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Particle trapping and manipulation have a wide range of applications in biotechnology
and engineering. Recently, a flow-based, particle-trapping device called the Stokes trap
was developed for trapping and control of small particles in the intersection of multiple
branches in a microfluidic channel. This device can also be used to perform rheological
experiments to determine the viscoelastic response of an emulsion or suspension. We show
that besides these applications, the various flow modes produced by the Stokes trap are
able to manipulate drop shapes and induce active mixing inside droplets. To this end, we
analyse the dynamics of a droplet in a Stokes trap through boundary-integral simulations.
We also explore the dynamic response of drop shape with respect to distinct external
flow modes, which allows us to perform numerical experiments such as step strain and
oscillatory extension. A linear controller is used to manipulate drop position, and the
drop deformation is characterized by a spherical-harmonic decomposition. For small drop
deformations, we observe a linear superposition of harmonics, which, surprisingly, seems
to hold even for moderate deformations. This result indicates that such a device can be
used for shape control of droplets. We also investigate how the different flow modes may
be combined to induce mixing inside the droplets. The transient combination of modes
produces an effective chaotic mixing, which is characterized by a mixing number. The
mixing inside the droplet can be further enhanced for lower viscosity ratios and low, but
non-zero capillary number and flow frequencies.
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1. Introduction

The field of microfluidics has been explored widely in recent years due to its various
applications, such as drug targeting (Fontana et al. 2016), micro-chemical reactors (Liu,
Xiang & Ni 2020) and cell sorting (Shields, Reyes & López 2015). More specifically, some
of these applications include the control of small particles or droplets in a microchannel by
external inputs such as sound waves (Zhang et al. 2020; Lee et al. 2023), electromagnetic
fields (Spellings et al. 2015; Brooks, Sabrina & Bishop 2018; Lee et al. 2019), chemical
fields (Ganguly & Gupta 2023; Raj, Shields & Gupta 2023) or hydrodynamic forces.

Hydrodynamic manipulation and trapping of particles and droplets have been
investigated for many decades. One example of an early work is the paper by Taylor
(1934) in which he introduces the ‘four-roll mill’ experiment, originally designed to
experimentally investigate droplet dynamics and deformation under extensional-flow
conditions. A computer-controlled version of a four-roll mill was later developed by
Bentley & Leal (1986), allowing for the trapping of a droplet at the centre of the extensional
flow for an extended time. More recently, with the rise of microfluidics, several works
developed microfluidic analogues of the four-roll mill (Hudson et al. 2004; Lee et al.
2007; Shenoy et al. 2019). In such cases, instead of four rolls, the particles are constrained
within the intersection of four branches of a microfluidic channel. The flow inside the
intersection is then controlled by changing the flux at each branch of the channel. This type
of mechanism, as well as its generalization for multiple branches, is called a Stokes trap.
In such devices, the motion of particles can be controlled by changing the flow rates in the
branches, allowing for precise trajectory control of small particles, even in the Brownian
range (Shenoy et al. 2019). These systems can be used for different applications, including
the trapping and control of small particles and extensional-flow experiments with vesicles
(Hsiao et al. 2017; Kumar, Richter & Schroeder 2020a,b; Kumar et al. 2020c; Kumar &
Schroeder 2021; Lin et al. 2021).

Although several works regarding particle control in Stokes traps have been reported
in the literature, one simplifying assumption typically made is that the trapped particles
are very small, and hence move with the velocity of the external flow field, which is
approximated by a superposition of Hele-Shaw sources. Such a model allows for the
implementation of model predictive control of the system, which can be used to control
the trajectory of two different particles at the same time with a six-branch Stokes trap. This
approximation, of course, ceases to be valid for large droplets/vesicles, where the length
of the drop is comparable to the intersection length. Besides the droplet or vesicle size,
the dynamics of the problem is strongly affected by changes in shape, especially when
the droplets/vesicles undergo large deformations. Although some recent works tackled
the deformation of vesicles (Kumar et al. 2020a,b; Kumar & Schroeder 2021; Lin et al.
2021) and control of small droplets using a Stokes trap (Narayan et al. 2020a,b), the
complex dynamics of drop deformation and response to different flow modes have not
been simulated. However, recently, the work by Razzaghi & Ramachandran (2023) has
shown experimentally that richer flow modes produced by hydrodynamic traps, such as a
quadratic flow, can result in interesting drop shapes.

In this work, we analyse the motion and deformation of a droplet in a six-branch
Stokes trap. The droplet dynamics is computed using boundary-integral simulations with
dynamically changing fluxes. A simple proportional control is implemented to keep the
droplet at the centre of the channel. The six channel branches enable us to examine
the effects similar to classical deformation modes, such as pure extension, simple shear,
and a six-fold extensional flow, and to perform different numerical experiments. We also
analyse how the combination of these modes affects the drop shape, which is analysed
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Dynamics and active mixing of a droplet in a Stokes trap
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Figure 1. Geometry used for the numerical simulations of a droplet in a Stokes trap. The simplified
computational domain shown in (b) is a hexagonal prism corresponding to the intersecting region (B) of
the multiple rectangular channel branches (A) in a microfluidic chip (C), illustrated in (a). The origin of the
coordinate system, denoted as O in (b), is placed at the geometric centre of the hexagonal prism. (c) A more
realistic computational domain, considering the channel branches combined with a moving frame SMF∞ (as
shown in Roure, Zinchenko & Davis 2023) to reduce computational times. The flow velocity at the entrance
of each rectangular panel is given by a Boussinesq velocity profile with prescribed fluxes Qi, which can be
changed dynamically.

via a spherical-harmonic decomposition. Moreover, we explore the influence of physical
parameters such as capillary number and viscosity ratio on drop dynamics. In addition,
we investigate how the different flow modes and their combination affect mixing inside
the droplets, which can be useful in applications such as microfluidic reactors. To this
end, we follow the mixing-number analysis of Stone & Stone (2005) and Muradoglu &
Stone (2005), extending the backward Poincaré cell method (Wang, Fan & Chen 2001)
to three-dimensional, continuously deforming droplets. We also investigate how drop
deformation may cause an extra contribution to mixing due to the breaking of kinematic
reversibility.

2. Boundary-integral formulation

In this work, we investigate the dynamics of a single Newtonian droplet in the intersecting
region between six symmetrically distributed branches of a three-dimensional microfluidic
channel with finite depth. The droplet is assumed to be neutrally buoyant with its centre
of mass positioned at the centre plane of the microfluidic channel. The system is assumed
to be in a creeping-flow regime, which is a reasonable assumption for most microfluidic
systems.

To model the branch intersection, we consider a hexagonal prism as our computational
domain. The problem geometry, as well as a sample simulation of a deformable droplet
in such geometry, can be seen in figure 1. In this geometry, the parallel top and bottom
hexagonal panels correspond to the rigid, impenetrable walls of the microfluidic channel,
whereas the six rectangular side panels correspond to the connections of the inlet/outlet
branches with the intersection region. The flow rates at each branch, labelled Qi, can be
changed with time almost independently, with the only constraint being mass conservation.
We place the origin of the coordinate system at the geometric centre of the intersection, as
indicated in figure 1(b).
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As simplified boundary conditions, we assume that the flow velocity profiles at the
inlets/outlets of the hexagonal intersection region given by the Boussinesq solution for
a rectangular channel and that there is no slip at the channel’s top and bottom panels.
We note that this formulation is different from the one in our previous work (Roure
et al. 2023), where a moving frame (i.e. a small computational domain that follows the
droplet throughout its motion) is used to reduce computational times for simulations
of droplets in microfluidic channels. Further considerations regarding this simplified
computational domain and comparison with extended computational geometries that
include the rectangular branches (see figure 1c) using the algorithm from Roure et al.
(2023) are provided in § 2.1. The volumetric flow rate through each branch is prescribed
and can be changed dynamically. The non-dimensionalization of the problem is made
by using the inlet width W as the length scale, and a characteristic average velocity
UB

av ≡ |Q|/(HW) to scale the velocity and potential densities, where Q is a characteristic
volumetric flow rate, and H is the depth of the microfluidic channel. The choice of the
flow rate Q is made in a way such that, for a given characteristic flow mode, the average
velocity of one of the branches is equal to unity.

As we consider the creeping-flow regime, the velocity on the drop interface is given by
the solution of the following set of non-dimensional boundary-integral equations (Roure
et al. 2023):

u(y) = 2
λ+ 1

[
2

∫
S∞

n(x) · τ (x − y) · q(x) dSx + F (y)
]

+ 2
λ− 1
1 + λ

∫
Sd

n(x) · τ (x − y) · u(x) dSx, (2.1)

for y on the drop surface Sd, and

q(y) = u∞(y) − 2
∫

S∞
n(x) · τ (x − y) · q(x) dSx − F (y)

− (λ− 1)

∫
Sd

n(x) · τ (x − y) · u(x) dSx − n(y)
|S∞|

∫
S∞

n(x) · q(x) dSx, (2.2)

for y on the channel surface S∞. Here, λ = μd/μ is the ratio between the drop viscosity
and the viscosity of the surrounding fluid, n is the outward unit normal vector, τ (r) =
3rrr/(4πr5) is the fundamental stresslet, q is a potential density (to be found) on the
surfaces of the channel, and

F (y) = 2
Ca

∫
Sd

κ(x) G(x − y) · n(x) dSx (2.3)

for a neutrally buoyant droplet, where Ca = μUB
av/σ is the capillary number, which

measures the ratio between flow and interfacial-tension effects, κ is the local mean
curvature, σ is the interfacial tension (assumed constant), and G(r) = −(I/r +
rr/r3)/(8π) is the Green’s function for Stokes flow. Also note that, in contrast to our
prior work (Roure et al. 2023), the potential density q also includes the undisturbed
flow representation, in a way such that the undisturbed velocity u∞ appears in the
boundary-integral equation on the channel boundary, where the velocity is known from
the boundary conditions. More explicitly, the equivalence between the two formulations
can be obtained by making the transformation q → q + q∞, where q∞ is the potential
density associated with the double-layer representation of the undisturbed flow.
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Dynamics and active mixing of a droplet in a Stokes trap

The two boundary-integral equations (2.1) and (2.2) are solved simultaneously by
discretizing both the drop interface and channel boundaries, and solving the resulting finite
system of linear equations using biconjugate-gradient iterations (see Roure et al. (2023)
for more details about the numerical method). The discretization of the drop interface,
which we consider to always start from a spherical shape with radius a, follows the
icosahedron/dodecahedron-based approach from Zinchenko, Rother & Davis (1997). The
triangulation of the channel top and bottom panels uses a combination of Monte Carlo
methods for disk packing and Delaunay triangulation described in Roure et al. (2023).
The calculation of the mean curvature and the outward normal vector n is done by using
the best-paraboloid-spline method of Zinchenko & Davis (2000). Further details about the
boundary-integral formulation and the numerical methods can be found in our previous
work (Roure et al. 2023).

For the mixing studies presented in § 4, we also need to calculate the velocity inside
the droplets. To this end, a generalized double-layer representation for the internal flow
(Pozrikidis 1992; Kim & Karrila 2013) is used:

u(i)(y) = 2
∫

Sd

n(x) · τ (x − y) · Q(x) dSx, (2.4)

where a potential density Q can be calculated by solving the partially deflated
boundary-integral equation

u(y) = 2
∫

Sd

n(x) · τ (x − y) · Q(x) dSx + Q(y) + n(y)
Sd

∫
Sd

Q(x) · n(x) dSx, y ∈ Sd,

(2.5)

on the drop surface. Note that (2.5) has the same form as the boundary-integral equation
for the undisturbed channel flow in Roure et al. (2023). Here, the surface velocity is given
by the solution of the first boundary-integral problem (i.e. (2.1) and (2.2)). Equation (2.5)
is discretized using a linear quadrature (Zinchenko et al. 1997) and solved numerically
using the method of generalized minimal residuals. For the evaluation of the double-layer
integrals in (2.4) and (2.5), we use the standard singularity/near-singularity subtraction
from Loewenberg & Hinch (1996).

2.1. Effects of boundary condition simplification
As mentioned in the previous section, most of the simulations in this paper consider the
channel intersection as the computational geometry with Dirichlet boundary conditions
at its inlets and outlets given by the Boussinesq flow in a straight, rectangular channel.
Although this configuration is more physically accurate than the external flow used in
previous theoretical works for the Stokes trap (e.g. Lin et al. 2021), these boundary
conditions should be imposed on a section of a channel branch away from the intersection
to more accurately model typical experimental set-ups, either by simulating the droplet
in the full microfluidic domain or by using a moving-frame construction like the one
described in Roure et al. (2023) (see figure 1c), in which the frame changes with time as
the drop moves and/or deforms. When doing the latter, it is still possible to implement
the methods proposed in the present paper, including the control algorithm, by using
a transient mode superposition of pre-calculated potential densities. Here, we briefly
assess the main quantitative differences that may appear when considering the alternative
inlet/outlet boundary conditions on sections of the branches away from the intersection.

We start by looking at the effect of branch length (i.e. the distance from the intersection
to where we apply the boundary conditions within the rectangular inlet/outlet branches) on
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(a) (b)

L = 0.25 L = 1.00

0 0.005

||u – uL=2.0||

0.010

L = 0.50

Figure 2. Effect of channel branch length on background flow in a Stokes trap. (a) Qualitative comparison
between the vector fields for L = 0 (black) and L = 2.0 (blue) at the same points. (b) Colour maps show the
scalar discrepancy between the vector fields for different channel branch lengths.

the undisturbed flow (i.e. without the droplet). Figure 2(a) shows a comparison between
the undisturbed flow field for the hexagonal prism domain shown in figure 1(b) (in black)
and the flow field of the full geometry shown in figure 1(a) (in blue), for a channel
with dimensionless branch lengths L = 2.0. As seen by the results in figure 2, although
the flow fields are qualitatively similar, they present notable quantitative differences
that arise between the direct application of the Boussinesq boundary conditions at
the hexagonal computational cell versus at a dimensionless distance L = 2.0 from the
hexagonal intersection. As expected, and seen in figure 2(b), increasing the length of the
channel branches results in much smaller discrepancies between the velocity fields. For
L = 1.5, these differences become very small, with discrepancies of less than 0.5 % for
the bulk of the channel (except for the origin, where the velocity is zero), indicating that
the limit of very long inlet/outlet channels is well reached for L = 2.0. As the results in this
paper are more focused on the effects of flow-mode superposition on the drop deformation
and mixing dynamics than the modelling of a more physically accurate channel flow,
we use primarily the simplified hexagonal construction shown in figure 1(b). However,
as quantitative differences in drop shape may arise from considering the full channel
geometry, in § 3 we address some of these differences between the simplified external
flow field and simulations of a droplet inside a full-channel representation of a Stokes
trap with branch size L = 2.0 performed using the moving-frame approach from Roure
et al. (2023). As in our previous work, the computational frame expands as the drop
stretches, and it moves if conditions are such that the drop drifts from its initial location.
Overall, the results for the full-channel simulations are qualitatively similar to those for the
simplified geometry, but with less-deformable droplets. As we show in the next section,
this discrepancy is characterized by a quantitative difference in the components of the
spherical-harmonic decomposition of the drop shape. These discrepancies are usually
small for smaller droplets, but can become up to ∼40 % in some extreme cases for larger,
more-deformable droplets.

3. Flow modes and drop deformation

Many works in the literature analyse drop and vesicle behaviour under simple-shear and
extensional flows (e.g. Loewenberg & Hinch 1996, 1997; Zinchenko et al. 1997; Oliveira
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Dynamics and active mixing of a droplet in a Stokes trap
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Figure 3. Different drop deformation modes produced by the Stokes trap. The undisturbed flow for each mode
is shown in (a ii–c ii), whereas the shape responses are shown in (a i–c i). For the simulations, we consider
H = 1, a = 0.5, Ca = 0.1, λ = 1, and (a) Q = Qtri, (b) Q = Qsh, and (c) Q = Qext. The solid shapes are for
simulations of droplets in the simplified hexagonal geometry, whereas the dashed shapes are for simulations
considering a full channel geometry with L = 2. All the shapes are given at the same time t = 0.2. The numbers
in (a ii–c ii) correspond to the values of the flux Qi at each face for each mode.

& Cunha 2015). More recently, the four-branch Stokes trap has been used to perform
extensional-flow experiments with vesicles Kumar et al. (2020a). In the six-branch Stokes
trap, the higher number of degrees of freedom allows us to locally reproduce not only
a pure-extensional flow but also other ‘classical’ flow modes such as extensional and
quadratic flows, by manipulating the flow rates Qi in the branches. As an example, figure 3
shows some of these different flow modes and the deformation response of a droplet to
each one. The three flow modes represented by figures 3(a,b,c) are given, respectively, by

Qtri = (1, −1, 1, −1, 1, −1), (3.1)

Qsh = (0, 1, −1, 0, 1, −1) (3.2)

and
Qext = (2, −1, −1, 2, −1, −1). (3.3)

We call these modes (a) tri-axial extension, (b) shear, and (c) extension, respectively.
Note that the extensional mode can be obtained by a ‘symmetrization’ of the shear mode,
namely, Qext = SQsh − S2Qsh, where S is the shift operator defined by

S(Q)i =
{

Qi+1, for i < 6,

Q1, for i = 6.
(3.4)

The shift operator corresponds to a 60◦ rotation of a given flow configuration. By
symmetry, we have S2Qtri = Qtri and S3Qsh = Qsh. Animated versions of these drop
deformation modes can be found in the supplementary material available at https://doi.
org/10.1017/jfm.2024.289.

The simulations in figure 3 were performed by considering an initially spherical
droplet of dimensionless radius a = 0.5 starting at the centre of the channel. The results
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(a) (b)

Qv

Qh

No control

Control

(i)

(ii) (iii)

(iv) (v)

Figure 4. Application of the linear feedback control. (a) Horizontal and vertical flow modes used for the
control implementation. (b) Drop behaviour in the (ii,iii) presence and (iv,v) absence of control in numerical
simulations for a = 0.4, Ca = 0.1, λ = 1, and starting centre position xc = (0.1 cos(0.5), 0.1 sin(0.5), 0), for
(i) t = 0, (ii,iv) 0.25, (v) 1.5, and (iii) steady state.

considering a full-channel geometry (cf. § 2.1), represented by the dash contours, show
qualitatively similar results, but with slightly smaller deformation. (These discrepancies in
drop deformation are characterized quantitatively in § 3.1.) For less-deformable droplets
(e.g. small Ca and λ), the drop will eventually reach an equilibrium shape. However, in
both experiments and numerical simulations, this equilibrium point might be unstable,
meaning that small changes in the drop initial position may lead to the drop escaping the
Stokes trap; this situation is shown in figure 4(b). To overcome this issue, we introduce
a simple linear feedback controller to keep the droplet at the centre of the channel. To
control drop translation, it is useful to know how to induce drop translation in the x and
y axes individually, as these translation modes can combine linearly for Stokes flow to
induce translation in any arbitrary direction in the xy plane. One way that these modes can
be achieved is shown in figure 4(a). Considering the translation flow modes

Qh = (0, −1, −1, 0, 1, 1) (3.5)

and
Qv = (1, 0, 0, −1, 0, 0), (3.6)

the controlled flow rates are given by

Q = Q0 − [
αQhβQv

] [
xc
yc

]
, (3.7)

where Q0 is the applied flux configuration in the absence of control, [αQhβQv] is a block
matrix whose columns are given by αQh and βQv , and xc = (xc, yc, zc) is the surface
centroid, given by

xc = 1
Sd

∫
Sd

x dS, (3.8)

with α and β being constants related to the strength of the control. When the droplet is
not centred in the Stokes trap, the flux correction in (3.7) adds a counter-flux contribution,
proportional to the droplet displacement from the centre of the channel, which moves the
droplet towards the intersection centre by combining the translation modes (see figure 4).
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Dynamics and active mixing of a droplet in a Stokes trap

For general applications, one has to be careful in choosing the constants α and β, as
strong additional fluxes may lead to drop breakup, and weak additional fluxes might not
be strong enough to counteract the flux Q0, leading to a small region of effectiveness
of the control algorithm near the centre of the intersection region. For the purpose of
the simulations in this paper, the values α = β = 1 have been found to perform well.
It is also noted that if the origin is not an equilibrium point for the flux configuration
Q0, or if one wants the drop centre to be positioned at a different target position, then
an integral component should be added to (3.7). To illustrate the effectiveness of the
simple proportional control algorithm, figure 4(b) shows the effect of the controller on
the motion of a droplet starting off-centre. In the absence of a controller, the droplet tends
to escape the channel, as shown in figures 4(b iv–v). The extension in this regime can also
lead to drop breakup. In contrast, when the controller is turned on (figures 4b i–ii), the
additional fluxes move the drop to the centre of the channel, keeping its position and shape
stable.

3.1. Characterizing drop deformation via spherical harmonics
Often in the literature, drop deformation is characterized by parameters such as the Taylor
deformation, which measures the deviation of a drop from its spherical equilibrium shape.
From figure 3, it is clear that the different drop shapes induced by the distinct flow
modes show substantial variation. Hence to properly describe drop deformation, we need
a more precise way to characterize the deformed drop shape. One way to do this, valid
for star-shaped drop geometries, is to decompose the shape of the droplet in spherical
harmonics. Namely, the shape of the droplet is described by the function r(θ, ϕ), where r
is the spherical radial coordinate from the drop centre, and ϕ and θ are the azimuthal and
polar angles, respectively. This function can be decomposed as

r(θ, ϕ) =
∑
�,m

c�m Ym
� (θ, ϕ), (3.9)

where Ym
� (θ, ϕ) are the normalized spherical harmonics, and the coefficients c�m are

c�m =
∫

S2
r(θ, ϕ) Ȳm

� (θ, ϕ) dΩ, (3.10)

with S2 the unit sphere, and overbar denoting complex conjugation. Numerical
implementation of (3.10) consists of first projecting the unstructured drop mesh on the
unit sphere and using a linear quadrature (e.g. Zinchenko et al. 1997).

As an example of harmonic decomposition, we examine the case of a droplet undergoing
a tri-axial extensional flow shown previously in figure 3. Figure 5 shows numerical results
for (a) the harmonic decomposition of drop shape in a tri-axial extensional flow mode, and
(b) reconstruction of drop shape by using the first few harmonics. As the tri-extensional
flow is locally quadratic, we expect the main excited harmonic to be Y33, as in the regime
of small deformations. Indeed, as shown in figure 5(a), besides Y00, the largest harmonic
in the spectrum is Y33, followed by Y66. All other harmonics are substantially smaller,
which is supported by the fact that we can reconstruct the drop shape with good accuracy
by using only three harmonics, as shown in figure 5(b).

The results shown in figure 5 indicate that a good parameter to measure drop
deformation in a tri-axial extensional flow is the imaginary part of c33. The results
for the full-channel simulations display a similar increasing behaviour, although with
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Figure 5. Harmonic decomposition of the shape of a droplet in a Stokes trap undergoing a tri-axial extensional
flow for Ca = 0.1, λ = 1, H = 1 and a = 0.5. The results show (a) the evolution of the Y33 and Y66 harmonics
with time as the drop extends, and (b) the reconstruction of drop shape from the three main harmonics for
t = 0.25. The dashed curves in (a) are the same harmonics for a full-channel simulation with branch length
L = 2.0, whereas the solid curves are for the simplified hexagonal geometry. The dashed shapes in (b) are the
numerical drop shape, whereas the solid lines are the harmonic approximations. The meshed geometry in (b) is
a three-dimensional visualization of the harmonic reconstruction using the main three modes. (c) A comparison
between the simulations in the simplified hexagonal channel (solid contours) and full channel (dashed contours)
from (a).

smaller drop deformation, which is characterized by lower absolute values of the harmonic
coefficients c33 and c66. This discrepancy in deformation also leads to a difference in
long-time behaviour, as the droplet in the full-channel simulation will eventually reach
a stationary state, whereas the droplet in the simplified geometry escapes the hexagonal
region in three different directions, suggesting that it will eventually break up. Hence we
can perform numerical experiments with our trapped droplet. One possible example of
such a numerical experiment is an oscillatory flow of the form

Q0(t) = Qtri cos(ωt), (3.11)

where ω is the inlet frequency. Figure 6(a,b) show the response of c33, normalized by
the drop radius a, to the oscillatory tri-extensional flow for Ca = 0.1, λ = 1, H = 1
and ω = 3 for different values of drop radius a. The vertical dashed lines in figure 6
indicate the points in time where Q = 0. As expected, larger droplets are more deformable,
which results in a larger values of Im(c33)/a. Moreover, for droplets with radii a = 0.4
or less (figure 6a), besides an initial transient regime, the harmonic response displays
a sinusoidal behaviour slightly out of phase with the flux, indicating a small lag in the
drop response, which is expected given the elastic character of the interfacial tension. We
also note that drop size slightly affects the phase of drop oscillation. For the full channel
simulations, shown as the dashed curves, we again observe a smaller deformation, but with
the same qualitative trends. For a = 0.5, for the full-channel simulations (dashed curves),
we observe a similar trend, with a harmonic deformation. However, for the hexagonal
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Figure 6. Numerical results for the imaginary part of the harmonic amplitude c33, normalized by the drop
radius, versus time for a droplet undergoing an oscillatory tri-axial extensional flow Q0 = Qtri cos(ωt). The
results consider Ca = 0.1, λ = 1, H = 1, ω = 3, and (a) a = 0.25, 0.3, 0.4, and (b) a = 0.5. (c) The harmonic
response for a = 0.4, and ω = 0.0, 0.5, 1.0, 1.5, 2.0, 2.5. (d) The frequency response for the drop sizes in (a).
The solid curves are the results for the simplified geometry, whereas the dashed curves in (a,b,d) were obtained
by a full-channel simulation with branch length L = 2.0. The dotted curves in (a,b) indicate the amplitude of
the flux Q1, whereas the vertical lines indicate the times where Q = 0.

channel simulation, where deformations are larger, we observe non-sinusoidal oscillations,
as shown in figure 6(b), indicating a ‘nonlinear’ response. Note that the oscillations in
figure 6(b), besides displaying non-harmonic behaviour, also have slightly increasing
peaks, indicating that either a larger time is required for the droplet oscillation to reach
periodic behaviour or these oscillations are unstable (in the sense that they may potentially
lead to drop breakup).

Besides drop size and physical parameters such as Ca and λ, an important quantity
in oscillatory flows that influences the extension of drop deformation is the oscillation
frequency ω. The results in figures 6(c) and 6(d) show, respectively, the influence
of different frequencies on the harmonic c33, and a frequency ramp for oscillation
amplitudes for different drop sizes. As expected from classical results for droplets under
simple oscillatory extensional flows, smaller oscillation frequencies result in larger drop
deformations, which are characterized by larger values of Im(c33).

We can also use our method to simulate the stretching and relaxation behaviour of
a droplet under step-strain conditions, similar to the vesicle experiments performed in
Kumar et al. (2020b). Besides, the decomposition in spherical harmonics allows us to
quantify drop deformation for both regular extensional (Qext) and tri-extensional (Qtri)
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Figure 7. Numerical results for the Y33 harmonic response of a droplet undergoing a step tri-axial strain with
Ca = 0.1, λ = 1, a = 0.5, H = 1, and Q0 = Qtri for t ≤ 0.2, and Q = 0 for t > 0.2. The result represented by
the solid curve is for the simplified hexagonal domain, whereas the dashed curve is the result for the full-channel
geometry with branch length L = 2.0.

(a) (b)

a = 0.3

0.4

0.5

a = 0.3

0.4

0.5

Figure 8. Numerical results for drop shapes resulting from combinations (a) tri-extensional + shear and
(b) tri-extensional + extensional flow modes, for Ca = 0.05, λ = 1, H = 1, and different drop radii. The
solid contours represent steady shapes, whereas the long-dashed contours, corresponding to (a) t = 0.925 and
(b) t = 0.35, represent larger drops that eventually escape the intersection, possibly leading to breakup. The
short-dashed contours (overlapping the solid contours) were obtained by the harmonic superposition of the half
modes from table 1, and essentially coincide with the full simulations.

flow modes. To illustrate this type of numerical experiment, figure 7 shows numerical
results for a droplet undergoing a step-strain, tri-axial extension for Ca = 0.1, λ = 1,
H = 1 and a = 0.5. The flow configuration is given by Qtri for t ≤ 0.2, and 0 for t > 0.2.
For t ≤ 0.2, the drop experiences a tri-axial extension that is characterized by an increase
in the Y33 harmonic, as shown in figure 5. As the external flow suddenly stops, the droplet
shape relaxes towards its initial spherical configuration. The results for the full-channel
simulation, represented by the dashed curve, display a similar qualitative behaviour, with
amplitudes approximately 30 % lower.

3.2. Mode combination and shape manipulation
As shown in the previous subsection, subjecting the droplet to different flow modes in
the Stokes trap may excite specific harmonics on the drop interface – a feature that can be
used for shape manipulation. These modes can also be combined together to produce more
complex drop shapes. To illustrate this observation, figure 8 shows numerical simulations
for droplets undergoing a combination of (a) shear + tri-axial extension and (b) extension +
tri-axial extension for Ca = 0.05, λ = 1 and different drop radii a.
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Dynamics and active mixing of a droplet in a Stokes trap

a Mode c20 c22 c44 c33 c66

0.3 Qtri/2 0.000 0.000 0.000 0.005i 0.000
Qext/2 −0.002 0.035 0.001 0.000 0.000
Qsh/2 −0.001 −0.020i −0.001 − 0.001i 0.000 0.000

(Qtri + Qext)/2 −0.002 0.036 0.001 0.005i 0.000
(Qtri + Qsh)/2 −0.001 0.001 − 0.021i −0.001 − 0.001i 0.005i 0.000

0.4 Qtri/2 −0.001 0.000 0.000 0.012i 0.000
Qext/2 −0.009 0.078 0.004 0.000 0.000
Qsh/2 −0.003 0.001 − 0.044i −0.002 − 0.002i 0.000 0.000

(Qtri + Qext)/2 −0.010 0.081 0.005 0.013i −0.001
(Qtri + Qsh)/2 −0.004 0.005 − 0.049i −0.003 − 0.002i 0.013i −0.001

Table 1. Numerical results for the steady-state harmonic decomposition of different simple and combined
flow modes for Ca = 0.05, λ = 1 and H = 1. The results are rounded to three decimal places.

The results shown in figure 8 show that the combination of different flow modes
can result in asymmetric drop shapes such as the ones shown in figure 8(a), while the
droplet is kept at the centre of the channel by the controller. This asymmetry is even
more pronounced for larger droplets. However, above a certain radius threshold, the
droplet becomes too elongated, escaping the intersection, possibly leading to breakup.
For small radii a, for which the droplet undergoes small deformations, we observe a linear
deformation regime, where the harmonics superpose linearly. This linear superposition for
small droplets is shown in table 1, which gives numerical results for the main spherical
harmonics present in the steady shapes shown in figure 8, with additional results from
numerical simulation using the isolated ‘half modes’ Qtri/2, Qext/2 and Qsh/2. The
numerical results show that for small droplets (e.g. a = 0.3), the harmonic spectrum of
the final shape due to a combined mode seems to be given by a linear superposition of
the isolated modes, as expected from the theory of small deformations (Leal 2007). In
contrast, as in the case for the oscillatory flow, we start to observe a nonlinear behaviour for
large droplets, which is characterized by the lack of linear harmonic superposition and the
presence of extra harmonics. As an example, we can start to see some small discrepancies
for a = 0.4 between the final harmonics and the ones from the isolated modes. This linear
superposition of harmonic modes for moderate deformations is further supported by the
reconstruction of the final shape by a linear combination of the half modes, which is shown
by the short-dashed contours in figure 8. For a = 0.5, as in the harmonic response to the
oscillatory flow presented in § 3.1, linearity is no longer observed.

3.3. A hydrodynamic ‘three-phase rotor’
Drop rotation often plays an important role in improving the chaotic mixing inside the
droplets (Stone, Nadim & Strogatz 1991), which is crucial for applications in drop-based
microreactors. It is known from the literature that droplets in a simple shear flow display
a tumbling motion for high viscosity ratios (Bilby & Kolbuszewski 1977; Wetzel &
Tucker 2001; Oliveira & Cunha 2015). In contrast, droplets with low viscosity ratios
reach a steady-state deformation, where they present a ‘tank-treading’ motion (Kennedy,
Pozrikidis & Skalak 1994). Whereas a four-roll mill can produce rotational flow, it is
difficult, and possibly not feasible, to produce a flow that is locally rotational at the
centre of a Stokes trap. For example, the model used by Shenoy et al. (2019) represents
the external flow inside a Stokes trap as a superposition of potential sources, which
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Figure 9. Numerical results for a droplet undergoing a three-phase extensional flow for Ca = 0.05, λ = 1,
a = 0.4, H = 1 and ω = 3. The motion of the drop is comprised of a short transient regime, shown in (a),
where the droplet transitions from a spherical to an ovoid shape, and a periodic wobbling regime, shown in (b).
The timeline at the bottom displays the full motion of the droplet. The solid drop shape for each part represents
the first drop configuration for that part (i.e. first and fourth panels), whereas the dashed shape corresponds to
the last configuration displayed on the timeline for that part (i.e. third and seventh panels). (c) The effect of the
frequency ω on the maximum amplitude of the c22 harmonic.

is irrotational. In fact, the mode shown in figure 3(b), which we labelled as ‘shear’, is
locally an extensional flow.

However, the six-branch Stokes trap allows us to generate a rotating extensional external
flow by combining the three different possible modes for the ‘shear’ mode, Qsh, SQsh and
S2Qsh, off phase by 2π/3, in the form

Qrotor = 1
3

[
Qsh cos(ωt) + SQsh cos(ωt + 2π/3) + S2Qsh cos(ωt + 4π/3)

]
. (3.12)

Note, for example, that for t = π/2, Qrotor ∝ Qext. Numerical results for a single droplet
in a Stokes trap undergoing the external flow produced by the flux configuration described
in (3.12) with ω = 3 are shown in figure 9. The droplet starts with a spherical shape
and undergoes a transient extension regime until it reaches a periodic regime, with
frequency ω, similar to the wobbling motion observed in high-viscosity-ratio droplets
undergoing a simple shear flow. An animated version of the drop motion can be found
in the supplementary material.

From the frequency response curve shown in figure 9(c), we see that, as in the case
of the oscillatory tri-axial flow in § 3.1, the increase in rotation frequency leads to a
smaller drop deformation. One interesting feature of this type of flow is that at each
time step, the external flow acts similarly to an extensional flow. As the internal flow
inside a droplet undergoing an external extensional flow has four circulation regions, a
continuously rotating extensional flow will continuously change these invariant mixing
regions, making it possible to observe effective mixing inside the droplet. In the next
section, we investigate how this rotating flow mode may be used to produce active mixing
inside the droplet.
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Dynamics and active mixing of a droplet in a Stokes trap

4. Chaotic mixing inside droplets

4.1. General remarks
Besides influencing drop shape and deformation, the different flow modes investigated
in the prior portion of this paper also affect the internal circulation. In this section, we
investigate how these induced internal flows influence mixing inside the droplets.

Due to the large number of microfluidic applications, chaotic mixing inside droplets
has been investigated extensively in the literature, both theoretically and experimentally
(Sarrazin et al. 2006; Blanchette 2010; Zhao et al. 2015; Chen et al. 2018). For example,
chaotic mixing inside isolated spherical droplets induced by linear external flows was
investigated by Stone et al. (1991), inducing chaos by applying external, non-aligned
extensional and rotation flows. For quadratic flows, even earlier results by Bajer &
Moffatt (1990) show a stretch-twist-fold chaotic dynamics. Later, Stone & Stone (2005)
investigated a transient combination of shear and uniform flows to emulate the conditions
in a typical microfluidic serpentine mixer. This work was also extended to direct numerical
simulations of deformable two-dimensional droplets in a serpentine channel (Muradoglu
& Stone 2005) using a finite-volume/front-tracking scheme. The characterization of
mixing inside droplets in different microfluidic channels is still being explored (Fu et al.
2019; Belousov et al. 2021; Cao et al. 2021). Recently, Gissinger, Zinchenko & Davis
(2021) used boundary-integral simulations to investigate mixing inside a droplet trapped
in constrictions formed by rigid particles and fibres. Beyond the context of microchannels,
the work by Watanabe, Hasegawa & Abe (2018) also explored active mixing inside droplets
in an acoustic trap.

Here, similarly to the previous work by Gissinger et al. (2021), we use boundary-integral
simulations to study the mixing dynamics inside the droplet in a Stokes trap. One of the
advantages of boundary-integral methods for mixing simulations is that the velocity of
the fluid at any point inside the droplet can be determined by the numerical evaluation of
(2.4), without requiring interpolation. In contrast to the problem considered in Gissinger
et al. (2021), our droplet undergoes continuous deformation, not being confined to a steady
state. To illustrate the velocity calculation inside the droplets for deformable droplets,
figure 10(a) shows the short-time evolution of streamlines inside an initially spherical
droplet. It reveals the formation of six circulation regions at the midplane z = 0 inside
a droplet undergoing a tri-axial extensional flow. At t = 0, the flow inside the droplet
resembles the undisturbed external flow shown in figure 3(a). As the droplet deforms,
we start to see six saddle-like fixed points moving from the drop centre towards its
boundary, giving rise to the six circulation regions. For droplets with small deformations
(e.g. Ca → 0), this formation happens almost instantly. These circulation regions are very
similar to those observed inside a spherical droplet subjected to an external quadratic flow.

Although there are multiple ways to characterize mixing in fluids, one that is particularly
interesting in our case is the mixing number, introduced by Stone & Stone (2005).
This particular choice comes from the visual intuitiveness of such a parameter, and its
connection to the convective transport of a fluid region. This parameter was also shown
to be correlated (or inversely correlated) to other quantities such as entropy, intensity of
segregation, and other mixing quantifiers (Muradoglu & Stone 2005; Hoeijmakers et al.
2010; Gissinger et al. 2021; Roshchin & Patlazhan 2023). To illustrate the definition of
this metric, we focus on the classical example of an initially spherical droplet with passive
dye completely filling one of its hemispheres. This problem is illustrated in figure 10(b).
As time passes, the dye is advected with the same velocity as the flow inside the droplet.
As the dye is assumed to be non-diffusing, the sets Vdye, consisting of the dyed points,
and Vclear, consisting of the clear points, are disjoint. The mixing number is a measure of
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c(xk, t) = c0(Ψt
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Figure 10. Flow inside an initially spherical droplet subject to an external tri-axial extensional flow with
Ca = 0.1, λ = 1, a = 0.4 and H = 1. (a) The transient formation of six circulation regions inside the droplet.
(b) The details of the mixing simulations, including the regions Vdye (in black) and Vclear (in white) used in the
calculation of the mixing number. The final configuration is calculated by backtracing the centres of cells in a
Cartesian grid to their initial positions.

closeness between the two disjoint sets. In our specific case, we define it in the following
grid-independent form:

m(t) = 1
a2Vd

[∫
Vdye

d2(x, Vclear) dV +
∫

Vclear

d2(x, Vdye) dV

]
, (4.1)

where d2(x, A) = infy∈A d2(x, y) is the square of the distance between the point x and the
set A. The normalization factor a2 is used to make the mixing number non-dimensional
and to avoid an extra drop-size dependency in m(t). If the system is well mixed, then
the two sets become strongly intertwined and the mixing number approaches zero, hence
providing an inverse measure of mixing between the two sets.

In practical applications, as the nonlinear dynamics of the system must be solved
numerically, the implementation of (4.1) is performed in a coarser domain given by a
Cartesian grid formed by cubic cells of the same volume. Under these circumstances, the
mixing number is given by

m(t) ≈ 1
a2Ng

Ng∑
k=1

d2(xk, Opp(xk)), (4.2)

which is the same expression as in Stone & Stone (2005). Here, the summation is over the
grid cells, Ng is the total number of cells, xk is the midpoint of a cell k, and

Opp(x) =
{

Vdye, if x ∈ Vclear,
Vclear, if x ∈ Vdye,

(4.3)

where Vdye and Vclear are the coarse-grained versions of their continuous counterparts.
For a two-dimensional system, the definition of the mixing number (4.1) would be similar
but with areas instead of volumes. Its numerical counterpart (4.2), however, would remain
unaltered, with the exception that the Cartesian grid would now be two-dimensional.
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Dynamics and active mixing of a droplet in a Stokes trap

The regions Vdye and Vclear are determined by tracing the centre point of each cell to its
starting position and using the initial condition for dye concentration (see figure 10b).
This method is referred to as the backward Poincaré cell method (Wang et al. 2001)
and has been used in previous works to obtain graphical representations for the chaotic
mixing inside droplets. For incompressible flows, such a method yields more accurate
results for the mixing number when compared to forward propagation, as it consists
in a direct discretization of the final concentration profile obtained by the method of
characteristics for the advective transport equation (Roure & Davis 2021). Namely, if the
dye concentration c(x, t) undergoes a purely advective transport, with ∂c/∂t + u · ∇c = 0
and initial condition c0(x), then the concentration at a time t is given by c0(Ψ

−1
t (x)),

where Ψt is the time evolution of the dynamical system from a starting position at t = 0.
Note that forward propagation is still necessary to calculate quantities such as the mixing
entropy (Muradoglu & Stone 2005), which we do not explore in this work.

For calculation of both regular and backward trajectories, we use a second-order
Runge–Kutta scheme. The fluid velocity field inside the droplet at each time step is
calculated by the numerical evaluation of (2.4). To this end, the drop shapes and
potential densities for the relevant time steps are pre-calculated and stored by solving
the boundary-integral problem. To keep track of the points inside the droplet, we use an
indicator function

I(y) = 1
4π

∫
Sd

n(x) · (x − y)
‖x − y‖3 dSx, (4.4)

which is 1 for y ∈ Vd, and 0 for y /∈ Vd. For drop-surface discretization into flat mesh
triangles �, each triangle contribution to (4.4) is simply the signed area of the spherical
triangle obtained by projecting � onto the unit sphere centred at y, and this area is found
analytically from spherical trigonometry (as in Zinchenko & Davis 2013).

4.2. Mixing in deformable droplets
We now analyse how different flow modes may influence the mixing inside deformable
droplets. As we are considering the droplet to be neutrally buoyant and centred at z = 0,
the plane z = 0 is a two-dimensional invariant manifold for all the flow modes considered
in this paper. As the mixing in this two-dimensional submanifold often correlates with
overall three-dimensional mixing inside the droplet (Stone & Stone 2005), we focus our
mixing analysis on the cross-section z = 0.

One of the main consequences of drop deformation is the breaking of the kinematic
reversibility usually present in Stokes flows, which may improve the mixing inside
the droplet for specific cases. To illustrate the effects of irreversibility, we return to
the oscillatory flow problem discussed in § 3.1. For a perfectly spherical droplet (e.g.
Ca = 0), the linearity of Stokes equations implies that an oscillatory flow mode would
not produce any type of effective mixing inside the droplet. Instead, all points would
return to their initial position after one period. In contrast, for a deformable droplet, this
kinematic symmetry is broken by the drop deformation, meaning that a given material
point inside the droplet will display non-periodic dynamics, as illustrated in figure 11(a).
This symmetry breaking is similar to that observed in the relative trajectories of particles
leading to hydrodynamic dispersion (Cunha & Hinch 1996; Loewenberg & Hinch 1997;
Roure & Cunha 2018).

To better visualize the global effects of this symmetry breaking for the oscillatory
tri-axial extension flow mode, figure 11(b) shows a Poincaré section for three different
starting points inside the droplet at the z = 0 plane and t = 1.625, where the droplet shape
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Non-periodic motion

(a) (b)
C

A
B

Periodic

drop deformation

Figure 11. Symmetry breaking of kinematic reversibility caused by drop deformation. (a) A droplet with
a = 0.4, λ = 1 and Ca = 0.1 undergoing a periodic deformation caused by an external oscillatory tri-axial
extension flow. After one period, the material point presents a displacement from its initial position.
(b) A Poincaré section at z = 0 for three initial positions (A, B, C).

is approximately spherical and the drop displays a periodic motion. Each point in the
discrete trajectories shown in figure 11 corresponds to the material particle position after
one period of oscillation. The results in figure 11(b) show the existence of non-periodic
orbits, which are caused by drop deformation. From figure 11, we see that near the centre of
the droplet (i.e. away from the surface), the symmetry breaking is small, as indicated by the
points very close to each other. In contrast, near the surface, we observe a more noticeable
deviation from periodicity, as indicated by the presence of two attractor-like structures.
Due to the nature of our numerical method, it is hard to tell precisely if the Poincaré map
is spiralling down to an attractor or if the structure consists of quasi-periodic orbits. In
both cases, the breaking of periodicity is clear.

Although the breaking of the kinematic reversibility due to drop deformation may
potentially improve mixing locally, it alone does not guarantee a full mixing inside the
droplet, especially in the plane z = 0. For example, for the tri-axial extension mode,
as in the problem of a spherical droplet under a quadratic flow, the internal dynamics
is constrained to the six symmetry quadrants inside the droplet. One way to overcome
this issue and to induce a more effective mixing even in the midplane z = 0 is to use a
time-dependent combination of flow modes, which is, in fact, the main strategy used in
traditional microfluidic mixers. One such alternative would be the previously discussed
three-phase mode Qrotor discussed in § 3.3. Figure 12 shows numerical simulations of
mixing inside a droplet undergoing a three-phase extensional external flow mode for
a = 0.4, Ca = 0.1 and H = 1 for different times and different values of viscosity ratio
and frequencies. The number below each droplet is the mixing number m(t), calculated
using (4.2).

As in the example shown in figure 10(b), the droplet starts with black points in the
lower region and white points in the upper region. The final configuration of the points
is calculated by using the backward Poincaré cell method described in this section. One
immediate result, expected from the results found in Stone & Stone (2005), is that mixing
is more effective for less-viscous droplets. This result is indicated by the very small mixing
numbers and happens because the lower viscosity of the droplet results in a faster internal
advection.

Another important factor in the mixing induced by the three-phase extensional flow is
the frequency of the flow. Namely, for high frequencies such as ω = 6, we observe very
little overall mixing. However, for low frequencies (e.g. ω = 1.5), we observe a more
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t = 8.75 11.25 22.5 33.75

ω
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 6
ω

 =
 3

ω
 =

 1
.5

ω
 =

 3

0.1282 0.1335 0.0295 0.0309

0.0341 0.0223 0.0054 0.0052

0.0356 0.0070 0.0031 0.0028

0.0128

λ
 =

 0
.1

0.0041 0.0008 0.0007

λ
 =

 1

Figure 12. Numerical simulations of mixing inside a droplet undergoing a three-phase extensional flow for
a = 0.4, Ca = 0.1, H = 1 at different times for distinct values of viscosity ratio and frequency ω. The results
are for the midplane z = 0. The number below each droplet is the mixing number m(t), calculated using (4.2).
Droplets with a lower viscosity ratio present a better mixing, which is indicated by a smaller mixing number.

effective mixing even for λ = 1. The reason behind the better mixing effectiveness is
similar to the increase in effectiveness caused by lowering the viscosity ratio, namely the
interplay between internal circulation and drop rotation. For high values of ω, the droplet
rotates much faster than the time it takes for the internal flow to advect the passive dye.
For lower values of ω, internal advection happens faster than rotation, allowing for a more
effective mixing in a shorter time. Of course, for ω = 0, the inner flow becomes steady,
meaning that an effective mixing in the z = 0 plane is impossible. Hence there should be
an optimal value of ω to promote mixing.

As mentioned in the beginning of this subsection, drop deformation often plays
an important role in mixing. Although our results from figure 11 indicate that drop
deformation can potentially aid mixing inside the droplet by breaking the kinematic
reversibility of Stokes flow, earlier results by Muradoglu & Stone (2005) show an opposite
trend. In fact, in our system, we also observe situations where drop deformation slows
down mixing. As an example, figure 13 shows the results for numerical mixing simulations
of a droplet subject to a three-phase extensional flow with ω = 3, λ = 1, H = 1, a = 0.4
and Ca = 0.05. Comparing the mixing numbers with the result shown in the second row of
figure 12, we see that, like the results in Muradoglu & Stone (2005), a smaller Ca results
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t = 8.75

0.0291 0.0179 0.0056 0.0039

11.25 22.5 33.75
(a) (b) (c) (d )

Figure 13. Numerical simulations of mixing inside a droplet undergoing a three-phase extensional flow for
a = 0.4, Ca = 0.05, H = 1, ω = 3 and λ = 1 at different times. The results are for the midplane z = 0. The
number below each droplet is the mixing number m(t), calculated using (4.2).

t = 8.75

0.0231 0.0114 0.025 0.0008

11.25 22.5 33.75
(a) (b) (c) (d )

Figure 14. Numerical simulation of mixing inside a droplet for an external flow alternating between
three-phase extension and tri-axial extension modes for Ca = 0.1, λ = 1, H = 1 and ω = 3 for the midplane
z = 0. The number below each droplet is the mixing number m(t), calculated using (4.2).

in a better mixing – although the difference between the two cases is less pronounced
in our system. This result is characterized by the lower mixing numbers at most time
steps. Similarly to the effect of frequency on mixing, this improvement on mixing for
less-deformable droplets can be explained physically by an interplay between surface
deformation velocity and inner advection. For higher values of Ca, drop deformation
happens faster than inner advection, resulting in a less effective mixing at larger scales.
Hence, although drop deformation breaks the kinematic reversibility of the Stokes flow
inside the droplet, larger deformations can decrease mixing, as observed previously for
passive mixers in Muradoglu & Stone (2005).

Another way to combine the different modes to enhance active mixing is to alternate
between different modes, as is usually done in passive mixing (e.g. serpentine channels)
and in the investigation of Stone & Stone (2005), where a spherical droplet was
subjected to alternating uniform and shear flows. In our system, one possibility is to
alternate between three-phase extension mode and the tri-axial extension. To illustrate
this improvement, figure 14 shows numerical results for the mixing inside a droplet for
Ca = 0.1, λ = 1, ω = 3, and external flow given by

Q0(t) =
{

Qrotor, for t ≤ 2π/ω (mod 4π/ω),

Qtri, for t > 2π/ω (mod 4π/ω).
(4.5)

The results shown in figure 14 indicate that even for viscosity ratios of O(1), it is possible to
get a more effective mixing by alternating between equal periods of the two flow modes.
Besides the mixing simulations for the calculation of the mixing number, we included
animations of trajectories of multiple tracer particles for different modes that can be found
in the supplementary material.
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5. Concluding remarks

In this work, we investigated the motion of a droplet inside a six-branch Stokes trap. We
identified different flow modes related to both translation and stretching. The different
translating flow modes allow for the implementation of a linear control for drop position,
whereas the deformation modes allow for manipulation of drop shape. Different flow
modes can be used to perturb specific harmonics, and a combination of these flow
modes can produce non-symmetrical drop shapes – a feature that can be useful in
particle manufacturing processes. This complex drop deformation can be quantified by
a decomposition into spherical harmonics, which allow us to observe the drop response to
oscillatory and step-strain flow modes.

For small-deformation regimes such as droplets with small radii, we observed a linear
response of drop deformation to the applied flow field, characterized by a harmonic
response to oscillatory flows and linear mode superposition at small radii. When the
droplets experience a large deformation, this linearity is broken, which can be seen
by non-harmonic (and non-periodic) responses to oscillatory flows and the presence of
different harmonics when combining modes. The linear mode superposition found for
small droplets opens the possibility of using the Stokes trap, or other hydrodynamic traps,
to generate specific drop shapes. However, a different branch configuration would be
required to manipulate higher-order harmonics.

Moreover, we found that the combination of the different flow modes can be used to
perform active mixing inside the droplet. As an example, we obtained numerical results
for mixing inside a droplet under a transient three-phase extensional flow. As in previous
results in the literature, droplets with small viscosity ratio present more effective mixing.
However, it is possible to obtain a more efficient mixing inside more viscous droplets
with λ = 1 by lowering the rotation frequency and/or alternating between different flow
modes. We also found that smaller deformations (low Ca) and frequencies (low ω) can
increase mixing, at least within certain ranges. Our results indicate that a Stokes trap, as
for other particle trapping systems such as acoustic traps, can be used as an active mixer
in microfluidic applications.

Supplementary material. Supplementary movies are available at https://doi.org/10.1017/jfm.2024.289.
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