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ABSTRACT

A method is introduced for testing the distribution of yield curves that are
produced by asset scenario generators. The method is based on historical rela-
tionships in the conditional distributions of yield spreads given the short-term
rate. As an illustration, this method is used to test a few selected models. To
provide background, stochastic modeling for interest rates and fitting methods
are briefly discussed.
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Property-liability insurers are looking to financial modeling to address the risk
from assets, liabilities and current underwriting results, and often other sources
as well. Models combine asset outcomes with liability development and under-
writing returns to give a risk profile of the company. The asset models typi-
cally generate a large variety of scenarios, ideally each according to its proba-
bility of occurrence, which are applied to the asset portfolio to measure the
distribution of asset returns.

Although a useful and general approach in theory, such a model might not
capture the full range of economic outcomes, or it could over-weight the proba-
bilities of some occurrences that are in fact not all that likely to happen. Thus
a significant risk to this methodology is generating an unrealistic distribution
of financial events. This paper looks at evaluating interest rate generators by
testing, at selected time periods, the distributions of the yield curves they pro-
duce. This would help verify that the scenarios show up in the model some-
what in proportion to their actual probability of occurrence.

One approach to the modeling of interest rates is to first fit the dynamics
of the short-term rate, and then use the probabilities of its future changes to
build up the yield curve. The fit is evaluated primarily on how well it captures
the short-term rate’s dynamics. Some methods for evaluating the yield curves
so created have been identified. For instance, Dai and Singleton (2000) evaluate
a class of interest rate models called “affine models” by their impacts on the
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yield curves they produce. Some of these criteria are specific to affine models,
such as the correlations between factors, but some, like how well a model repli-
cates pricing of selected derivatives, are more general and could be used to
test any scenario generator.

Backus, Telmer and Wu (1999) expose several facts about the properties of
US Treasury yield curves since 1970 and use these to test generated scenarios.
Some of the properties they present characterize the shape of the yield curve,
which is related to the yield spreads discussed here. They also find strongly
autoregressive behavior for both the yields and the residuals of fits of the
yields to simple autoregressive models, and they look at how well models can
replicate derivative prices. Their tests are not particular to the affine class of
models, so the scenarios generated by any model can be tested by the proper-
ties identified.

In a more actuarial vein, Cairns (2003) details some features of historical
interest rate data to provide a basis for testing models for actuarial applications.
Some of the features he identifies include:

• Short and long-term interest rates are highly correlated in the medium and
long term

• They are still correlated, but to a lesser extent in the short term
• Short-term interest rates are more volatile 
• Short and long-term interest rates have sustained periods of high and low

rates.

From his review he recommends that models meet certain criteria, such as:

• The model should be arbitrage-free and show the features noted
• All interest rates should be positive and all rates should be able to take values

arbitrarily close to zero (even if with small probability)
• Interest rates should be mean reverting.

The tests in these papers give a number of criteria for evaluating interest rate
models. However there is still another criterion of use for actuarial applications,
namely the distribution of the generated yield curves at key target time points,
say at the ends of the next few years. Interest rate models in other areas of
finance tend to be used to price derivatives, so they are evaluated on how well
they can match such prices and the movements of interest rates. Insurer models
are often focused on joint asset and loss risks, including the risks inherent in
holding various loss/asset mixtures for a period of time, and so to actuaries real-
istic distributions of ending yield curves could be of more direct concern than
option prices. Historical data and a methodology for testing models on such
distributions are discussed below.

Other actuarial applications of interest rate generators include pricing of
imbedded options and testing investment strategies. The former would need a
generator that is good on option pricing, and the latter would be sensitive
to the dynamics of yield movements. Thus all the cited tests could be important
to actuarial modeling. The incorporation of asset scenarios in broader risk mod-
els is somewhat unique, however, in that an important issue is the distribution
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across scenarios of the yield curves. Pricing of derivatives looks at the outcome
of the derivative across multiple scenarios, but in the risk-neutral measure. The
tests proposed below on distributions across scenarios are more specific to
building insurer risk models.

1. MODELS OF INTEREST RATES

The primary focus here is on arbitrage-free models of interest rates. The tests
on the yield curve distributions, however, can be used on any model that gen-
erates yield curve scenarios. Interest rates are further assumed to be default free.
Modeling default probabilities adds a degree of complexity that is not addressed
here.

Modeling interest rates is a rapidly developing field. A standard textbook
is Rebonato (2000) but a more contemporary treatment is provided by James
and Webber (2002). They make the point that the purpose of this modeling,
especially insofar as it is published, is not to predict interest rates but rather to
describe distributional properties of interest rate movements. Typical applica-
tions include option pricing and risk management.

James and Webber discuss a number of different approaches to modeling
interest rates, and some of these generate arbitrage-free interest rate scenarios.
The method illustrated below models the short-term interest rate, denoted by r,
directly, and uses the implied behavior of r, along with market considerations,
to infer the behavior of longer-term rates. For these models, r is usually treated
as a continuously fluctuating process, but jump components are being built into
some models, e.g., see Zhou (2001), Das and Foresi (1996), Johannes (2003).

Another popular approach, following Heath, Jarrow and Morton (1992),
models the forward rate curve rather than the short-term rate. The forward rate
ft(T1,T2) is the continuously compounded rate at time t for borrowing at time
T1 and repaying at time T2. Forward rate models are also called whole yield
curve models, as modeling all the forward rates is equivalent to modeling the
yield curve.

The most common financial models for continuous processes are based
on Brownian motion. A Brownian motion has a simple definition in terms of
the probabilities of outcomes over time: the change in r between time zero and
time t is normally distributed with mean zero and variance s2t for some s. In
differential notation, the instantaneous change in r is expressed as dr = sdZ.
Here Z represents a standard Brownian motion (that is, s = 1), and so its vari-
ance after a time period of length t is just t. If r also has a drift (i.e., a trend)
of at during time t, the process could be expressed as dr = adt + sdZ.

Rebonato gives several examples of whole yield curve models. If you denote
by P(t,T) the price of a bond at time t that pays 1 at time T, and rt is the short
rate at time t, this kind of model can be expressed by:

dP(t,T) = rtP(t,T)dt + v(t,T,P(t,T))dZ, where v is a volatility function (1)

By specifying v the current yield curve can be matched, and then its future
dynamics can be generated. Rebonato shows that you can produce forward
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rates with different volatilities if you express v using a deterministic function
u (t,T) of time by:

v (t,T,P) = P(t,T) ln (P(t,T))u (t,T) – ∫t
Tln (P(t,s))∂u (t,s) /∂sds

The function u makes this somewhat complicated. Short rate models tend to
be simpler. Cox, Ingersoll and Ross (1985) provide a model of the motion of
the short-term rate that has been widely studied. In the CIR model, r follows
the following process:

dr = a (b – r)dt + sr1/2dZ (2)

Here b is the level of mean reversion. If r is above b, then the trend compo-
nent is negative, and if r is below b it is positive. Thus the trend is always
towards b. The speed of this mean reversion is expressed by a. Note that the
volatility depends on r itself, so higher short-term rates would be associated
with higher volatility. Also, if r = 0 there is no volatility, so the trend takes over.
With r = 0 the trend would be positive, so r would move to a positive value.
The mean reversion combined with rate-dependent volatility thus prevents nega-
tive interest rates.

If this model were discretized it could be written:

rt – rt – 1 = a (b – rt – 1) + srt – 1
1/2et, where et, is a standard normal residual.

This is a fairly standard autoregressive model, so the CIR model can be consi-
dered a continuous analogue of an autoregressive model.

Some other models of the short rate differ from CIR only in the power of r
in the dZ term. The Vasicek model takes the power to be zero. Another choice
is taking a power of unity.

Multi-factor models of the short rate make some of the parameters of the
stochastic process themselves stochastic. For instance the reverting mean or the
volatility scalar could change over time. These models can overcome some of
the limitations of the Gaussian assumptions. Both heavier tails and higher
long-term autocorrelation of interest rates can be produced by multi-factor
models than by simple Brownian motion.

For example, constant mean reversion is problematic. The short rate some-
times seems to gravitate towards a temporary mean for a while, then shift and
revert towards some other. One way to account for this is to let the local mean
reversion level b in equation (1) itself be stochastic. This can be done by adding
a second stochastic equation to the model:

db = j (q – b)dt + wb1/2dZ1

Here Z1 is a second, independent standard Brownian motion, and so b follows
a mean reverting process gravitating towards q. Again different models can be
produced by taking different powers for b in the stochastic term. Such two
factor models are popular in actuarial literature. For instance, Hibbert, Mow-
bray and Turnbull (2001) use a two factor generalization of the Vasicek model
with b and r both to the zero power, so they drop out of the dZ terms.
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The volatility s can also be stochastic. Hull and White (1987) consider such
a model.

Combining stochastic volatility and stochastic mean reversion, Andersen
and Lund (1997) and (1998) explore the model:

dr = a (b – r)dt + srkdZ1 k > 0
dln s2 = c(p – ln s2)dt + vdZ2
db = j(q – b)dt + wb1/2dZ3

The AL model uses three independent standard Brownian motion processes,
Z1, Z2, and Z3. The volatility parameter s2 now also varies over time, but via
a mean reverting geometric Brownian motion process (i.e., Brownian motion
on the log). In total there are eight parameters: a, c, j, k, p, q, v, and w and
three varying factors r, b, and s. It is thus labeled a three-factor model. The
power k on r in the stochastic term is a parameter that can be estimated.

Models of the short rate can be used to generate yield curves by their fore-
casted future behavior. However this requires an additional feature – the market
price of risk. It turns out that the Brownian motion processes defining single
or multi-factor short rate models can be adjusted for the market price of risk
by changing their drift terms. Then bonds can be priced using the probabilities
of the future evolution of the adjusted process, which is called the risk-neutral
process. This is discussed in more detail below.

An important class of short rate models is the affine models. In any Brownian
motion model of the short rate, the drift and squared-volatility of dr are func-
tions of time and the short rate itself. Rebonato defines affine models as those
where these functions (in the risk-neutral measure) are linear in r – but not nec-
essarily in time. A primary result is that then the yield curve can be derived
directly from the bond price function:

P(t,T) = exp[A(t,T) – B(t,T)rt] for deterministic functions A and B

Dai and Singleton study multi-factor affine models and identify a sub-class that
is optimal in matching actual yield processes. AL is not affine, however, due
to the log form of the diffusion equation for the volatility s2.

Other processes besides Brownian motion can be used for the movements
of r and for the other factors. Processes with jumps could be used, for exam-
ple. The normally distributed tail of Brownian motion seems too light in
practice, and heavier-tailed processes are being studied. For instance, Raible
(2000) looks at modeling the yield curve with Levy processes. The autocorre-
lation of interest rates drops off more slowly than Brownian motion would
support. This and similar time series issues have led some authors to look at
fractal approaches, such as fractional Brownian motion. E.g., Lantsman and
Major (2001) find that multi-factor Brownian motion models like AL can cap-
ture some but not all of the fractal-like features of interest rate series. In fact
they find that in a long simulation AL displays fractal-like behavior, but actual
US treasury rates follow a more complex multi-fractal pattern. Multi-fractal
models are still being studied to find practical methods for arbitrage-free appli-
cation.
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2. DYNAMICS OF SHORT-TERM RATES – FITTING AND EMPIRICAL FINDINGS

Estimation of model parameters should be distinguished from calibration to
current states. The permanent parameters of the models for real world rather
than risk-neutral dynamics are estimated from historical data, whereas the
variable factors are re-calibrated to current yield curves to capture the latest
market conditions. A bond trader would usually calibrate to derivative prices,
but matching the current yields might suffice for actuarial risk modeling.

Multi-factor Brownian motion models can be difficult to estimate. Some
single-factor models, such as CIR, can be can be integrated out to form a time
series, which can be estimated by maximum likelihood. In the case of CIR, the
conditional distribution of the short rate at time t + T given the rate at time t
follows a non-central chi-squared distribution:

f (rt +T|rt) = ce – u – v(v/u)q /2Iq(2(uv)1/2), where
c = 2as–2/ (1 – e–aT), q = – 1 + 2abs–2, u = crt e–aT, v = crt+T and Iq can be expressed
by Iq(2z) = k 0=

z k q23 +! / [k!(q+k)!] with factorial off integers defined by the gamma
function

This is not usually possible for multi-factor models, where the volatility and
other factors can change stochastically. Further, the short-term rate is observed,
or is closely related to observed rates for very short terms, but the other factors,
like the reverting mean and the volatility scalar, are not typically observed.
Thus fitting techniques that match models to data will not be applicable for
these factors.

A few fitting techniques have been developed for stochastic processes. The
general topic of what these techniques are and how they work is beyond the
scope of this paper, but one method that has been used successfully – the effi-
cient method of moments (EMM) – is briefly discussed below. An alternative
not discussed further here is quasi-maximum likelihood, which applies MLE
to estimates of the unobserved factors, perhaps made by smoothing methods.
EMM and a related method SMM, the simulated method of moments, are
discussed in James and Webber (2002).

EMM is a special case of GMM, the generalized method of moments.
A generalized moment is any quantity that can be averaged over a data set, such
as (3/x)ln x. GMM fits a model by matching a selection of generalized moments
of the model to the data. In fact, MLE is a case of GMM as well, since it
matches the scores of the log-likelihood function (the first partial derivatives
of the log-likelihood function with respect to each model parameter) to the the-
oretical value of zero. EMM is a particular choice of generalized moments that
has some favorable statistical properties when used to fit stochastic models.
EMM for a particular data set starts by finding the best time series model,
called the auxiliary model, that can be fit to that data. This might be a GARCH
model, for example. The auxiliary model is fit by maximum likelihood, so the
scores of that model will be zero when calculated over the data set.

The parameters of the multi-factor Brownian motion model are then found
by an iterative search procedure. For a trial set of parameters, a long time series
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is simulated from the model. The auxiliary model is then tested to see how
well it fits this generated time series. The test is based on evaluating the score
functions from the MLE estimates of the auxiliary model on the generated
series. Usually the scores will not be zero, because the parameters of the auxi-
liary model were fit to the actual series not the generated series. But the para-
meters of the multi-factor model can be iterated until a weighted squared error
function of the scores of the generated data is minimized. The score functions
of the auxiliary model can thus be viewed as generalized moments, which are
all zero when calculated on the actual data and are as close to zero as possi-
ble when calculated on the generated data from the optimized parameters.

The result of this technique is a parameterized stochastic model whose sim-
ulated values have all the same dynamics as the data, as far as anybody can
tell by fitting time-series models to both. Then the modeled factors (starting
values for the short rate, volatility, reverting mean, etc.) can be calibrated to
current economic conditions for simulating future scenarios.

Anderson and Lund (1998) did an empirical study of short-term rate dynam-
ics by EMM-fitting their above model to four decades of US Treasury notes,
incorporating data from the 1950’s through the 1990’s. Their results provide an
empirical background to evaluate other models as well.

AL estimate k as about 0.55, which supports the power of † in the CIR
model. In fact the AL model with this parameter is close to the CIR model at
any instant of time, but makes the CIR parameters subject to change over
time. Other models with k = 0 or k > 1 appear to be implausible given this
result.

The period October 1979 – September 1982 had high rates and high volatil-
ity, and studies influenced by this period have found the power of † on r too
low, e.g., Chan, Karolyi, Longstaff, and Sanders 1992 who use data from 1964
through 1989.There has been some debate about whether or not to exclude
79-82 in fitting models. These results happened, so they can happen, but it was
an unusual confluence of conditions not likely to be repeated. By taking a
longer period which incorporates this interval AL do not exclude it but reduce
its influence. Another approach by Bliss and Smith (1998), finds that 79-82 fits
the definition of regime shift. With separate parameters for that period they
find that models that have k between † and 1 are supported for other periods.

One of the conclusions of Dai and Singleton is: “…consistent with the
analysis of a central tendency factor in Andersen and Lund (1998) and Bal-
duzzi et al. (1996), we find that the short rate tends to mean-revert relatively
quickly to a factor that itself has a relatively slow rate of mean reversion to
its own constant long-run mean.” In the AL model, the speed of mean rever-
sion of the short rate is given by the parameter a, and for the reverting mean
by j. These are estimated as 2.72 and 0.13, respectively. The higher factor will
make the drift towards the mean higher, which is interpreted as a greater speed
of mean reversion. The relative sizes of these parameters is apparently consis-
tent across a number of models.

All parameters in the AL model were statistically significant. This implies
that dependence of the volatility on r is not enough to capture the changes in
volatility of interest rates – stochastic volatility is also needed. There have been
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periods of high volatility with low interest rates, for example. Thus the one and
two-factor models without stochastic volatility appear to be insufficient to cap-
ture US treasury rate dynamics.

3. GENERATING YIELD CURVES

The modeled dynamics of the short rate can produce implied yield curves. This
is done by modeling the prices of zero-coupon bonds with different maturities,
from which the implied interest rates can be backed out. P(T), the current
(time 0) price of a bond paying $1 at maturity T, can be calculated as the
risk adjusted discounted expected value of $1 using the continuously evolving
interest rate r from the short-term model. Here “expected value” indicates that
the discounted mean is calculated over all possible paths for r. This can be
expressed as:

P(T) = E*[exp(– ∫0
Trtdt)],

where rt is the interest rate at time t, the integral is over the time period 0 to
T, and E* is the risk-adjusted (risk-neutral) expected value of the discounted
value over all paths r can take.

If E were not risk adjusted, the expectation that gives P(T) could be approx-
imated by simulating the r process to time T over small increments and then
discounting back over each increment. The risk-adjusted expected value is
obtained instead by using a risk-adjusted process to simulate the r’s. This
process is like the original process except that it is adjusted to generate higher
r’s over time. These higher rates usually produce an upward-sloping yield curve.

What is the risk adjusted process for r needed to so generate the yield
curves? If the price at time t for a bond maturing at time T is a Brownian
motion with drift u and volatility v, i.e.,

dP(t,T) = u(t,T)dt + v (t,T)dZ

then it can be shown (Vasicek (1977)) that arbitrage-free pricing requires the
drift u to be a function of the risk-free rate r, the volatility v and a quantity l
called the market price of risk, with:

u(t,T) = rP(t,T) + l(t,r)v (t,T)

Thus the value of the bond grows at the risk-free rate plus a mean zero sto-
chastic term v(t,T)dZ plus a risk premium given by the product of the bond’s
volatility with the market price of risk. The market price of risk l(t,r) does not
depend on the maturity date T, but it could depend on the interest rate r and
the current time t.

Thus the market price of risk in the bond price process is the link that
specifies the risk-adjustment to the interest rate process for generating the bond
prices as the discounted expected value. It turns out that to do this, only the
drift of the interest rate process needs to be risk-adjusted, and this adjust-
ment is to add the market price of risk times a function of the volatility of the
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interest rate process. For instance, AL suggest using the following adjusted
process to simulate the interest rates in the bond price calculation:

dr = a (b – r + l1rs)dt + srkdZ1 k > 0
dln s2 = c(p – ln s2)dt + vdZ2
db = j (q – b + l3b)dt + wb1/2dZ3

This adds risk-premium terms to the drift of the first and third equations
but not the second, as AL feel there is little price effect of stochastic volatil-
ity. The risk-price factors l1 and l3 can be calibrated to the current yield curve
along with r, s, and b. These factors do not depend on T, so are held constant
throughout any simulated yield curve calculation, but they can change sto-
chastically when a new yield curve is calculated from a new time 0.

In the AL model you have to simulate the dynamics of the risk-adjusted
process to get the yield curves. However, in the case of the CIR model, a closed
form solution exists which simplifies the calculation. The yield rate for a zero
coupon bond of maturity T is given by:

Y(T) = A(T) + rB(T) where:

A(T) = –2(ab /s2T) lnC(T) – 2aby /s2

B(T) = [1 – C(T)] /yT
C(T) = (1 + xyeT/x – xy) –1

x = [(a – l)2 + 2s2]–1/2

y = (a – l + 1/x) /2

Note that the only occurrence of r is in the Y equation, so Y is a linear func-
tion of r – but not of course of T. The linearity will come into play when we
look at the distribution of Y across the generated scenarios. Since all the yield
rates for different maturities are linear functions of r, they will also be linear
functions of each other.

4. HISTORICAL DISTRIBUTIONS OF YIELD CURVES

To develop tests of distributions of yield curves, it is necessary to find some
properties of these distributions which remain fairly constant over time. As it
is difficult to describe properties of the distribution of the entire curve, which
is multi-variate, the focus will be on the univariate distributions of selected yield
spreads, i.e., the differences between yields.

For a property to test the models against, however, the historical distribu-
tion of a given yield spread is not necessarily all that germane. When short-
term rates are high, the yield curve tends to get compressed or even inverted,
so spreads get low or even negative, and when the short rates are low the
spreads then to be higher. Thus the yield spread distributions vary as a func-
tion of the short rate. So the conditional distribution of yield spreads given the
short rate could be expected to be more consistent than the unconditional dis-
tributions of yield spreads. This is supported in the data, although the condi-
tional distributions themselves do change in certain ways over time.
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FIGURE 1: Three Month Rate (R3M) and Three Year to Ten Year Spread (R103)

Figure 1 displays a history of the US Treasury 3-month rate and the spread
of the 3-year rate to the 10-year rate (10-year rate less 3-year rate). An inverse
relationship is seen, as would be expected given the greater stability of the
longer rates. However, the spread itself is more stable than the short rate. Thus
the relationship between them will depend on whether the short rate is higher
or lower. This period is divided into five sub-periods, which were selected to
maintain somewhat consistent relationships between the spread and the short-
term rate in each period. From the 60’s to the early 80’s, the short-term rates
increased (sub-periods 1-3), then came back down after that (4 and 5).

Figure 2 shows the spread as a function of the three-month rate. Each sub-
period shows a negative slope, with the slopes in the range of –0.2 to –0.3.
For the entire period, there still seems to be a negative relationship between the
short-term rate and the spread, but the slope is much flatter than for the indi-
vidual periods. The different levels of the lines in the five periods suggests that
interest rates follow somewhat different processes in each period. This sup-
ports the use of multi-factor or perhaps regime swapping models.

Within each period it appears that for a given short-term rate, the yield
spreads tend to gather near the trend line at that rate, with a degree of disper-
sion around the line. The different yield spreads observed during each period
could thus be regarded as random draws from a conditional distribution with
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FIGURE 2: Three Year to Ten Year Spread (R103) vs. Three Month Rate (R3M)

mean equal to a fixed linear function of the short rate. This behavior suggests
that the distribution of yield spreads across scenarios of interest rates generated
for a horizon of a few years should follow a similar distribution. The different
short rates generated would have a range of yield spreads associated with them,
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FIGURE 3: Three Year to Five Year Spread (R53) vs. Three Month Rate (R3M)
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but these would be centered around a linear function of the short rate, with a
fair amount of spread around a slope in the range of –0.2 to –0.3. A model
could be tested by graphing the scenarios it generated to see if they are gen-
erally consistent with this pattern. It would not be appropriate to use the
conditional distribution from the entire period as a test of a scenario generator,
since for a several-year period the steeper slopes as in the historical sub-periods
would be more likely to prevail.

The three-year to five-year spreads in Figure 3 have slopes about half of
those in the 10-3 case, except for the latest period, which is even flatter. The
short-term rates in the last period have stayed in a fairly narrow range, however,
making it harder to estimate the slope. In any case, it would seem that models
producing a somewhat flatter slope in the near future would be consistent with
the recent experience. The one to three-year spreads in Figure 4 are a little dif-
ferent: the trend was steeper than –0.2 in the 60’s and 70’s, near –0.11 in the
80’s to mid-90’s, and close to zero in the last period.

5. TESTING MODELS AGAINST HISTORICAL DISTRIBUTIONS

Within each of the five historical time periods the conditional distribution of
yield spreads given the short rate appears to be a scattering around a negative-
sloping line. This feature could be used to test the distribution of yield curves
at a point in time across scenarios generated by a stochastic generator. Basi-
cally this test would be to see if the distribution of generated yield spreads
follows a similar pattern. This is not a test of how individual scenarios progress
over time, although it would be important to test that as well, using some of
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FIGURE 4: One Year to Three Year Spread (R31) vs. Three Month Rate (R3M)
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the methods referenced above. This is more of an eyeball test, like a QQ plot,
than a strict statistical test of rejection by probability level.

If long-term scenarios are needed, the scenarios could be tested to see if they
produce different periods with similar slopes but different intercepts, as in the
historical data. However the test proposed here is to look at a single time
period and test the distribution across scenarios. The historical time series
observations are not independent of each other, but the relationships identi-
fied above within each period have ignored the time dimension. Thus they can
be thought of as a resampling of the historical data. It seems reasonable to
require that the scenarios generated have a similar distribution of yield spreads
as the resampled historical data. For a fairly short-term projection, the con-
ditional distribution of the spreads given the short rate should be similar to
the latest observed period. For longer projections there is the chance of mov-
ing into another regime, and so the spreads would be expected to look like the
combination of a couple of periods, which would have a flatter slope.

In this section three models will be tested under a short-term projection as
an illustration of this procedure. Two are extensions of the Anderson Lund
specification for the short-term rate generator, differing in the treatment of the
market price of risk. The third is the CIR model.

The market price of risk has, at all times, to be independent of the bond
maturity to guarantee arbitrage-free dynamics. But it can change stochasti-
cally when generating scenarios for the yields at another time period. Allow-
ing the market price of risk to change stochastically produces somewhat more
variability among the yield curves generated. In one model, the constant lambda
model, the two AL market price of risk parameters l1 and l3 are held constant
across all simulations. In the variable lambda model, on the other hand,
stochastic changes in l1 and l3 are generated from one period to the next. How
best to do that is a subject of ongoing research. The variable lambda model
tested here is one of many possible models of this type and has not been opti-
mized for this test. In fact the testing below suggests that it probably introduces
a bit too much variability into the market-price of risk.

The market price of risk parameters, as well as the current values of the
three factors r, b, and s can be calibrated to the current yield curve to get start-
ing values for scenario generation. For this example, a yield curve from May
2001 was used for calibration. Parameters were selected to generate a current
yield curve that most closely matches the selected target curve. Then yield
curves were simulated at various projected periods. For periods in the near
future, the curves would not be expected to be too different from the current
curves. But going out a few years produces a wider variety of yield curve
scenarios. In this case the sets of curves generated for year end 2004 are used
in the distributional tests. This seems like a long enough projection period to
expect to see the kind of variability that exists within the five individual periods
historically.

Models can be tested for the conditional distributions of all of the yield spreads.
First examined is the three-year to five-year spread. Recall that the slope for
this was about –0.05 in the latest period, but ranged from –0.11 to –0.16 in ear-
lier segments. Figures 5 and 6 show the relationship for the simulated spreads
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under the two Anderson-Lund-based models. The constant lambda model
shows a slope of about –0.09, vs. –0.1 for the variable lambda, which are both
in the historical range. There is a difference apparent in the scattering around
the trend line, with the constant lambda model showing little scattering, and
the variable lambda showing a good deal more, which is more compatible with
the historical data.
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FIGURE 5: Three to Five Year Spread (R53) from Constant Lambda Model
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FIGURE 6: Three to Five Year Spread (R53) from Variable Lambda Model
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For the CIR model it was shown above that any yield spread is a linear func-
tion of the three-month rate. Although this model does have a fair amount of
flexibility in determining the slope of that relationship, there will be no vari-
ability possible around the trend line. Graphically this would look narrow like
the constant lambda case, only more so, with all points falling exactly on the
trend line. This suggests that the CIR model will necessarily produce a restricted
set of yield curve scenarios, and these will not have all the variability present
in historical yield curves. Thus yield curve scenarios will not be present in pro-
portion to their probability of occurring, contrary to the criteria established
above for asset generators.

A more quantitative comparison of the conditional distributions can be
made by looking at the slopes of the trend lines through the various yield
spreads for each of the five time periods, as graphed in Figures 2-4, and the
dispersion of the points around those lines, expressed as residual standard
errors (mean squared distances from the trend line)1/2. Table 1 summarizes
the historical and modeled slopes and residual standard errors. For instance,
R31 is the three-year to one-year spread graphed in Figure 4. The slopes tend
to be negative, denoted by parentheses.

The slopes of both models are similar to those in period 5, which seems
appropriate for a model calibrated to current yields. The shortest spreads have
slopes near zero for period 5 and in both models. It is not clear why this has
changed from historical patterns, but the models seem to be reflecting this
trend to some degree. The standard errors for the constant lambda model tend
to be lower than the historical variability around the trend, whereas this par-
ticular formulation of the variable lambda model produces perhaps too high
standard errors in the longer spreads. This suggests that allowing somewhat less
variability in the stochastic processes that generates the market prices of risk
could lead to still more realistic models.
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TABLE 1

Slopes and SE’s R10 3 R10 5 R5 3 R3 1

Period 1 (0.2720) (0.1380) (0.1340) (0.2158)
Period 2 (0.2526) (0.1351) (0.1175) (0.2544)
Period 3 (0.2225) (0.1170) (0.1055) (0.1066)
Period 4 (0.2957) (0.1393) (0.1564) (0.1100)
Period 5 (0.2050) (0.1524) (0.0526) 0.0170*
Constant l (0.2489) (0.1635) (0.0853) (0.0721)
Variable l (0.2960) (0.1987) (0.0973) (0.0615)
Period 1 se 0.0013 0.0009 0.0006 0.0013
Period 2 se 0.0031 0.0022 0.0013 0.0037
Period 3 se 0.0026 0.0013 0.0017 0.0070
Period 4 se 0.0022 0.0012 0.0012 0.0024
Period 5 se 0.0020 0.0013 0.0009 0.0028
Constant l se 0.0008 0.0005 0.0004 0.0013
Variable l se 0.0042 0.0028 0.0015 0.0021

* Not significantly different from zero.
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6. TESTING RESIDUAL DISTRIBUTIONS

The test above looks at the slope of the conditional yield spreads and their
degree of scattering around the trend line. It should also be possible to test the
form of the distribution of these residuals. Unfortunately with the data available
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FIGURE 7: 10-3 year spread historical residuals against t-33 fit

FIGURE 8: 10-3 year spread variable lambda residuals against t-33 fit
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FIGURE 9: 10-3 year spread constant lambda residuals against t-33 fit

it has not been possible to find a convincing fit for the historical distributions.
Nonetheless, some comparisons can be made based on the deviations of the
residuals from a selected distribution. Figure 7 is a QQ-plot of a t-distribution
with 33 degrees of freedom fit to the residuals from the trend lines of the five
sets of ten-year-to-three-year spreads. This is the closest to Gaussian of any
of the yield spreads reviewed. For this calculation, all of the residuals around
the five lines from Figure 2 were combined and fit to a single t-distribution.
The fit looks reasonable, but there are some outliers in both tails that could
be due to transition times between periods. Figures 8 and 9 show QQ-plots
which graph the percentiles of the generated Anderson-Lund residuals against
the percentiles of the fitted t’s.

The 10-3 constant and variable lambda residuals look a lot like the data
except in the left tail, where the constant lambda diverges oppositely. This test
would be more convincing with a fitted distribution that more closely matched
history in the tails. While both AL models compare well with the historical
slopes, the variable lambda model looks more like the historical data in both
the standard errors and the distribution of the residuals.

CONCLUSION

Empirical studies have found that models of the dynamics of the short-term
rate need to incorporate a relatively fast mean reversion to a temporary mean
which itself reverts slowly to the long-run mean, stochastic volatility, and mean
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sensitive volatility proportional approximately to the mean raised to a power
between † and 1. Both short and long-term rates display a high degree of per-
sistency, i.e., autocorrelations that decrease only very slowly as the period
lengthens.

Testing the conditional distribution of yield spreads given the short-term
rate appears to be a reasonable way to see if a model is generating a realistic
distribution of yield curves. Within periods of a few years, these distributions
for US Treasuries look similar to a t-distribution around a conditional mean
which is itself a downward sloping linear function of the short-term rate. The
level of these lines has varied historically between periods, but the slopes have
been more consistent over time. While historical yield spreads can be viewed
as samples from this distribution drawn sequentially, it is proposed here to use
samples of generated curves at a singe point of time as a test of the reasonabil-
ity of the generator. The unconditional distribution of generated yield spreads
would not necessarily be comparable to the historical distribution, however,
because different spreads are associated with different short-term rates, and a
simulation at a particular time might not be generating a distribution of short-
term rates that matches the entire historical record.

As with most tests of distributional issues, this one is not a formulaic sys-
tem that gives a strict “yes/no” answer to a model’s output. But it does provide
a realm of reasonable results so an analyst can give an opinion of the “prob-
ably ok / probably not” type. For example, having no variability around the
conditional trend line would seem to be too limiting. Slopes that are much
steeper than historical would also seem unsuitable, as would distributions of
residuals around the slopes that differ substantially from the t-distributions
fit. Even though these tests are not strict, better results could be sought than
those of any of the models tested.

An application issue is how much variability you should have for projec-
tion periods of different lengths. When projecting out four or five years, a con-
ditional distribution similar to those of the historical sub-periods might be
appropriate. However there is some chance of entering a new regime – i.e.,
changing periods – over that much time. In all five of the periods graphed, a
shift to an adjacent period during a time frame would tend to flatten the con-
ditional trend.
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