1 and TT1 are
mutually exclusive possibilities since the directed edge leading from MT1 is not a
part of any sequence of directed edges leading to TT1. In other words, waking up
on Monday and Tuesday is mutually exclusive since the agent either wakes up in
the right-hand tree or the left-hand tree, and there is no way of moving from one
tree to the other. MT1 and TT2 are connected with a directed edge because one
leads to the other, but those nodes belong to different agents (and different informa-
tion sets) since different agents make a report on those occasions. Finally, there is no
path of directed edges between S1 (player 1 makes a report on Sunday) and TT1 or S2
(player 2 makes a report on Sunday) and TT2. This means that if player 1 is the ori-
ginal Beauty (i.e., makes a report on Sunday), then there is no way that agent can
wake up on Tuesday (i.e., make a report at TT1), i.e., there is no path from S1 to TT1.

The game in Figure 4 is a game with imperfect recall but not a game with absent-
mindedness (in contrast to the original Sleeping Beauty case). Note that since there
is no path of directed edges between MT1 and TT1, by Definition 1, MT1 is not a pre-
decessor of TT1; the same applies toMT2 and TT2. So, if anyMT and TT are in the same
information set, there is no connected path of directed edges between that MT and TT.
A consequence of this observation is that the duplicating scenario does not violate
Condition 2, so it is not a game with absentmindedness.

Lemma 2. The duplicating Sleeping Beauty scenario (as represented in Figure 4) is not a
game with absentmindedness.

Yet, the duplicating scenario (as represented in Figure 4) is a game with imperfect
recall because it violates Condition 3.

Fig. 4. Suggested model for the duplicating Sleeping Beauty problem, with the standard game-theoretic tools.
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Lemma 3. The duplicating Sleeping Beauty problem (as represented in Figure 4) is a
game with imperfect recall.

Taking together Lemma 1, Lemma 2, and Lemma 3 is enough to prove Proposition 1,
as required.

5. Philosophical Relevancy

I have argued that if one wants to be able to model the duplicating scenario with the
standard game-theoretic tools, then one must be careful about how Beauty’s duplicate
is introduced into the original Sleeping Beauty problem. I have argued for the model in
Figure 4, and now I want to investigate some philosophical consequences of choosing
that model. I will explore its relation to other existing philosophical approaches to the
original and duplicating Sleeping Beauty problem.

5.1. The HT approach and the Elga approach

The first consequence is that some approaches that result in different recommendations
for the classic case will make the same recommendation in the duplicating case.
Specifically, consider the HT (Halpern and Tuttle) approach and the Elga approach
from Halpern (2006). I chose to discuss the HT approach and the Elga approach
because they are generalisations (see Halpern 2006: 125) of Elga’s suggested solutions
(see Elga 2000) to the original Sleeping Beauty problem but formulated in
game-theoretic terms,10 so easily applicable to my model. The idea is as follows (the
comments in brackets are mine): “To summarize, the HT approach assigns probability
among points [nodes] in an information set I by dividing the probability of a run r [a
run is what I have called a path of directed edges] among the points in I that lie on r (and
then normalizing so that the sum [of the probabilities of nodes in I] is one), while the
Elga approach proceeds by giving each and every point in I that is on run r the same
probability as that of r, and then normalizing” (Halpern 2006: 127).

The HT approach and the Elga approach differ in their recommendation for the ori-
ginal Sleeping Beauty problem. Consider Figure 1 with its information set {MH,MT, TT}.
Two paths of directed edges, i.e., runs r, go through that information set. Let run r2 start
at S and go through MH and run r1 start at S and go through MT and TT. So, only one
node from {MH, MT, TT} lies on r2 and two such nodes lie on r1.

For example, assume that the probability of r2 is the probability of a fair coin landing
Heads, i.e., p = 1/2, and the probability of r1 is the probability of a fair coin landing
Tails, i.e., 1− p = 1/2. Given an information set I, the Elga approach gives every node
from I that lies on a run r the same probability as that of r, and then renormalises prob-
abilities over the nodes in I. So, MH gets the probability of r2, i.e., 1/2, and bothMT and
TT get the probability of r1, i.e., 1/2. So, every node in {MH,MT, TT} has the probability
of 1/2. After renormalisation (where 1/2 + 1/2 + 1/2 = 3/2 is the normalising constant),
every node in {MH, MT, TT} will have the probability of 1/3. Thus, the probability
of Heads is 1/3 since the probability of MH is 1/3 (compare with Halpern 2006:
126). The Elga approach is a game-theoretic instance of Briggs’ thirder rule, see
(Briggs 2010: 10). One can translate Briggs’ notation to game-theoretic concepts.

10From the game-theoretic perspective, Halpern’s approaches bear similarity to the requirement of con-
sistency of a belief system discussed in Piccione and Rubinstein (1997b: 12).
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Let A be an uncentred proposition (this remains unchanged), W uncentred worlds
(runs r), NW the number of centres in W (the number of decision nodes from a single
information set lying on the given r), and Cru(W ) the probability of a run. For example,
assume that A stands for Heads. Then,

∑
W[A Cru(W)NW = 1/2 since Cru(W ) = 1/2

and there is one centre (i.e., node MH) in Heads (i.e., on r2), so NW = 1. Lastly,∑
W Cru(W)NW=3/2 is the normalising constant that sums over all the worlds

(Briggs’ W* is notationally unnecessary, so I omit it). So, one’s credence in Heads

according to the thirder rule
∑

W[A
Cru(W)NW

∑
W
Cru(W)NW

is 1/3. For Tails,
∑

W[A Cru(W)NW = 1

since Cru(W ) = 1/2 and there are two centres (i.e., MT and TT) in Tails (i.e., on r1),

so NW = 2. Then,
∑

W[A
Cru(W)NW

∑
W
Cru(W)NW

is 2/3.

Keep assuming that the probability of r1 and r2 is 1/2. The HT approach
assigns probability among nodes in an information set I by dividing the
probability of a run r among the nodes in I that lie on that r. Since there is only
one node, MH, on r2, all the probability of 1/2 goes to that node. So, the probability
of Heads is 1/2 (compare with Halpern 2006: 125–6). Since two nodes from {MH,
MT, TT} lie on r1, the probability of r1 will be divided between those two nodes.
In general, the HT approach does not give a rule on how to divide the probability
among multiple nodes, but let me assume that 1/2 is divided equally between MT
and TT (see (Halpern 2006: 126) for the same assumption). So, each gets 1/4. The
HT approach is a game-theoretic instance of what Briggs calls the halfer rule, see
Briggs (2010: 9). That is, one’s credence in an uncentred proposition A equals to
Cru(A), which, in the game-theoretic jargon, is the probability of run(s) (i.e.,
uncentred worlds) where A is true. If A is Heads, then one’s credence in A is the
probability of r2, i.e., 1/2. If A is Tails, then one’s credence in A is the probability
of r1, i.e., 1/2.

Overall, the HT approach and the Elga approach differ in their recommendations for
distributing probabilities among multiple nodes from a single information set that lie
on the same run. The HT approach divides that probability between nodes, and the
Elga approach gives each such node the full probability of the run. In the classic
Sleeping Beauty scenario, both approaches differ in assigning probabilities between
nodes MT and TT from the information set {MH, MT, TT} that lie on the run r1.
But for the duplicating scenario in Figure 4, there is no run with more than one
node from a single information set. In Figure 4, there are four runs: r1 starting at S1
and going through MT1 and TT2, r2 starting at S1 and going through MH1, r3 starting
at S2 and going through MT2 and TT1, and r4 starting at S2 and going through MH2.
Each of these four runs has only a single decision node from any of the two information
sets in Figure 4, i.e., {MH1, MT1, TT1} and {MH2, MT2, TT2}. Remember that the
HT approach and the Elga approach differ in how they distribute probabilities over
multiple nodes that lie on the same run and are from the same information set. But
for any run with only one node from a single information set, both the HT approach
and the Elga approach assign the whole probability of the run to that single node
(e.g., see their assignment of probabilities to MH in the classic scenario). The Elga
approach, by definition, assigns the whole probability of the run to any node on
that run. The HT approach cannot divide the probability among multiple nodes because
there is only one node, so that one node gets all the probability of the run. Since
Figure 4 has no runs with multiple nodes from a single information set, the
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HT approach and the Elga approach will give the same recommendation for the dupli-
cating scenario in Figure 4; this observation is just a subcase of Lemma 3.1 in Halpern
(2006: 128).

The concrete results will depend on the probabilities one assigns to the runs. For
example, assume that the probability of each run is 1/2 since the probability of the
coin landing Heads/Tails is 1/2. On Sunday, the agent can well locate herself. So, if,
for example, she finds herself at S1, she knows that the other tree cannot happen
(i.e., r3 cannot happen for player 1 since she cannot wake up as a duplicate if she is
awake on Sunday). Player 1 then focuses only on the runs leading from S1, where the
probability of Heads (i.e., run r2 when the coin lands Heads) and Tails (i.e., run r1
when the coin lands Tails) is 1/2 by our assumption. So, e.g., by the Principal
Principle, one can set her Sunday credences in Heads/Tails to 1/2. Upon awakening,
one cannot locate herself in one of the trees and so must consider both of them, e.g.,
player 1 must take into account all the runs r1, r2, and r3 with nodes from {MH1,
MT1, TT1}. Consider, for example, r1 with two nodes MT1 and TT2; note that each
node comes from a different information set. The Elga approach and also the HT
approach gives the whole probability of r1, i.e., 1/2, to MT1 and TT2 despite lying on
the same run because MT1 and TT2 come from different information sets. So, every
member of {MH1, MT1, TT1} and of {MH2, MT2, TT2} gets the probability of 1/2,
which, after normalisation (which happens for each information set separately), gives
the probability of 1/3 to every node. So, in our concrete case, one’s credence in
Heads will be 1/3 (since MH1 and MH2 get assigned the probability of 1/3); as we
have seen, this is true for the Elga approach and also the HT approach.

The question is whether any instance of the thirder or halfer rule (for the original
case) will give the same recommendation for Figure 4. It will not, see the next section.
It all depends on one’s starting assumptions. In this section, my only restriction was
the game-theoretic requirement that the probabilities of directed edges leading
from a single node sum to one (see footnote 14). One satisfies this requirement by
assuming that the probability of Heads (i.e., the probability of r2 and r4) is 1/2 and
the probability of Tails (i.e., the probability of r1 and r3) is 1/2. So, the sum of probabil-
ities of r1 and r2 going from S1 is one, and the sum of probabilities of r3 and r4 going
from S2 is one.

5.2. Compartmentalised conditionalisation

Meacham formulates a hypothetical-priors version of the HT approach and the Elga
approach, compartmentalised and centred conditionalisation, where one uses hypothet-
ical priors instead of probabilities of runs. Hypothetical priors are the credences one
ought to have if one has no evidence whatsoever, see Meacham (2008: 248).
Meacham assumes that one has hypothetical priors in centres (i.e., time-slices or
centred worlds) and uncentred possible worlds. I will now discuss compartmentalised
conditionalisation and leave centred conditionalisation for the next section.

In short, compartmentalised conditionalisation first divides one’s credences among
uncentred worlds and then divides the credence of each uncentred world among the
alternatives (centres) at that uncentred world, see Meacham (2008: 257). One can oper-
ationalise it in the following three steps, see Meacham (2008: 249):

1. One takes her hypothetical priors and sets the credence in every centre (centred
world) incompatible with her current evidence to 0.
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2. One normalises the credences in the remaining uncentred worlds such that
the ratios between them are the same as the ratios between their hypothetical
priors.

3. One normalises credences in the remaining centres at each world so that they
sum to the credence assigned to that world, and the ratios between them are
the same as the ratios between their hypothetical priors.

Meacham shows that compartmentalised conditionalisation assigns 1/2 in Heads for
the classic and duplicating case. Assume that, on Sunday, by the Principal Principle (see
Meacham 2008: 257) or other reason, one has a 1/2 credence in each, that the coin toss
lands Heads/Tails. This means that one’s hypothetical priors in Heads and Tails have a
ratio of 1:1 (this follows from the properties of Bayesian conditionalisation (see Rédei
and Gyenis 2021), which Meacham uses for his updating rules). On Sunday,
Meacham says (2008: 257), the uncentred world Heads has a single centre (Sunday
and Heads, i.e., SH), and the uncentred world Tails has a single centre (Sunday and
Tails, i.e., ST). For the sake of convenience, also assume that the hypothetical priors
in MT and TT are equal, i.e., their ratio is 1:1 (see Meacham 2008: 257, for the same
assumption).

For the classic scenario in Figure 1, one’s doxastic alternatives (centres) have chan-
ged upon awakening. One still has one alternative (Monday) at the Heads-world but
two alternatives (Monday and Tuesday) at the Tails-world. None of those centred
worlds is eliminated by one’s evidence. So, the first step of compartmentalised condi-
tionalisation has no effect. Similarly, upon awakening, despite the change in one’s dox-
astic alternatives, uncentred worlds Heads/Tails from Sunday also remain (i.e., neither
of them is eliminated by evidence). Since there is no change in uncentred worlds, and
one knows, by assumption, that hypothetical priors in Heads and Tails have a 1:1 ratio,
one will again have the credence of 1/2 in Heads/Tails, see Meacham (2008: 257). So,
the second step is satisfied. The third step distributes credences in uncentred worlds
to their centres according to one’s hypothetical priors. By assumption, hypothetical
priors in MT and TT are equal, i.e., their ratio is 1:1, so MT and TT each get 1/4 to
preserve that ratio. The conclusion is that credence in Heads is 1/2. Given
Meacham’s treatment of duplication (2008: 251, 254–5),11 in the duplicating scenario,
the centre TT that originally belonged to Beauty will be replaced by the duplicate’s cen-
tre (my interpretation is that something similar to the situation depicted in Figure 2
happens). Such change does not eliminate any of the uncentred worlds (i.e., Heads
or Tails) at any stage of the game. The reasoning is then very similar to the classic
case. Using the Principal Principle on Sunday again results in hypothetical priors for
uncentred worlds, Heads and Tails, with a 1:1 ratio. Since, upon awakening, no centred
or uncentred world gets eliminated, one’s credence in Heads will again be 1/2 (and 1/4
goes again to HT and MT).

One can reproduce a similar reasoning about the duplicating scenario for Figure 4.
Assume that on Sunday (S1 or S2), one can locate herself well and knows that the other
tree cannot happen since there is no connection between both trees (there is no con-
nected path to get from one to the other, see Figure 5), so she focuses only on runs
going from the appropriate Sunday node. For example, focusing on S1 and player 1,
she knows that r3 cannot happen (i.e., Tails can be true only if r1 actualises), so she

11Meacham considers a case similar to the duplicating scenario with two worlds, A and B, with one cen-
tre in A and two centres in B, one of which belongs to the duplicate.
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focuses only on r1 and r2. By assumption, the probability of Heads/Tails is 1/2, so one
can use the Principal Principle to set her Sunday credences in Heads/Tails to 1/2. As
before, it follows that hypothetical priors in Heads and Tails have a ratio of 1:1.
Upon awakening, neither uncentred world Heads nor uncentred world Tails got elimi-
nated. Since one’s hypothetical priors in Heads/Tails are in a 1:1 relation (and none of
these worlds gets eliminated), one’s credence in Heads and Tails, upon awakening, is 1/
2. If one again assumes that hypothetical priors between MT1 and TT1 (two of the new
doxastic alternatives upon awakening) are in a 1:1 relation, then MT1 and TT1 are both
assigned the credence of 1/4. So, in this case, the hypothetical priors between r1, r2, and
r3 would be 2:1:1, but this breaks none of our assumptions since the only assumptions
about hypothetical priors were about the ratio 1:1 of Heads and Tails and the ratio 1:1
of MT1 and TT1, which all still hold.

The difference between my model in Figure 4 and Meacham is that, in my model,
doxastic centres have not only changed (from Sunday to Monday nodes), but an agent’s
inability to locate herself in a world creates a new relation that connects two formerly
separated trees (as in Figure 5) via an information set (as in Figure 4). This new relation
represents an agent’s inability to discriminate (upon awakening) between the elements
of the information set that belongs to her. But since, for example, TT1 is a part of this
new relation for player 1 (i.e., is an element of the information set that belongs to
player 1), r3 that was eliminated on Sunday must be reintroduced on Monday. In my
model, Tails is true if r1 or r3 (which are mutually exclusive) actualises, so credences
(probabilities) in those runs (which one can see as uncentred worlds) must sum to
1/2 to meet the assumption that one’s credence in Tails is 1/2. So, uncentred world
Tails is a complex entity since it is a union or disjunction of two mutually exclusive
uncentred worlds, represented by runs r1 and r3. In other words, if one thinks of an
uncentred proposition as a set of uncentred worlds where that proposition is true,

Fig. 5. Sunday perspective when a player can locate herself on Sunday, e.g., player 1 at S1, indicated by a star.
From that perspective, both trees are completely separated.
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then the uncentred proposition Tails is a set of two uncentred worlds represented by
runs r1 and r3. And these uncentred worlds r1 and r3 contain centres (i.e., decision
nodes MT1 and TT1). So the difference (e.g., for player 1) between Sunday and
Monday is not only about new doxastic alternatives but also about a new relation
(represented by an information set) and consequently that r3 (a run or an uncentred
world), which was eliminated on Sunday (at S1 for player 1), is a viable option on
Monday. Despite all those additional changes, uncentred worlds Heads and Tails
(the complex entity) are not eliminated, as a player moves from Sunday to Monday.
I also standardly assume that Beauty knows how the game works from the beginning,
so she is aware of these changes from the start.

5.3. Centred conditionalisation and multiple duplicates

To discuss centred conditionalisation, I need to introduce another mechanic of
Meacham’s approach, continuity. Roughly speaking, continuity tells one how to distrib-
ute hypothetical priors over centres in specific cases (i.e., when the centres are continu-
ous). Thus, one can think of continuity as a replacement for the game-theoretic rule of
how (in some cases) probabilities of runs distribute over nodes in a decision tree.
Centred conditionalisation can be operationalised in the following three steps (see
Meacham 2008: 249) with the continuity condition (see Meacham 2008: 252):

1. One takes her hypothetical priors in centres (centred worlds).
2. One sets the credence in every centre incompatible with her current evidence

to 0.
3. One normalises the credences in the remaining centres such that the ratios

between them are the same as the ratios between one’s hypothetical priors.
Credences in uncentred worlds are determined by sums of the credences in
respective centres.

Continuity: The ratio of priors between new alternatives is the same as the ratio
of priors between any old alternatives they are continuous with.

Let me use Elga’s conditions for continuity (as formulated by Meacham 2008: 258)
for two centres. First, both centres are centred at the same world and individual. In
other words, centres (nodes) must lie on the same run, i.e., a continuous path of direc-
ted edges, and be in information sets that belong to the same agent. I will also assume
that if two nodes are continuous, one must be a direct predecessor of the other (chance
nodes can be disregarded). This condition copies conditions (ii) and (iii) of Elga’s con-
tinuity principle that the new alternative/centre (e.g., think of centres on Monday) is not
centred at an earlier time than the old alternative (e.g., think of Sunday), and there is no
other new alternative satisfying all the other required conditions for continuity that is
centred at an earlier time than this new alternative.

First, consider the classic case (see Figure 1) and assume that, by the Principal
Principle, one’s credence in centres on Sunday, i.e., SH (Sunday and Heads) and ST
(Sunday and Tails), is 1/2 in each. It means that one’s hypothetical prior in SH and
ST is also 1/2 in each (see Meacham 2008: 258). Upon awakening, centred conditiona-
lisation itself does not tell one how to distribute credences among MH, MT, and TT
because it will depend on one’s hypothetical priors in MH, MT, and TT, which can
be anything. Continuity becomes helpful here. Using the idea thatMH andMT are con-
tinuous with SH and ST, respectively, one can deduce that hypothetical priors in MH
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and MT are equal (since, by continuity, they must preserve the ratio of hypothetical
priors of SH and ST). But continuity does not tell one what actual value MH or MT
has. To find that out, one can use Elga’s principle of indifference (see Elga, 2000:
144; 2004), but I use a formulation from Meacham (2008: 258): one’s credences in dox-
astic alternatives at the same world should be equal. In the game-theoretic terminology,
one’s credences in nodes on the same run and in the same information set (since one
distributes credences over nodes in one’s information set) should be equal. From Elga’s
principle of indifference, it follows that hypothetical priors in MT and TT are equal.
Putting all together, hypothetical priors in MH, MT, and TT are all equal. For probabil-
istic functions, this holds only if one’s hypothetical prior in each of MH, MT, and TT is
1/3. For the duplicating case, the reasoning is the same except that Elga’s principle of
indifference is now applied to doxastic possibilities MT centred at the original Beauty
and TT centred at the duplicate (structurally, I imagine this scenario as the one in
Figure 2).

Some philosophers (e.g., see Bostrom 2007: 63–5; Meacham 2008: 260; Builes 2020:
3040–2) claim that this approach becomes problematic if one starts multiplying
Beauty’s duplicates. One version among many could go as follows: “Let ϕ be a (non-
indexical) proposition, to which Beauty assigns a prior credence of 1/2. Beauty is
never woken up again after being put to sleep on Monday. If ϕ is true then there will
be a total of N > 0 awakenings of doppelgangers in states that are subjectively indistin-
guishable from Beauty’s Monday awakening” (Bostrom 2007: 64).

I believe that the currently discussed approach becomes problematic if one treats
new duplicates as new centres in the same uncentred world (i.e., new nodes from a sin-
gle information set on the same run). In other words, if one treats each new duplicate as
a modification of Figure 2 and prolongs the Tail branch (run) by adding new nodes for
each new duplicate (i.e., that duplicate’s awakening), then the following problem occurs.
For example, consider Figure 6 where there are two duplicates in total with nodes TT1
and TT2 belonging to duplicate 1 and duplicate 2, respectively (MHorg andMTorg belong
to the original Beauty). Assume one uses Figure 6 and let Beauty’s Sunday credences in
Heads and Tails (one can think of them as SH and ST, respectively) be 1/2, so hypo-
thetical priors in Heads and Tails are equal. Then, by continuity with Sunday, one’s cre-
dences (upon awakening) in MHorg and MTorg are equal. Moreover, by Elga’s principle
of indifference, one’s credences (upon awakening) in MTorg, TT1, and TT2 are also
equal. So, upon awakening, one’s credence in all of MHorg, MTorg, TT1, and TT2 are
equal, which means that each node gets a credence of 1/4, if one has probabilistic cre-
dences. So, upon awakening, one’s credence in Heads is 1/4 and in Tails 3/4. The more
duplicates one adds – in the style of Figure 6 – the more the probability ratio will be in
favour of Tails. For example, if one has 9 duplicates in total, one’s credence (upon awa-
kening) in Heads will be 1/10 and 9/10 in Tails.

First, let me consider how centred conditionalisation works with Figure 4 and then
consider multiple duplicates. On Sunday, the agent knows that TT (which TT depends
on the choice of S1 or S2) is impossible and concentrates only on the remaining tree.
Given a fair coin, by the Principal Principle, let one’s Sunday credence in Heads and
Tails be 1/2. So, on Sunday, one’s credence in Sunday and Heads is 1/2, and one’s cre-
dence in Sunday and Tails is also 1/2. It follows that hypothetical priors in Sunday and
Tails and Sunday and Heads are equal. In my model (Figure 4), there are no nodes
Sunday and Heads (SH) or Sunday and Tails (ST) with which Monday nodes (MH1

and MT1 or MH2 and MT2) can be continuous. But one can use the Sunday node
that (disregarding the chance node) is a direct predecessor of Monday nodes to
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implement continuity (a direct predecessor means that there is a continuous path of
directed edges, e.g., between S1 and MH1 and between S1 and MT1, and no other non-
chancy nodes are between them). So, assuming that Monday nodes are continuous with
respect to the appropriate Sunday node (i.e., MH1 and MT1 with S1 and MH2 and MT2

with S2), hypothetical priors in Monday nodes will be the same as hypothetical priors in
Heads and Tails one had on Sunday. That is, hypothetical priors in Monday nodes are
also equal, i.e., have a ratio of 1:1. The crucial difference is that, in Figure 4, one cannot
apply Elga’s principle of indifference since there is no uncentred world with more than
one centre of a single player (i.e., a run with more than one node from a single infor-
mation set). So, for example, the credences of player 1 will entirely depend on her hypo-
thetical priors in MH1, MT1, and TT1. But one only knows that those priors must be
equal for MH1 and MT1, which leaves many options open. For example, one could
go with 1/3 in each, so one’s credence in Heads is 1/3, but this is only one of many
options.

The non-applicability of Elga’s principle of indifference is the reason why the model
in Figure 4 can accommodate more than one duplicate without raising credence in Tails
by introducing more and more duplicates. Let me again consider only two duplicates,
but further extensions are based on the same idea.

In Figure 7, for example, the ratio of hypothetical priors in MH1 and MT1 that
belong to player 1 (who acts at S1 and whose information set is represented by the dot-
ted curves) is equal by continuity with the ratio of hypothetical priors in Heads and

Fig. 6. Multiple duplicates on one run.
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Tails at S1 (i.e., S1 is continuous with MH1 and MT1). But there is no restriction on
hypothetical priors of player 1 assigned to TT11 in the second tree and TT12 in the
third tree. First, because Elga’s principle of indifference does not apply to them since
they are the only nodes from the information set of player 1 on the given run.
Secondly, those nodes are not continuous with any other node in their respective
trees since all the other nodes are centred at different agents. So, for example, it is
fine to hold a credence of 1/3 in MH1 and MT1 (the ratio of hypothetical priors in
MH1 and MT1 is 1:1, like Heads and Tails at S1) and have hypothetical priors of
1/3n in all the remaining nodes that belong to player 1, where n is the number
of the remaining nodes (i.e., the number of duplicates). So, credences of player 1
in all nodes except MH1 and MT1 sum to 1/3. In our case, for two duplicates, it
means that player 1 has a credence of 1/6 in both TT11 and TT12. In other words,
adding a second duplicate did not change the credence of player 1 in MH1 (it is
still 1/3), so her credence in Heads remains unchanged. And her credence in Tails
is still 2/3. Similarly, adding more duplicates and accommodating them in the style
of Figure 7 will not change credence in Heads of player 1 (or any other player in
the game). So, sliding towards a higher probability of Tails as more and more dupli-
cates are added does not happen.

5.4. Accuracy-based approaches

Finally, consider Kierland and Monton’s suggestion that Beauty could find her optimal
credence in Heads by minimising expected inaccuracy. Kierland and Monton consider
two epistemic goals or methods she could follow: minimising expected average or total
inaccuracy. The difference is that: “When one calculates expected total inaccuracy, one
sums the inaccuracy for each temporal part, while when one calculates expected average
inaccuracy, one averages the inaccuracy for each temporal part” (Kierland and Monton
2005: 389).

Fig. 7. A case with two duplicates, where player 1 starts at S1, player 2 at S2, and player 3 at S3. For example,
TT11 means that player 1 is the duplicate number 1 (where the number of the duplicate is given by the order in
which they wake up) or TT32 means that player 3 is the duplicate number 2.

Episteme 19

https://doi.org/10.1017/epi.2023.24 Published online by Cambridge University Press

https://doi.org/10.1017/epi.2023.24


Let me first consider expected total inaccuracy with the original case from Figure 1,
where Beauty has three decision nodes (i.e., centres, temporal parts, or time-slices),MH,
MT, and TT. The expected total inaccuracy calculates the inaccuracy of Beauty’s cre-
dence in Heads, c(H ), at each node (I follow Kierland and Monton and use the
Brier score12 to evaluate inaccuracy), weights each score by the probability of reaching
the respective node, and sums the weighted scores. For Figure 1, one has: PMH(1− c
(H ))2 + PMT(0− c(H ))2 + PTT(0− c(H ))2. Kierland and Monton assume that PMH =
PMT = PTT = 1/2 (e.g., see Kierland and Monton 2005: 389–90), so one has
1
2 (1− c(H))2 + 1

2 [2(0− c(H))2], which is minimised at c(H ) = 1/3. I used this form
of the expectation formula to show that using expected total inaccuracy for the classic
case results in weighted scoring, where the score (1− c(H ))2 is weighted by 1 since there
is one node (MH) with this inaccuracy score and the score (0− c(H ))2 is weighted by 2
because there are two nodes (MT and TT) with this inaccuracy score. The problem is
that strictly proper scoring rules (e.g., the Brier score) weighted with unequal positive
weights stop being strictly proper (see footnote 12), but strict propriety is one of the
fundamental assumptions in accuracy-based arguments, e.g., see Pettigrew (2016: 66).
So, unless one can find a strictly proper weighted scoring rule (with unequal positive
weights), I do not consider expected total inaccuracy a suitable method for the classic
case; although, Kierland and Monton say that they do not have a conclusive reason to
prefer expected total or average inaccuracy minimisation for the classic case, see
Kierland and Monton (2005: 390).

Kierland and Monton, however, say that one should refrain from using expected total
inaccuracy minimisation for the duplicating case (see Kierland and Monton 2005: 393).
Remember that expected total inaccuracy sums the inaccuracy score (weighted by a
probability) for each node, but it does not say to whom those nodes should belong. This
is fine for the classic case where all nodes belong to a single agent (i.e., Beauty), but it matters
in the duplicating case. When Kierland and Monton minimise expected total inaccuracy for
the duplicating case, they minimise it for the original Beauty and a possible duplicate of her
together (see Kierland and Monton, 2005: 393). So, e.g., considering Figure 2, the expect-
ation formula is given by PMHorg (1− c(H))2 + PMTorg (0− c(H))2 + PTTdup(0− c(H))2.
For PMHorg = PMTorg = PTTdup = 1/2, one gets the optimal credence of 1/3 in Heads. This
expectation formula is very similar to the one from the previous paragraph for the classic
case, but the current formula mixes inaccuracy scores of the original Beauty (i.e., the inaccur-
acy scores for MHorg and MTorg) and her duplicate (i.e., the inaccuracy score for TTdup).
Kierland and Monton say that scores of different agents should not be mixed, i.e., one
should focus only on her own expected inaccuracy and should not care about the inaccur-
acies of other people. Since their approach to computing expected total inaccuracy for the
duplicating case mixes inaccuracy scores of different agents, Kierland and Monton dismiss

12The Brier score is the squared Euclidean distance (vn(H )− c(H ))2 between one’s credence c(H ) and
the ideal (vindicated) credence vn(H ) in H at the given node n (i.e., vn(H ) = 1 if H is true at n and 0 if
it is false), see Kierland and Monton (2005: 385) or Pettigrew (2016: 4) for more details. The Brier
score is a strictly proper scoring rule (i.e., an inaccuracy measure of one’s credence in a single proposition,
see Pettigrew 2016: 36), which means that the expected inaccuracy p(1− c(H ))2 + (1− p)(0− c(H ))2 is
minimised at c(H ) = p, for 0≤ p≤ 1 (see Pettigrew 2016: 86). It is important to note that if one uses positive
weights w1, w2∈ℝ such that w1≠w2 to weight the inaccuracy scores given by the Brier score, then the
weighted expectation pw1(1− c(H ))2 + (1− p)w2(0− c(H ))2 is not minimised at c(H ) = p. In other
words, the weighted Brier score (for unequal positive weights) is not strictly proper; see Levinstein
(2019) for a general discussion about the strict propriety and weighted scoring rules.
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expected total inaccuracy minimisation as an appropriate epistemic goal for the duplicating
case (see Kierland and Monton 2005: 393).

Still considering the duplicating case, Builes (2020: 3038–40) computes expected
total inaccuracy focusing on minimising one’s own expected inaccuracy and concludes
that Beauty ought to have a credence of 1/2 in Heads when she wakes up. The idea is
that, regardless of whether the coin lands Heads or Tails, there always is only one epis-
temically possible centre (node) that is her (see Builes 2020: 3038–9, fn 9). If the coin
lands Heads, Beauty’s total inaccuracy will be (1− c(H ))2 since there is only one node
where Heads is true. If the coin lands Tails, the agent knows that she is either Beauty
(and not the duplicate) or that she is the duplicate (and not the original Beauty). Those
are two mutually exclusive options, each with the inaccuracy score of (0− c(H ))2. So,
only one of them is epistemically possible (or relevant), and one’s total inaccuracy is
(0− c(H ))2. Thus, for a fair coin, Beauty should minimise 1/2(1 − c(H ))2 + 1/2(0 − c
(H ))2, which gives c(H ) = 1/2 as optimal. In contrast, for the classic case, Builes argues
(2020: 3036–7) that minimising expected total inaccuracy recommends the credence of
1/3 in Heads. Given Builes’ approach, minimising expected total inaccuracy recom-
mends different optimal credences in Heads for the classic and the duplicating case.
Builes further argues (2020: 3039) that the difference in recommendation results
from the change in personal identity facts from one scenario to the other. So, the
recommendations that minimising expected total inaccuracy gives explicitly depend
on the personal identity facts, which is inconsistent with Time-Slice Rationality.
Thus, time-slicers should minimise expected average inaccuracy and not expected
total inaccuracy (see Builes 2020: 3040).

One can reconstruct Builes’ reasoning for Figure 2 and Figure 4. I expressed my wor-
ries about using Figure 2 to model the duplicating case,13 so I will consider only
Figure 4. Consider player 1 with {MH1, MT1, TT1}; from now on, I will use player 1
as my main example when discussing Figure 4, but all my reasoning can be easily
reapplied to player 2 and {MH2, MT2, TT2}. If Heads, she will be at MH1 with a
score of (1− c(H ))2 or not woken up at all. So, there is only one relevant node of
her, and her total inaccuracy is (1− c(H ))2. If Tails, player 1 will be either at MT1 or
TT1 with a score of (0− c(H ))2 at each (but she cannot be at both nodes since the
trees represent mutually exclusive situations). So, there is again only one relevant
node for player 1 if Tails and her total inaccuracy is (0− c(H ))2. Since, regardless of
whether the coin lands Heads or Tails, there is always only one relevant node for
player 1, she should minimise 1/2(1 − c(H ))2 + 1/2(0 − c(H ))2 if the coin is fair. If,
for example, player 1 is the original Beauty, then her optimal credence in Heads is
1/2. But one could argue that all nodes in {MH1, MT1, TT1} belong to player 1, so if
one uses inaccuracy scores from all those three nodes to compute expected total
inaccuracy for player 1, then player 1 still focuses on her own inaccuracy. That is,
there is no mixing of inaccuracy scores from nodes belonging to different agents
since player 1 uses inaccuracy scores from nodes that belong only to her and considers
no scores from nodes that belong to player 2. Expected total inaccuracy of player 1 is
then given by PMH1 (1− c(H))2 + PMT1 (0− c(H))2 + PTT1 (0− c(H))2, which is almost
the same expectation formula as Kierland and Monton’s formula for the duplicating

13A relevant point here for Figure 2 is that if one applies Builes’ reasoning to the duplicate, one will need to
assign Beauty’s nodeMHorg also to the duplicate to compute the duplicate’s expected total inaccuracy. Even the
duplicate, uponawakening, considers the possibility that she is the originalBeautyand the coin landedHeads. So,
a single node will belong to two different agents, which, I argue, is an issue (see section 4).
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case. For PMH1 = PMT1 = PTT1 = 1/2,14 it still holds that the optimal credence in Heads
is 1/3, and the weighted expectation is not strictly proper, i.e., is unsuitable for accuracy-
based arguments. But the difference is that one uses nodes MH1, MT1, and TT1 instead
ofMHorg,MTorg, and TTdup, so all the nodes now belong to the same agent, i.e., player 1.

I have so far assumed that focusing on one’s own expected inaccuracy means not
mixing the inaccuracy scores of different players. That is, in Figure 4, one does not
mix scores of player 1 from nodes in the set {MH1, MT1, TT1} with scores of player
2 from nodes in {MH2, MT2, TT2}. But there is a stricter interpretation of how to
focus on one’s own expected inaccuracy. That is, no player should mix the inaccuracy
scores from the nodes where she is the original Beauty with the inaccuracy score(s) from
the node(s) where she is the duplicate. For player 1, this excludes inaccuracy scores from
any node in {MH2, MT2, TT2} but also separates inaccuracy scores she gets at MH1 and
MT1 (since this is where player 1 is the original Beauty) from the score at TT1 (it is
where she is the duplicate). Then, player 1 always computes expected total inaccuracy
with respect to only one tree and ignores the other (since she is the original Beauty
in the tree with MH1 and MT1 and the duplicate in the tree with TT1). Given a fair
coin, c(H ) = 1/2 is optimal for the tree with MH1 and MT1 and c(H ) = 0 is optimal
for the tree with TT1. These, however, are not helpful recommendations since they
only say what to do if one is in a specific tree. But that is all one can do under the stric-
ter interpretation. For the sake of argument, assume one tries to find a followable advice
by taking the expected total inaccuracy for each tree and weights it by the probability
that one finds herself in the given tree to create an overall expectation formula. One
now mixes inaccuracy scores from MH1 and MT1 with the score from TT1, which is
prohibited in this interpretation of “one’s own inaccuracy”.

In general, I agree that one should focus on one’s own expected inaccuracy. But, as I
have shown, one can still take multiple approaches to compute expected total inaccur-
acy, and I do not have a definitive reason to prefer one over the other. However, the
consensus (albeit for different reasons) between Builes, Kierland and Monton, and
me is that one should not minimise expected total inaccuracy in the duplicating case;
I have also expressed my strict-propriety-related reason why I think that it is a
wrong approach to the classic case.

Let me now turn to the minimisation of expected average inaccuracy. The idea is that
the sum of every achievable score is averaged by the number of nodes (i.e., time-slices,
temporal parts, or centres) where that score can be achieved. For the classic scenario in
Figure 1, one has two nodes with the result Tails (i.e., score of (0− c(H ))2) and one
node with the result Heads (i.e., score of (1− c(H ))2). So, one divides the sum (0− c
(H ))2 + (0− c(H ))2 by 2 and (1− c(H ))2 by 1, which gives:
PMH(1− c(H))2 + 1

2 [PMT(0− c(H))2 + PTT (0− c(H))2]. One then multiplies the
score for each achievable node by the probability of it being achieved. For PMH =
PMT = PTT = 1/2, one gets 1

2 (1− c(H))2 + 1
2 (0− c(H))2, which is minimised at c(H ) =

1/2, given the strict propriety of the Brier score. In contrast to the expected total
inaccuracy, averaging the scores ensures that one does not end up with a weighted

14As usual in game theory (e.g., see the idea behind behavioural strategies in Bonanno 2018: 229), I
assume that probabilities distributed over edges leading from a single information set sum to 1 (note
that a single decision node forms an information set, e.g., see Osborne and Rubinstein 1994: 202,
Example 202.1; or a discussion about a perfect-information frame in Bonanno 2018: 120). But probabilities
of edges leading from different information sets are not restricted in this way. So, PMH1 and PMT1 must sum
to 1 but PMH1 , PMT1 , and PTT1 do not have to.
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scoring rule (e.g., the weighted Brier score discussed in footnote 12) that is not strictly
proper due to unequal positive weights.

In the duplicating case (consider Figure 4), expected average inaccuracy works
the same as in the classic case, but one uses the decision nodes from the information
set {MH1, MT1, TT1} or {MH2, MT2, TT2}. That is, an agent averages over the inaccur-
acy scores she receives at nodes in her information set. For example, consider player 1
and {MH1, MT1, TT1}. If PMH1 = PMT1 = PTT1 = 1/2, then one has PMH1 (1− c(H))2+
1
2 [PMT1 (0− c(H))2 + PTT1 (0− c(H))2] = 1/2(1− c(H)2)+ 1/2(0− c(H))2 that is mini-
mised at c(H ) = 1/2. Consider now the duplicating case with n∈ℕ duplicates
(a generalisation of Figure 7 for n + 1 agents), so a single agent considers n + 1 nodes
where Tails is true. Let, for example, TT1n be a node at which player 1 considers to
be an nth duplicate. If PMH1 = PMT1 = PTT11 = · · · = PTT1n = 1/2 (see footnote 14),
the expected average inaccuracy will always recommend the credence of 1/2 in Heads
because any number of (0− c(H ))2 (i.e., scores for nodes where Tails is true) will be
averaged out. That is, for n duplicates, the expected average inaccuracy formula is
given by 1

2 (1− c(H))2 + 1
2

1
n+1 [(n+ 1)(0− c(H))2] = 1

2 (1− c(H))2 + 1
2 (0− c(H))2,

which is minimised at c(H ) = 1/2.
One could ask why one should not differentiate, for example, betweenMH1 andMT1

on one side and TT1 on the other side (as I discussed earlier for the expected total
inaccuracy). I think this would go against the idea of expected average inaccuracy.
Kierland and Monton defended the expected average inaccuracy for the duplicating
scenario by saying that: “If her goal is to minimise her own expected inaccuracy,
then she should minimise the expected average inaccuracy for her and the possible
duplicate of her, since she does not know which of those possible individuals she is”
(Kierland and Monton 2005: 393). The general idea is that averaging minimises the
expected inaccuracy of one’s current node (time-slice), so one always focuses on her
own inaccuracy (compare with Kierland and Monton 2005: 390, or Builes 2020:
3039). That is, the reason (exploring different ways in which one can focus on one’s
own expected inaccuracy) why I considered MH1 and MT1 separately from TT1 for
the expected total inaccuracy does not apply here since expected average inaccuracy,
by definition, focuses on the expected inaccuracy of one’s current node (i.e., one’s
own expected inaccuracy). Moreover – as mentioned in the quote – when one mini-
mises expected average inaccuracy, one should also consider the possibility that she
is the duplicate. So, separating MH1 and MT1 (where player 1 is the original Beauty)
from TT1 (where player 1 is the duplicate) does not make sense for the expected average
inaccuracy. But also note that, when computing expected average inaccuracy (e.g., in
Figure 4), one still keeps separate inaccuracy scores from nodes belonging to different
players. That is, player 1 computes expected average inaccuracy using only nodes
from {MH1, MT1, TT1} and player 2 computes it using inaccuracy scores only from
nodes in {MH2,MT2, TT2}. Since each information set contains a TT node, despite con-
sidering nodes only from one’s own information set, each player also considers the pos-
sibility that she is the duplicate.

Overall, I agree with Builes, Kierland, and Monton – and my models in Figure 1 and
Figure 4 (i.e., its generalisations for n duplicates) can accommodate it – that (for a fair
coin) the expected average inaccuracy recommends a credence of 1/2 in Heads for both
scenarios. I also agree that the expected total inaccuracy is not an optimal accuracy-
based approach to the duplicating case. Moreover, I agree with Builes that minimising
expected total inaccuracy is not a suitable method for the classic scenario, but I think
this holds not only for time-slicers. For reasons discussed in section 4, I, however,
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disagree that the classic and the duplicating scenario are structurally identical (at least in
game-theoretic terms) or that the only (epistemically) relevant difference between those
two scenarios concerns identity facts, e.g., compare with Builes (2020: 3038–9) or
Kierland and Monton (2005: 392). I consider the change/difference in the personal
identity facts (introducing a new player or players, i.e., a duplicate or duplicates)
from one scenario to the other to be fundamental or the most relevant in the sense
that it is the change/difference that leads to other – at least game-theoretic but still epis-
temically relevant – changes/differences between the classic and duplicating Sleeping
Beauty scenario.

6. Conclusion

Thirders sometimes feel compelled to give the same answer to the duplicating and the
original Sleeping Beauty problem. A worry is that the thirder position creates unwanted
consequences in the duplicating case. In this paper, I have used game-theoretic tools to
argue that the original and the duplicating Sleeping Beauty scenarios are different types
of decision problems. The original case is a game with absentmindedness, but the dupli-
cating scenario is not. If one accepts that it is or should be rationally permissible to give
different answers to different types of decision problems, then thirders do not need to
feel compelled to give the same answer to both scenarios. I also discuss the relevancy of
my argument for some philosophical approaches to the classic and duplicating Sleeping
Beauty problem.15
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Appendix A. Proofs for Section 3 (The Original Beauty Is Absentminded)
Proof. To prove that the original Sleeping Beauty problem is a game with absentmindedness, I need to show
that it violates Condition 2. Notice that both decision nodes MT and TT are in the same information set
{MH, MT, TT} that belongs to Beauty. Moreover, by assumption, if the coin lands Tails, reporting credence
in Heads on Monday leads to an awakening on Tuesday (and another report of Beauty’s credence in
Heads). So, MT is a predecessor of TT, i.e., there is a directed edge leading from MT to TT (see
Figure 1). This violates Condition 2, as required. □

Appendix B. Proofs for Section 4 (A Doppelgänger Changes the Game)
Proof. One needs to show that neither the original Beauty nor the duplicate violates Condition 2. I will
focus on player 1 (one can interpret player 1 as the original Beauty or the duplicate). One can also use
player 2 in the same way, and one can also expand the following reasoning for cases with multiple dupli-
cates (see discussion in section 5). I will use proof by contradiction. For the reductio, assume that the dupli-
cating scenario is a game with absentmindedness, so it violates Condition 2. By Condition 2, I need to find
at least two nodes such that: 1.) one node is a predecessor of the other node, and 2.) those two nodes come
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from the same information set. In the duplicating case, D1 = {S1, MH1, MT1, TT1} is the set of decision
nodes belonging to player 1. By assumption, player 1 can distinguish Sunday, but, upon awakening, she
cannot distinguish among MH1, MT1, and TT1. So, let me partition D1 into two sets: {MH1, MT1,
TT1} and {S1}. Condition 2 can be violated by player 1 only in those two information sets. Let me then
consider those two sets one by one.

1. The violation of Condition 2 requires at least two nodes in the same information set, and so I can
exclude {S1} straight away.

2. Let me now consider {MH1, MT1, TT1}. Clearly, MH1, MT1, and TT1 come from the same informa-
tion set, but there is no node in {MH1, MT1, TT1} that is a predecessor of another node from {MH1,
MT1, TT1}. First, no directed edge from the Tuesday awakening leads to any of the Monday awaken-
ings. So, TT1 cannot be a predecessor of either MH1 or MT1. Secondly, suppose that the agent
reports her credence in Heads on Monday, so there is a directed edge from a Monday node.
First, it cannot lead from MH1 by the definition of the Sleeping Beauty problem (i.e., there is no
Tuesday awakening if Heads). Secondly, that edge cannot lead to TT1. By definition, an information
set is a set of nodes at which an agent acts. If there were an edge leading fromMT1 to TT1, then there
would be a scenario where player 1 acts (reports her credence in Heads) on Monday and Tuesday.
But it is impossible since the same agent cannot report her credence in Heads on Monday and
Tuesday; those are mutually exclusive events for the same agent in the duplicating case. We have
seen that none of the Monday nodes (MH1 or MT1) is a predecessor of the Tuesday node TT1,
i.e., there is no directed edge from either MH1 or MT1 to TT1.

This completes all the options how Condition 2 could be violated by player 1 in the duplicating scen-
ario. Since the same reasoning holds for player 2 and D2 = {S2, MH2, MT2, TT2}, the duplicating Sleeping
Beauty scenario is not a game with absentmindedness. □

Proof. To show that the duplicating Sleeping Beauty problem is a game with imperfect recall, I need to
show that Condition 3 is violated at least for one agent. Let me focus on player 1 (player 2 would work
equally well), which I now specifically interpret as the original Beauty.

We know that the original Beauty reports her credence in Heads on Sunday (S1) and can fully distin-
guish S1 from any other point in the game. So, S1 forms a singleton information set {S1}. The original
Beauty also wakes up on Monday for sure, and so Sunday is a predecessor of her Monday awakening; either
MH1 or MT1, depending on the coin toss result. But, in the duplicating scenario, three nodes (MH1, MT1,
and TT1) are in Beauty’s information set. So, upon awakening, when the original Beauty moves from
Sunday to Monday, she moves from the information set {S1} to a new information set {MH1, MT1, TT1}.

If Condition 3 holds, then, for every node in {MH1, MT1, TT1}, there is a predecessor in {S1} such that
the action assigned to the directed edge out of that predecessor in the sequence of edges leading to any node
in {MH1,MT1, TT1} is the same action a. Clearly, a necessary condition for Condition 3 to hold is that there
is a predecessor in {S1} for every node in {MH1, MT1, TT1}. Since {S1} is a singleton set, only S1 can be a
predecessor of any node in {MH1, MT1, TT1}. This means that there must be a path of directed edges lead-
ing from S1 to TT1. That is, however, impossible. By assumption, the original Beauty reports her credence in
Heads on Sunday and the duplicate wakes up on Tuesday. So, there cannot be a directed edge (or a path of
directed edges) that leads from S1 to TT1. In other words, S1 is not a predecessor of TT1, and so not every
node in {MH1, MT1, TT1} has a predecessor in {S1}. But that there is a predecessor in {S1} for every node in
{MH1, MT1, TT1} is a necessary condition for Condition 3 to hold. Thus, Condition 3 is violated, and the
duplicating Sleeping Beauty problem is a game with imperfect recall. □
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