## ON REALISING MOD-2 HOMOLOGY CLASSES OF MANIFOLDS BY SUBMANIFOLDS

# by STAVROS PAPASTAVRIDIS (Received 20th September 1977)

#### 1. Statement of results

In his fundamental paper (3), Thom proved, among other things, that a mod-2 homology class of an *n*-dimensional, closed, compact,  $C^{\infty}$  manifold, which has dimension  $\leq n/2$ , can be realised by a submanifold, (see (3), Théorème II.1 and Corollaire II.13).

In this note we examine the question of realisability of mod-2 homology classes of the next higher dimension.

Throughout this note "manifold" will mean "closed, compact,  $C^{\infty}$  manifold".

From now on, M will be an (2n + 1)-dimensional manifold,  $z \in H_{n+1}(M; Z_2)$  will be an (n + 1)-dimensional mod-2 homology class, and  $u \in H^n(M; Z_2)$  its dual cohomology class.

Our main results are the following.

**Theorem 1.** If n is of the form  $2^r - 1$ , then z is always realisable by a submanifold.

**Theorem 2.** Let n be an odd number not of the form  $(2^r - 1)$ . Then z can be realised by a submanifold, if and only if

- (i)  $u \cdot \operatorname{Sq}^1 u + \operatorname{Sq}^n \operatorname{Sq}^1 u = 0$ , or
- (ii) at least one of the Wu classes  $v_{n-1}, v_{n-3}, \ldots, v_{n-2'+1}, \ldots, of M$ , is non-zero.

**Remark.** The *i*-dimensional Wu class of M, can be defined by the property  $Sq^ix = v_i \cdot x$ , where  $x \in H^*(M; Z_2)$   $v_i \in H^i(M; Z_2)$  and  $deg(Sq^ix) = \dim M$ , (see (1), p. 39).

**Theorem 3.** If n is an odd number not of the form  $2^r - 1$ , then there is an (2n + 1)-dimensional, (n - 1)-connected manifold M, which has an (n + 1)-dimensional mod-2 homology class, which cannot be realised by a submanifold.

**Theorem 4.** If n is an even number and M is orientable, then all mod-2, (n+1)-dimensional homology classes of M, can be realised by submanifolds.

### 2. Proof of Theorems 1, 2, 3, 4

Our results depend heavily on P. J. Ledden's paper (2).

Let MO(n) be the Thom space of the universal *n*-linear bundle. Then, (following Ledden's notation) there a product of  $K(Z_2)$ 's  $\overline{K}$  and a map  $\overline{F}: MO(n) \to \overline{K}$  which induces an isomorphism in mod-2 cohomology, up to dimension 2n. Ledden computes the first Postnikov invariant of the map  $\overline{F}$ , let us call it  $\theta$ .

Specifically he finds the results stated here as Lemmas 5, 6 and 7.

**Lemma 5.** If 
$$n = 2^{r+1} - 1$$
, then  $\theta = 0$ , (see (2), Lemma 2).

**Lemma 6.** If n is odd and 
$$2^r < n < 2^{r+1} - 1$$
, then
$$\theta = \epsilon_0 \operatorname{Sq}^1 \epsilon_0 + \operatorname{Sq}^n \operatorname{Sq}^1 \epsilon_0 + \operatorname{Sq}^{n-1} \epsilon_1 + \operatorname{Sq}^{n-3} \epsilon_2 + \cdots \operatorname{Sq}^{n-2^{r+1}} \epsilon_r.$$

The  $\epsilon_i$ 's are fundamental classes of factors of  $\overline{K}$ , such that deg  $\epsilon_i = 2^r + n$  if  $i \ge 1$  and  $\epsilon_0 =$  the Thom class of MO(n). For details on the  $\epsilon_i$ 's see (2), and particularly Lemma 2.

**Lemma 7.** If n is even then  $\theta \in H^{2n+1}(\bar{K}; Z)$  is a class of finite order, (see (2), Lemma 2').

**Lemma 8.** The homology class z is realisable by a submanifold if and only if there is a map  $f: M \to \overline{K}$  such that  $f^*(\epsilon_0) = u$  and  $f^*(\theta) = 0$ .

**Proof.** Obvious by Théorème II.1 of (3) and the fact that  $\theta$  is the appropriate Postnikov invariant.

**Proof of Theorem 1.** Since  $\epsilon_0$  is the fundamental class of a factor of  $\vec{K}$ , there is a map  $f: M \to \vec{K}$  such that  $f^*(\epsilon_0) = u$ . Because  $\theta = 0$  (by Lemma 5) the conditions of Lemma 8 are satisfied, and the result follows.

**Proof of Theorem 2.** First we prove necessity. Let us assume that the class z can be realised by a submanifold. Then from Lemmas 8 and 6, there is a map  $f: M \to \overline{K}$  such that  $u \operatorname{Sq}^1 u + \operatorname{Sq}^n \operatorname{Sq}^1 u + \operatorname{Sq}^{n-1} f^*(\epsilon_1) + \operatorname{Sq}^{n-3} f^*(\epsilon_2) + \cdots + \operatorname{Sq}^{n-2^{r+1}} f^*(\epsilon_r) = 0$ . But this means that either  $u \operatorname{Sq}^1 u + \operatorname{Sq}^n \operatorname{Sq}^1 u = 0$ , or that at least one of the terms  $\operatorname{Sq}^{n-2^{i+1}} f^*(\epsilon_i)$  is non zero, for  $i=1,2,\ldots,r$ . But this last condition implies that one of the  $v_{n-2}i_{+1}$ 's of M is non zero.

Proof of sufficiency. The key remark in order to prove sufficiency, is that a map  $f: M \to \overline{K}$  can be defined, such that  $f^*(\epsilon_0) = u$  and the  $f^*(\epsilon_1)$ ,  $f^*(\epsilon_2)$ , ...,  $f^*(\epsilon_r)$  have any preassigned values. That ends the proof.

**Proof of Theorem 4.** It is exactly the same as Theorem 1. By Lemma 7, for any map  $f: M \to \overline{K}$ ,  $f^*(\theta) = 0$  because  $H^{2n+1}(M; Z) = Z$  and  $\theta$  has finite order.

**Lemma 9.** If n is odd, then there is an (2n + 1)-dimensional, (n - 1)-connected manifold M, such that  $H_n(M; Z) = Z_2$ .

**Proof.** We consider the Stiefel manifold,  $V_{n+2,2} = O(n+2)/O(n)$ , which is the

space of all orthonormal 2-frames in  $\mathbb{R}^{n+2}$ . It is well-known, that  $V_{n+2,2}$  is (n-1)-connected, and that if n is odd then  $\pi_n(V_{n+2,2}) = Z_2$ . That ends the proof, because  $V_{n+2,2}$  is (2n+1)-dimensional.

Lemma 10. Let n > 1 and let M be an (n-1)-connected, (2n+1)-dimensional manifold, such that  $H_n(M; Z) = Z_2$ . Then  $H^n(M; Z_2) = Z_2$ , and if x is the generator of  $H^n(M; Z_2)$  then  $x \cdot \operatorname{Sq}^1 x \neq O$ .

**Proof.** By the Universal coefficient theorem and Poincare duality we have:

$$H^{n}(M; Z) = H^{n+1}(M; Z) = O$$
 so  $H^{n}(M; Z_{2}) = Z_{2}$  and  $H^{n+1}(M; Z_{2}) = Z_{2}$ .

Next we consider the long exact sequence in cohomology of M, induced by the short exact sequence  $O \to Z \xrightarrow{2} Z \to Z_2 \to O$ . From this we get easily that the Bockstein operator  $b_2: H^n(M; Z_2) \to H^{n+1}(M; Z)$  is an isomorphism and so, by the previous calculations  $Sq^1: H^n(M; Z_2) \to H^{n+1}(M; Z_2) = Z_2$  is an isomorphism. Because of Poincare duality  $x \cdot Sq^1x \neq O$ .

**Proof of Theorem 3.** Let M be a manifold with the specifications of Lemma 9. Then since it is (n-1)-connected we must have  $v_{n-1}, v_{n-3}, \ldots, v_{n-2'+1}, \ldots = O$ . For the same reason  $\operatorname{Sq}^n \operatorname{Sq}^1 x = O$ , because  $\operatorname{Sq}^n$  decomposes. So by the previous Lemma and Theorem 2, the result follows.

#### REFERENCES

- (1) E. Brown and F. Peterson, Relations among characteristic classes I, Topology 3 (Supplement 1) (1964), 39-52.
- (2) P. J. LEDDEN, Nonstable homotopy groups of Thom complexes, *Proc. Amer. Math. Soc.* 29 (1971), 404-410.
- (3) R. THOM, Quelques propriétès globales des variétés différentiables, *Comm. Math. Helv.* 28 (1954), 17-86.

University of Athens Mathematical Institute Solonos 57 Athens 143 Greece