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Abstract The Equation (1) (r(x)y′)′ = q(x)y(x) is regarded as a perturbation of (2) (r(x)z′(x))′ =
q1(x)z(x). The functions r(x), q1(x) are assumed to be continuous real valued, r(x) > 0, q1(x) � 0,
whereas q(x) is continuous complex valued. A problem of Hartman and Wintner regarding the asymptotic
integration of (1) for large x by means of solutions of (2) is studied. Sufficiency conditions for solvability
of this problem expressed by means of coefficients r(x), q(x), q1(x) of Equations (1) and (2) are obtained.
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1. Introduction

In this paper we consider Equations (1.1) and (1.2) with coefficients satisfying condi-
tions (1.3):

(r(x)y′(x))′ = q(x)y(x), x ∈ R+, (1.1)

(r(x)z′(x))′ = q1(x)z(x), x ∈ R+, (1.2)

0 < r(x) ∈ C loc(R+) for x ∈ R+, q(x), q1(x) ∈ C loc(R+). (1.3)

(The symbol C loc(R+) stands for the set of functions that are continuous for x ∈ R+.)
In (1.3), q1(x) is a real-valued function and q(x) may be complex valued. We also assume
that Equation (1.2) does not oscillate at infinity. It is known (see [9]) that under these
assumptions there exist solutions u1(x) (the principal solution) and v1(x) (the non-
principal solution) and a point x0 ∈ R+ such that u1(x) > 0, v1(x) > 0 for x � x0,
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and the following relations hold:

r(x)[v′
1(x)u1(x) − u′

1(x)v1(x)] = 1, x � x0, (1.4)

lim
x→∞

u1(x)
v1(x)

= 0,

∫ ∞

x0

dt

r(t)u2
1(t)

= ∞,

∫ ∞

x0

dt

r(t)v2
1(t)

< ∞. (1.5)

Recently, the following problem has been actively studied. One has to determine under
what conditions there exists a fundamental system of solutions (FSS) {u(x), v(x)} of
Equation (1.1) for which the following relations hold:

lim
x→∞

u(x)
u1(x)

= lim
x→∞

v(x)
v1(x)

= 1, (1.6)

r(x)
[
u′(x)
u(x)

− u′
1(x)

u1(x)

]
= o

(
1

u1(x)v1(x)

)
, x → ∞, (1.7)

r(x)
[
v′(x)
v(x)

− v′
1(x)

v1(x)

]
= o

(
1

u1(x)v1(x)

)
, x → ∞. (1.8)

This type of problem was first studied by Hartman and Wintner (see [9, 10]) and we
therefore name it after them (we denote it by problem (1.6)–(1.8)). We say that a
Hartman–Wintner problem is solvable if Equation (1.1) has an FSS {u(x), v(x)} sat-
isfying (1.6)–(1.8). The study in [9, 10] was continued in [1, 2, 4, 12, 14]. The latest
survey of results related to the problem (1.6)–(1.8) can be found in [4]. In particular, we
need the following assertion from [4].

Theorem 1.1. Problem (1.6)–(1.8) is solvable if any one of the following three con-
ditions hold.

(1) The integral J(x) absolutely converges. Here

J(x) =
∫ ∞

x

∆q(t)ρ1(t) dt, x ∈ R+, (1.9)

∆q(x) = q(x) − q1(x), ρ1(x) = u1(x)v1(x), x ∈ R+. (1.10)

(2) The integral J(x) converges (at least conditionally) and∫ ∞

0
|∆q(t)|ρ1(t)A(t) dt < ∞, A(t) = sup

s�t
|J(s)|, t ∈ R+. (1.11)

(3) The integral J(x) converges (at least conditionally) and
∫ ∞

0

|J(t)|2 dt

r(t)ρ1(t)
< ∞. (1.12)

Remark 1.2. In [4] there is precise information on the solvability of problem (1.6)–
(1.8).
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To state the present problem, we need some preliminary comments. It is convenient to
start with some well-known facts (see [8,11]). The Hartman–Wintner problem is a for-
malization of one of the methods of investigating an FSS {u(x), v(x)} of Equation (1.1)
at infinity (for the method of sample or model equations (see [8])). In the framework
of this method, Equation (1.2) is chosen in such a way that, on the one hand, it would
be ‘close’ to Equation (1.1) (in our case this means that equalities (1.7), (1.8) hold)
and, on the other hand, one must show an FSS {u1(x), v1(x)} for Equation (1.2). Then,
if problem (1.6)–(1.8) turns out to be solvable, equalities (1.6) imply asymptotic prop-
erties of an FSS of Equation (1.1). We want to emphasize that knowledge of the FSS
{u1(x), v1(x)} is an a priori requirement which significantly restricts possibilities for
choosing Equation (1.2) (because an FSS is not known for every Equation (1.2)).

Therefore, the following question arises: can one decide whether a Hartman–Wintner
problem is solvable looking only at the coefficients r(x), q(x) and q1(x) of Equa-
tions (1.1), (1.2), i.e. without knowing an FSS {u1(x), v1(x)} of Equation (1.2)? An
answer to this question could be useful, for example, for an a priori description of the
set of equations that make up Equation (1.1), among which one might find an equation
convenient for asymptotic integration and similar (in the sense of (1.6)–(1.8)) to Equa-
tion (1.1). Then, since the solvability of the Hartman–Wintner problem has already been
established a priori, looking at the coefficients r(x), q(x) and q1(x), one can derive from
(1.5) asymptotic formulae (as x → ∞) for an FSS {u(x), v(x)} of Equation (1.1). That
is just what we need.

Note an additional advantage of this approach: we only need to know asymptotics
(as x → ∞) of solutions {u1(x), v1(x)} of Equation (1.2) without knowing their precise
values required by Theorem 1.1 (and all other results from [4]).

To solve the stated problem, we impose an additional requirement on q1(x) and add one
more assumption in (1.6)–(1.8). We take into account the following well-known assertions
(see [9]).

(a) The principal solution u1(x) of Equation (1.2) is determined uniquely up to a
constant factor.

(b) All non-principal solutions of (1.2) are asymptotically equivalent as x → ∞. This
means that if v1(x), v2(x) are non-principal solutions of (1.2), then

v2(x)
v1(x)

→ const. as x → ∞.

Therefore, below in a slightly different statement of the Hartman–Wintner problem,
we replace an FSS {u1(x), v1(x)} by another one (we keep the notation {u1(x), v1(x)}
for it) where u1(x) is a principal solution, and a non-principal solution is chosen with
the help of a special procedure. Such a modification does not change our main goal,
obtaining asymptotics as x → ∞ of an FSS {u(x), v(x)} (this follows from (1.6) and the
above arguments).

We turn to precise statements. Let us continue r(x) and q1(x) to (−∞, 0] as even
functions and keep old notations for them. Throughout what follows we assume that in
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addition to requirements on r(x), q(x) and q1(x) given at the beginning of the paper,
conditions (1.13) and (1.14) hold:

q1(x) � 0, x ∈ R, (1.13)

lim
|d|→∞

∫ x

x−d

dt

r(t)

∫ x

x−d

q1(t) dt = ∞. (1.14)

We will comment on conditions (1.13)–(1.14) later.
We will systematically use the following main lemma.

Lemma 1.3 (see [6]). There is an FSS {u1(x), v1(x)} of Equation (1.2) such that
the following relations hold:

v1(x) > 0, u1(x) > 0, v′
1(x) > 0, u′

1(x) < 0 for x ∈ R, (1.15)

r(x)[v′
1(x)u1(x) − u′

1(x)v1(x)] ≡ 1 for x ∈ R, (1.16)

lim
x→−∞

v1(x)
u1(x)

= lim
x→∞

u1(x)
v1(x)

= 0, (1.17)

∫ 0

−∞

dt

r(t)v2
1(t)

=
∫ ∞

0

dt

r(t)u2
1(t)

= ∞, (1.18)

∫ ∞

0

dt

r(t)v2
1(t)

< ∞,

∫ 0

−∞

dt

r(t)u2
1(t)

< ∞. (1.19)

From Lemma 1.1 it follows (see [6]) that v1(x) is a principal solution of (1.2) on (−∞, 0],
u1(x) is a principal solution on [0, ∞), u1(x) is a non-principal solution on (−∞, 0], and
v1(x) is a non-principal solution on [0, ∞).

We now can formulate our main problem. Let {u1(x), v1(x)} be an FSS of Equa-
tion (1.2) with properties (1.15)–(1.19). One has to determine under what requirements
on r(x), q(x) and q1(x) Equation (1.1) has an FSS {u(x), v(x)} satisfying relations (1.6)–
(1.8). (Note that a similar problem (with r(x) ≡ 1) was first studied in [3], and the present
paper can be viewed as a continuation of [3].)

We now return to conditions (1.13), (1.14). These requirements were introduced with-
out necessary comments because they appeared for purely technical and not conceptual
reasons. To be more precise, under assumptions (1.13), (1.14) we know sharp-by-order
two-sided estimates for the function ρ1(x) = u1(x)v1(x), x ∈ R, in terms of some auxil-
iary functions in r(x) and q1(x) (see [6] and § 2 below). Note that to apply Theorem 1.1
(and any other statement from [4] concerning the solvability of problem (1.6)–(1.8)), one
has to know the function ρ1(x) (estimates are not sufficient).

Thus inequalities for ρ1(x) given in [4] play an essential role in solving our problem. To
conclude, note that in final asymptotic formulae for an FSS {u(x), v(x)} of Equation (1.1)
we do not present estimates for remainder terms since our goal is to obtain assertions
which might be useful for a priori analysis of an FSS of (1.1) as x → ∞. However, one
can derive such estimates from [4] if needed.
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2. Preliminaries

In this section we present some assertions which will be used in the proofs of our main
results (see § 3). Below c stands for absolute positive constants which are not essential
for exposition and may be different even within a single chain of computations.

Lemma 2.1 (see [7]). For an FSS {u1(x), v1(x)} of Equation (1.2) (see Lemma 1.3),
the following relations hold for x ∈ R (see (1.10)):

v′
1(x)

v1(x)
=

1 + r(x)ρ′
1(x)

2r(x)ρ1(x)
,

u′
1(x)

u1(x)
= −1 − r(x)ρ′

1(x)
2r(x)ρ1(x)

, x ∈ R, (2.1)

r(x)|ρ′
1(x)| < 1, x ∈ R. (2.2)

Fix x ∈ R and consider the following equations in d � 0:

1 =
∫ x

x−d

dt

r(t)

∫ x

x−d

q(t) dt, 1 =
∫ x+d

x

dt

r(t)

∫ x+d

x

q(t) dt. (2.3)

Lemma 2.2 (see [6]). For x ∈ R each of the Equations (2.1) has a unique finite
positive solution.

Denote by d1(x), d2(x) the respective solutions of Equations (2.3). We introduce func-
tions

ϕ(x) =
∫ x

x−d1(x)

dt

r(t)
, ψ(x) =

∫ x+d2(x)

x

dt

r(t)
, x ∈ R,

h(x) =
ϕ(x)ψ(x)

ϕ(x) + ψ(x)
≡

(∫ x+d2(x)

x−d1(x)
q(t) dt

)−1

, x ∈ R.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.4)

Theorem 2.3 (see [6]). The function ρ1(x) = u1(x)v1(x), x ∈ R, satisfies the inequal-
ities

2−1h(x) � ρ1(x) � 2h(x), x ∈ R. (2.5)

Theorem 2.4 (see [7]). Denote

m = sup
x∈R

r(x)|ρ′(x)|. (2.6)

The inequality m < 1 holds if and only if

c−1 � ϕ(x)
ψ(x)

� c, x ∈ R. (2.7)

Fix x ∈ R and consider the following equation in d � 0:

1 =
∫ x+d

x−d

dt

r(t)h(t)
. (2.8)

Lemma 2.5 (see [5]). For every x ∈ R, (2.8) has a unique finite positive solution.
Denote it by d(x). The function d(x) is continuous for x ∈ R. Moreover, for every x ∈ R

and ε ∈ [0, 1], we have

(1 − ε)d(x) � d(t) � (1 + ε)(d(x) for |t − x| � εd(x). (2.9)
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Lemma 2.6 (see [6]). An FSS {u1(x), v1(x)} of (1.2) (see Lemma 1.3) satisfies the
following inequalities for every x ∈ R:

e−2 � v1(t)
v1(x)

� e2, e−2 � u1(t)
u1(x)

� e2 for |t − x| � d(x),

e−2 � ρ1(t)
ρ1(x)

� e2, (2e)−2 � h(t)
h(x)

� (2e)2 for |t − x| � d(x).

⎫⎪⎪⎬
⎪⎪⎭ (2.10)

Definition 2.7 (see [6]). We say that segments {∆n}∞
n=1 centred at {xn}∞

n=1 form
an R(x, d(·))-covering of [x,∞) if relations (1)–(3) hold.

(1) ∆n = [∆−
n , ∆+

n ] def= [xn − d(xn), xn + d(xn)], n = 1, 2, . . . .

(2) ∆−
n+1 = ∆+

n , n = 1, 2, . . . ; ∆−
1 = x.

(3)
⋃∞

n=1 ∆n = [x,∞).

Lemma 2.8 (see [6]). For every x ∈ R there exists an R(x, d(·))-covering of [x,∞).

3. Statement of results

In this section we present our main results. The simplest a priori condition for the
solvability of problem (1.6)–(1.8) is given by Theorem 3.1.

Theorem 3.1. Consider the following integral (see (1.9) and (2.4)):

H(x) =
∫ ∞

x

|∆q(t)|h(t) dt. (3.1)

If the integral H(x) converges, problem (1.6)–(1.8) is solvable.

Remark 3.2. It is easy to see that Theorem 3.1 in fact repeats condition (1) of
Theorem 1.1, and the integral J(x) absolutely converges if and only if H(x) converges
(see (2.5)). (By the way, this completes the proof of Theorem 3.1.) Here the assump-
tion on absolute convergence of the integral J(x) is too restrictive, whereas conditional
convergence J(x) allows much more freedom in choosing (1.2) corresponding to a given
Equation (1.1). See [12,14].

To introduce a condition guaranteeing conditional convergence of J(x) (and to obtain
its estimate), we need Definition 3.3 and Lemma 3.4 and Lemma 3.6.

Definition 3.3. We say that a pair of functions {r(x), q1(x)} belongs to a class K(γ)
(and write {r(x), q1(x)} ∈ K(γ)) if there exist positive numbers a, b such that for all
x � 1 the inequalities

a−1 � d(t)
d(x)

� a (3.2)

hold for |t − x| � bd(x). Here γ = ab−1.

Lemma 3.4. If γ � 4, for any of pair of functions we have {r(x), q1(x)} ∈ K(γ).
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Remark 3.5. Below we systematically use the condition {r(x), q1(x)} ∈ K(γ), γ � 1
2 .

By Lemma 3.4, such a requirement means that it is not satisfied by all pairs {r(x), q1(x)}
but only by a part of the class K(4). Nevertheless, the class K( 1

2 ) is ‘rich’ enough and
includes pairs {r(x), q1(x)} consisting of smooth as well as of non-differentiable functions
(see Theorem 3.3 below and the example in § 5). We also note that by Lemma 3.4 the
condition {r(x), q1(x)} ∈ K(γ), γ � 1

2 , is neither restrictive nor artificial.

Let us introduce the function ω(x, b). For a given b > 0, we set for every x ∈ R,

ω(x, b) = sup
ξ,η∈Db(x)

∣∣∣∣
∫ η

ξ

∆q(t) dt

∣∣∣∣, Db(x) = [x − bd(x), x + bd(x)]. (3.3)

Lemma 3.6. Let {r(x), q1(x)} ∈ K(γ), γ = (a/b) � 1
2 . If the integral

I(x) =
∫ ∞

x

ω(t, b)
r(t)

dt, x ∈ R, (3.4)

converges, then the integral J(x) (see (1.9)) converges (at least conditionally), and

|J(x)| � cI(x), x ∈ R. (3.5)

The next theorem is our main result.

Theorem 3.7. Let {r(x), q1(x)} ∈ K(γ), γ = (a/b) � 1
2 . Then problem (1.6)–(1.8) is

solvable provided either of the following two conditions holds:

I(0) < ∞,

∫ ∞

0
|∆q(q)|h(t)I(t) dt < ∞, (3.6)

I(0) < ∞,

∫ ∞

0

I(t)2 dt

r(t)h(t)
< ∞. (3.7)

Here is one more definition.

Definition 3.8. Let {u(x), v(x)} and {u1(x), v1(x)} be FSSs of Equations (1.1)
and (1.2), respectively. We say that these FSSs are fully asymptotically equivalent as
x → ∞ if

lim
x→∞

v(i)(x)

v
(i)
1 (x)

= lim
x→∞

u(i)(x)

u
(i)
1 (x)

= 1, i = 0, 1 (f (0)(x) := f(x)). (3.8)

Theorem 3.9. Let problem (1.6)–(1.8) be solvable. Then, if m < 1 (see (2.6)), the
FSSs of Equations (1.1) and (1.2) are fully asymptotically equivalent as x → ∞.

Remark 3.10. All the above statements are given in terms of functions d1(x), d2(x),
d(x), ψ(x), ϕ(x) and h(x). Usually it is impossible to find precise values of these func-
tions. However, to apply Theorems 3.1–3.9, it is enough to have sharp-by-order two-sided
estimates of these functions. Usually one can easily obtain such estimates (see [6, 7])
because all the functions are given locally, and to obtain the needed inequalities one can
use various local tools of analysis. We give an example of such estimates in the following
theorem. We emphasize that this theorem gives only one of the possible and simplest
ways for getting the needed inequalities. See [5–7] for more general examples of this
type.
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Theorem 3.11. Let functions r(x), q1(x) be continuous and positive for all x ∈ R,
and suppose that there are constants β > 0, α � 1, β � (3α)3 such that for x � 1, the
inequalities

1
α

� r(t)
r(x)

,
q1(t)
q1(x)

� α (3.9)

hold for

|t − x| � βd̂(x), d̂(x) =

√
r(x)
q1(x)

.

Then for x � 1, the following estimates hold:

α−1d̂(x) � d1(x), d2(x) � αd̂(x), (3.10)

α−2√
r(x)q1(x)

� ϕ(x), ψ(x) � α2√
r(x)q1(x)

, (3.11)

1
2α2

1√
r(x)q1(x)

� h(x) � α2

2
√

r(x)q1(x)
, (3.12)

1
300

1
α3 d̂(x) � d(x) � (3α)3d̂(x). (3.13)

4. Proofs

In this section we prove Theorems 3.7–3.11 and Lemmas 3.4 and 3.6. Recall that the
proof of Theorem 3.1 is given in Remark 3.2.

Proof of Lemma 3.4. From (2.9) it follows that for any ε ∈ [0, 1] we have

1 − ε � d(t)
d(x)

� 1 + ε � 1
1 − ε

, |t − x| � εd(x), x ∈ R. (4.1)

According to (4.1), we get {r(x), q1(x)} ∈ K(γ), γ = a/b, where a = (1 − ε)−1, b = ε.
Hence

γ =
1

(1 − ε)ε
= γ(ε), ε ∈ [0, 1].

It is easy to see that on the segment (0, 1
2 ] the function γ(ε) monotonically decreases from

∞ to 4 and is continuous, γ(ε) monotonically increases from 4 to ∞ on the segment [ 12 , 1)
and is continuous. Hence for any γ0 � 4 there is ε = ε0 ∈ (0, 1) such that γ(ε0) = γ0.
This means that for a = (1 − ε0)−1, b = ε0 the pair {r(x), q1(x)} belongs to K(γ0),
γ0 = a/b. �

Proof of Lemma 3.6. To prove the lemma, we need some auxiliary assertions.

Lemma 4.1. Let {r(x), q1(x)} ∈ K(γ), γ = (a/b) � 1
2 . Then for all x ∈ R and every

t ∈ ∆(x) = [x − d(x), x + d(x)] we have an inclusion

∆(x) ⊆ Db(t) = [t − bd(t), t + bd(t)]. (4.2)
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Proof. Let t ∈ ∆(x). Then from (3.2) it follows that

d(t)
d(x)

� 1
a

� 2
b

⇒ bd(t) � 2d(x) � d(x) + t − x ⇒ x − d(x) � t − bd(t),

d(t)
d(x)

� 1
a

� 2
b

⇒ bd(t) � 2d(x) � x − t + d(x) ⇒ t + bd(t) � x + d(x).

�

Lemma 4.2. Let {r(x), q1(x)} ∈ K(γ), γ = (a/b) � 1
2 . Then for any ξ, η, t ∈ ∆(x) =

[x − d(x), x + d(x)] and every x ∈ R, we have∣∣∣∣
∫ η

ξ

∆q(s) ds

∣∣∣∣ � ω(t, b) = sup
ξ,η∈Db(t)

∣∣∣∣
∫ η

ξ

∆q(s) ds

∣∣∣∣. (4.3)

Proof. By Lemma 4.1, for ξ, η, t ∈ ∆(x) we have the inclusions

[ξ, η] ⊆ [x − d(x), x + d(x)] ⊆ [t − bd(t), t + bd(t)]

for any t ∈ ∆(x). Hence inequality (4.3) holds. �

Lemma 4.3. Let x ∈ R, ξ, η ∈ ∆(x) = [x − d(x), x + d(x)] and {r(x), q1(x)} ∈ K(γ),
γ = (a/b) � 1

2 . Then ∣∣∣∣
∫ η

ξ

∆q(s)ρ1(s) ds

∣∣∣∣ � c

∫
∆(x)

ω(t, b)
r(t)

dt. (4.4)

Proof. Integrating by parts, we get

T (ξ, η) :def=
∫ ξ

η

∆q(t)ρ1(t) dt

= ρ1(ξ)
∫ ξ

η

∆q(s) ds −
∫ ξ

η

ρ′
1(t)

(∫ t

η

∆q(s) ds

)
dt. (4.5)

We estimate the summands in the right-hand side of (4.5) separately. In the following
relations we use (2.10), (2.8), (2.5):

A(ξ, η) :def= ρ1(ξ)
∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣ = ρ1(ξ)
∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣
∫

∆(x)

dt

r(t)h(t)

� c
ρ1(x)
h(x)

∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣
∫

∆(x)

dt

r(t)
� c

∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣
∫

∆(x)

dt

r(t)
. (4.6)

From (4.3) for t ∈ ∆(x), we get

∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣ 1
r(t)

� ω(t, b)
r(t)

⇒
∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣
∫

∆(x)

dt

r(t)
�

∫
∆(x)

ω(t, b) dt

r(t)
.
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We have thus obtained an estimate of A(ξ, η) for ξ, η ∈ ∆(x):

A(ξ, η) = ρ1(ξ)
∣∣∣∣
∫ ξ

η

∆q(s) ds

∣∣∣∣ � c

∫
∆(x)

ω(t, b) dt

r(t)
. (4.7)

In the following relations, we use (2.2) and (4.3):

B(ξ, η) :def=
∣∣∣∣
∫ ξ

η

ρ′
1(t)

(∫ t

η

∆q(s) ds

)
dt

∣∣∣∣ �
∫ ξ

η

|ρ′
1(t)|

∣∣∣∣
∫ t

η

∆q(s) ds

∣∣∣∣ dt

�
∫ ξ

η

1
r(t)

∣∣∣∣
∫ t

η

∆q(s) ds

∣∣∣∣ dt �
∫ ξ

η

ω(t, b) dt

r(t)
�

∫
∆(x)

ω(t, b) dt

r(t)
. (4.8)

From (4.7) and (4.8) we obtain (4.4). �

We now turn to the proof of Lemma 3.6. To check the convergence of the integral J(0),
for given ε > 0, we have to find N0(ε) such that for all M1, M2 � N0(ε) and M2 � M1

the following inequality holds:

∣∣∣∣
∫ M2

M1

∆q(t)ρ1(t) dt

∣∣∣∣ � ε. (4.9)

Let the segments {∆n}∞
n=1 form an R(M1, d(·))-covering of [M1, ∞). Then M1 = ∆−

1 ,
and there is n such that M2 ∈ ∆n. If n = 1, then M2 ∈ ∆1, and from (4.4) it follows
that ∣∣∣∣

∫ M2

M1

∆q(t)ρ1(t) dt

∣∣∣∣ � c

∫
∆1

ω(t, b)
r(t)

dt � c

∫ ∞

M1

ω(t, b) dt

r(t)
. (4.10)

Since I(x) converges, we have I(x) � ε for x � x0(ε) � 1. Therefore, for N0(ε) = x0(ε)
we obtain (4.9). Let M2 ∈ ∆n, n � 2. Then from the properties of R(M1, d(·))-coverings
and (4.4) it follows that

∣∣∣∣
∫ M2

M1

∆q(t)ρ1(t) dt

∣∣∣∣ =
∣∣∣∣

n−1∑
k=1

∫
∆k

∆q(t)ρ1(t) dt +
∫ M2

∆−
n

∆q(t)ρ1(t) dt

∣∣∣∣
�

n−1∑
k=1

∣∣∣∣
∫

∆k

∆q(t)ρ1(t) dt

∣∣∣∣ +
∣∣∣∣
∫ M2

∆−
n

∆q(t)ρ1(t) dt

∣∣∣∣
� c

n−1∑
k=1

∫
∆k

ω(t, b)
r(t)

dt + c

∫
∆n

ω(t, b) dt

r(t)

= c

∫ ∆+
n

M1

ω(t, b) dt

r(t)

� c

∫ ∞

M1

ω(t, b) dt

r(t)
.
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Since I(x) converges, for N0(ε) = x0(ε) (see above) we get (4.9). Hence J(x) converges
(at least conditionally). Let us verify estimate (3.5). Below for a given x ∈ R we use the
properties of an R(x, d(·))-covering of [x,∞) and (4.4):

|J(x)| =
∣∣∣∣
∫ ∞

x

∆q(t)ρ1(t) dt

∣∣∣∣ =
∣∣∣∣

∞∑
k=1

∫
∆k

∆q(t)ρ1(t) dt

∣∣∣∣ �
∞∑

k=1

∣∣∣∣
∫

∆k

∆q(t)ρ1(t) dt

∣∣∣∣
� c

∞∑
k=1

∫
∆k

ω(t, b) dt

r(t)
= c

∫ ∞

x

ω(t, b) dt

r(t)
= cI(x).

�

Proof of Theorem 3.7. The assertions of Theorem 3.7 immediately follow from
Lemma 3.6 and Theorem 1.1. �

Proof of Theorem 3.9. Let us verify the equalities

lim
x→∞

v(x)
v1(x)

= 1, lim
x→∞

v′(x)
v1(x)

= 1. (4.11)

Equalities (3.8) for u(x) and v(x) are proved in a similar way. Since problem (1.6)–(1.8)
is solvable, the first equality in (4.11) coincides with (1.6). We write (1.8) in the form

v′(x)
v(x)

=
v′
1(x)

v1(x)
+

ε(x)
r(x)ρ1(x)

, lim
x→∞

ε(x) = 0. (4.12)

From (4.12), also using Lemma 1.3 and (2.1), (2.2), we obtain

v′(x)
v′
1(x)

=
v(x)
v1(x)

+
v(x)
v′
1(x)

ε(x)
r(x)ρ1(x)

=
v(x)
v1(x)

+
v1(x)
v′
1(x)

v(x)
v1(x)

ε(x)
r(x)ρ1(x)

=
v(x)
v1(x)

[
1 +

2r(x)ρ1(x)
1 + r(x)ρ′

1(x)
ε(x)

r(x)ρ1(x)

]
=

v(x)
v1(x)

[
1 +

2ε(x)
1 + r(x)ρ′

1(x)

]
. (4.13)

Since m < 1 (see (2.6)), we have

0 � 2|ε(x)|
1 + r(x)ρ′

1(x)
� 2|ε(x)|

1 − m
⇒ lim

x→∞

ε(x)
1 + r(x)ρ′

1(x)
= 0. (4.14)

The second equality in (4.11) now follows from (4.14), (4.13) and the first equality
of (4.11). �

Proof of Theorem 3.11. Below we will need Lemma 4.4

Lemma 4.4. Let x ∈ R. The inequality η � d1(x) (0 < η � d1(x)) holds if and only
if

F (η) def=
∫ x

x−η

dt

r(t)

∫ x

x−η

q(t) dt � 1 (F (η) � 1). (4.15)
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Proof.
Necessity. Let η � d1(x). Then [x−d1(x), x] ⊆ [x−η, x]. Since F (η) does not decrease,

we have

F (η) =
∫ x

x−η

dt

r(t)

∫ x

x−η

q(t) dt �
∫ x

x−d1(x)

dt

r(t)

∫ x

x−d1(x)
q(t) dt = 1.

Sufficiency. Assume the contrary, i.e. (4.15) holds but 0 < η < d1(x). Then [x−η, x] ⊆
[x − d1(x), x1] and therefore

1 �
∫ x

x−η

dt

r(t)

∫ x

x−η

q(t) dt �
∫ x

x−d1(x)

dt

r(t)

∫ x

x−d1(x)
q(t) dt = 1.

Then F (η) = 1, and by Lemma 2.2 we get η = d1(x), a contradiction. �

Below we prove inequalities (3.10) for d1(x). Estimates (3.10) for d2(x) can be proved
in a similar way. Let η = αd̂(x). From (3.9) it follows that∫ x

x−η

dt

r(t)

∫ x

x−η

q(t) dt =
∫ x

x−η

r(x)
r(t)

dt

r(x)

∫ x

x−η

q1(t)
q1(x)

q1(x) dt � 1
α2

q(x)
r(x)

η2 = 1.

By Lemma 4.4, we get d1(x) � αd̂(x).
We now set η = α−1d̂(x). Using (3.9) once again, we get∫ x

x−η

dt

r(t)

∫ x

x−η

q1(t) dt =
∫ x

x−η

r(x)
r(t)

dt

r(x)

∫ x

x−η

q(t)
q(x)

q(x) dt � α2 q1(x)
r(x)

η2 = 1.

Using Lemma 4.4 once more, we obtain d1(x) � α−1d̂(x). From (3.9) and (3.10) we now
obtain estimates (3.11) for ϕ(x):

ϕ(x) =
∫ x

x−d1(x)

dt

r(t)
�

∫ x

x−αd̂(x)

r(x)
r(t)

dt

r(x)
� α2 d̂(x)

r(x)
=

α2√
r(x)q1(x)

,

ϕ(x) =
∫ x

x−d1(x)

dt

r(t)
�

∫ x

x−α−1(x)

r(x)
r(t)

dt

r(x)
� 1

α2

d̂(x)
r(x)

=
α−2√

r(x)q1(x)
.

From (2.4) and (3.11) we get inequalities (3.12). To prove (3.13), note that (2.10) and (2.8)
imply

1
36

∫ x+d(x)

x−d(x)

dt

r(t)
� h(x) � 36

∫ x+d(x)

x−d(x)

dt

r(t)
. (4.16)

Suppose now that

d(x) � 1
300

d̂(x)
α3 := γd̂(x).

Then from (3.12), (3.9) and (4.16) we obtain

1
2α2

1√
r(x)q1(x)

� h(x) � 36
∫ x+d(x)

x−d(x)

dt

r(t)
� 36

∫ x+γd̂(x)

x−γd̂(x)

r(x)
r(t)

dt

r(x)

� 72αγ
d̂(x)
r(x)

=
72αγ√

r(x)q1(x)
⇒ 1 � 144α3γ < 1

2 ,
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a contradiction. Hence

d(x) � d̂(x)
300α3 .

Suppose now that d(x) � γd̂(x), γ = 27α3. Then from (3.12), (3.9) and (4.16) we get

α2

2
1

r(x)q1(x)
� h(x) � 1

36

∫ x+d(x)

x−d(x)

dt

r(t)
� 1

36

∫ x+γd̂(x)

x−γd̂(x)

r(x)
r(t)

dt

r(x)

� 2γ

36α

d̂(x)
r(x)

=
γ

18α

1√
r(x)q1(x)

⇒ 1 � γ

9α3 = 3,

a contradiction. Hence d(x) � (3α)3d̂(x). �

5. Example

Consider Equations (1.1) and (1.2) with coefficients

r(x) = (1 + x2)2, q(x) = e2x + (1 + x2)eθx cos eγx, q1(x) = e2x, x � 0. (5.1)

Our goal is to determine for what θ � 0, γ � 0 problem (1.6)–(1.8) is solvable using
the results of § 3. We have to estimate auxiliary functions. In this particular case, such
inequalities can be easily obtained from Theorem 3.11. From (5.1) it follows that

d̂(x) =

√
r(x)
q1(x)

=
1 + x2

ex
→ 0 as x → ∞. (5.2)

Let β = 30, α = 1
3

3
√

30. Then β = (3α)3, and by (5.2) there is x0 � 1 such that for
x � x0 we have (3.9). Then by Theorem 3.4 we have estimates (3.10)–(3.13). Since α < 2,
we can replace these estimates by more rough inequalities (5.3)–(5.6) where the constants
are more convenient:

1 + x2

2ex
� d1(x), d2(x) � 2

1 + x2

ex
, x � 1, (5.3)

1
4(1 + x2)ex

� ϕ(x), ψ(x) � 4
(1 + x2)ex

, x � 1, (5.4)

1
8(1 + x2)ex

� h(x) � 2
(1 + x2)ex

, x � 1, (5.5)

1
2400

1 + x2

ex
� d(x) � 30

1 + x2

ex
, x � 1. (5.6)

It is easy to verify (see below) that the replacement of inequalities (3.10)–(3.13) with
more rough estimates (5.3)–(5.6) does not change the final results. Estimate (5.5) makes
it possible to apply Theorem 3.1. For x � 1 we have

H(x) =
∫ ∞

x

|∆q(t)|h(t) dt � c

∫ ∞

x

(1 + t2)eθt |cos(eγt)|
(1 + t2)et

dt � c

∫ ∞

x

e(θ−1)t dt.
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Hence problem (1.6)–(1.8) is solvable for θ < 1. Theorem 3.7 and condition (1) of The-
orem 1.1 give restrictions on θ. Fix a � 1 and b > 0. By (5.2), for given a, b there is
x1(a, b) such that for x � x1(a, b) we have

1
a

� d̂(t)

d̂(x)
� a for |t − x| � 30bd̂(x). (5.7)

Recall that for x � x0 estimates (5.3)–(5.6) hold. Then for x � max{x0, x1(a, b)}def=x2

we have inclusions

∆(x) = [x − bd(x), x + bd(x)] ⊆ [x − 30bd̂(x), x + 30bd̂(x)] def= D̃b(x). (5.8)

Then for t ∈ ∆(x) and x � x2 the following relations hold (see (5.6)–(5.8)):

d(t)
d(x)

=
d(t)

d̂(t)

d̂(t)

d̂(x)

d̂(x)
d(x)

≶ (ca)±1, |t − x| � bd(x). (5.9)

The constant c in (5.9) is determined by estimates (5.6), and its value is not essential.
For a fixed a we now choose b big enough to satisfy the inequality γ = (ca/b) � 1

2 . This
means that in the case (5.1) the following inclusion holds:

{(1 + x2)2, e2x} ∈ K(γ), γ � 1
2 . (5.10)

Thus, having (5.10) at our disposal, we can apply Theorem 3.7. By (5.8), for x � x2 we
have

ω(x, b) = sup
ξ,η∈Db(x)

∣∣∣∣
∫ η

ξ

∆q(t) dt

∣∣∣∣ � sup
ξ,η∈D̃b(x)

∣∣∣∣
∫ η

ξ

∆q(ξ) dξ

∣∣∣∣. (5.11)

Now we use the second mean theorem (see [13, Chapter XII, § 12.3]). In our case this
theorem can be applied for x � 1 and the inequalities

c−1 � 1 + t2

1 + x2 � c, c−1 � e2t

e2x
� c for |t − x| � 30bd̂(x), x � x2, (5.12)

which follows from (5.2), we obtain for x � x2

ω̃b(x) def= sup
ξ,η∈D̃b(x)

∣∣∣∣
∫ η

ξ

(1 + t2)e(θ−γ)t[eγt cos eγt]dt

∣∣∣∣
� c(1 + x2)e(θ−γ)x sup

ξ,η∈D̃b(x)

∣∣∣∣
∫ η

ξ

eγt cos eγt dt

∣∣∣∣
� c(1 + x2)e(θ−γ)x. (5.13)

Below we use estimate (5.13) (see (3.4)):

I(x) =
∫ ∞

x

ω(t, b) dt

r(t)
� c

∫ ∞

x

ω̃(t, b)
r(t)

dt � c

∫ ∞

x

(1 + t2)e(θ−γ)t

(1 + t2)2
dt

= c

∫ ∞

x

e(θ−γ)t dt

1 + t2
� ce(θ−γ)x. (5.14)
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From (5.14) and (3.4) it follows that J(x) converges (at least conditionally) for γ � θ.
According to Theorem 3.7, condition (3.6) together with (5.14) and (5.5) give (for x � x2)∫ ∞

x

|∆q(t)|h(t)I(t) dt � c

∫ ∞

x

(1 + t2)eθt|cos(eγt)|
(1 + t2)et

e(θ−γ)t dt

= c

∫ ∞

x

e(2θ−γ−1)t dt < ∞ ⇒ θ < 1
2 (γ + 1). (5.15)

By Theorem 3.7 (see (3.6)), problem (1.6)–(1.8) is solvable provided condition
θ < min{γ, 1

2 (γ + 1)} holds. Similarly, by condition (3.7),

∫ ∞

x

I2(t) dt

r(t)h(t)
� c

∫ ∞

x

e2(θ−γ)t

(1 + t2)2
(1 + t2)et dt � ce(2θ−2γ+1)x

∫ ∞

x

dt

1 + t2

= ce(2θ−2γ+1)x < ∞ ⇒ θ � γ − 1
2 . (5.16)

Hence problem (1.6)–(1.8) is solvable under condition (5.16).
Thus the Hartman–Wintner problem for Equations (1.1), (1.2) in the case (5.1) is

solvable provided any of the following three conditions holds:

(1) θ < 1, γ > 0; (2) θ < min{γ, 1
2 (γ + 1)}; (3) θ � γ − 1

2 . (5.17)

Moreover, by Theorem 3.9 and inequalities (5.4) we conclude that under either of con-
ditions (5.17) all FSSs of these equations are asymptotically equivalent as x → ∞. Note
that in the case (5.1) one can find an asymptotic of an FSS of Equation (1.2) using the
standard JWKB method, and thus obtain an asymptotic of an FSS of Equation (1.1)
under either of conditions (5.17). Thus under conditions (5.17) one can say that asymp-
totic analysis of (1.1) is completed. This last stage of asymptotic integration of (1.1) is
not presented here because it contains no new details.
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