
13

Network Data

In this final chapter on advanced data types, we discuss another kind of
data that is frequently used in the social sciences: networks. Until now,we
focused on data collections that cover separate entities: people, countries,
elections, or conflict events. Now, we extend this perspective to examine
relationships between them, in addition to the entities themselves. We
represent these relationships as network structures.

13.1 what is network data?

A network is a structure consisting of entities (or nodes) and the relations
between them. In more formal language, networks are often referred to as
“graphs,” and the nodes as “vertices”with “edges” connecting them. For
example, to represent an airline network, airports constitute the entities of
the network, and the direct flight connections between these airports are
the relations linking these entities. Graphs can also be used to represent
social networks, where individuals are the nodes of the network, and
edges exist between those individuals that know each other personally.
Figure 13.1 (left panel) shows a simple network consisting of four nodes
(A–D), and a total of four edges.
In the simple network above, any pair of nodes can either be connected

with an edge or not. This is what we call an “undirected” graph, since
the edges do not point one way or the other – they only connect a pair
of nodes as in Figure 13.1 (left panel) above. Undirected graphs have
many applications; for social network analysis, they can be used to con-
nect individuals that have a symmetric relationship, for example, those
that have coauthored a scientific publication (Newman, 2004) or have
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188 13 Network Data

figure 13.1. An undirected (left) and a directed graph (right).

figure 13.2. A graph with vertex and edge attributes.

co-starred together in a movie (Albert and Barabási, 2002). For many
other applications, however, the links between the nodes in our network
must be directional, and call this a “directed” graph. This simply means
that we give each of our edges a direction. In Figure 13.1 (right panel), for
example, you can see that there is an edge running from A to D, but not
vice versa. Between A and B, however, we have edges in both directions
(visualized as a two-directional arrow). Directed networks can be used to
represent flows of some kind, for example, trade flows between countries
(Barbieri and Keshk, 2017), or foreign direct investment of one country
in another (Lee and Mitchell, 2012).
In many cases, simply having a network with vertices and edges is not

enough, and we need to store more information about both. For this, we
can amend the simple graph model, such that additional information is
attached to the vertices and edges in our graph. Figure 13.2 illustrates
this. We have a simple network with two nodes, A and D, each of which
corresponds to a city. A directed edge from A to D represents the com-
muters from A who go to work in D every day. This network contains
additional data, so-called “attributes,” about cities and commuting links
(shown as boxes in the figure). We have information about the name and
the population of each city in the vertex attributes, and the number of
commuters in the edge attributes.
So far, a graph with edges and attributes was a conceptual data model –

an idea of what our data looks like. How do we work with this data
model in practice? In other words, how do we physically store network
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data in files? There are two ways for doing this: as an adjacency matrix
or an adjacency list. In both cases, we map our network to something
that looks like a table. Once we have done that, we can use these tables
exactly as we did in the previous chapters of this book: store them in files,
or put them into a database for tabular data. But let us first look at how
adjacency matrices and lists work.
The idea of an adjacency matrix is very simple: We create a quadratic

table such that there is one row and one column for each vertex that exists
in the graph. The entries in this table are then used to store information
about the edges in the network, such that the rows correspond to the
nodes where edges start, and the columns to those where they end. Let
us illustrate this for the directed network from Figure 13.1 (right). Our
adjacency matrix has four rows and four columns. To indicate that
there is an edge running from A to D, we put a value of 1 in the first
row, fourth column (and correspondingly for the other edges in our
graph):

A B C D

A 0 1 0 1
B 1 0 1 0
C 1 0 0 0
D 0 0 0 0

While the adjacency matrix format is easy to understand, there are two
major downsides to it. First, remember the advice I gave in Chapter 3:
Tables should grow down, not sideways. The adjacency matrix violates
this rule, since adding vertices to a graph means adding columns to the
matrix. Second, adding attributes is very difficult when working with
adjacency matrices. As soon as we want to store different edge attributes,
this becomes impossible with a single matrix, since it holds exactly one
value for each connection. Therefore, adjacency lists are preferable for
most applications.
The adjacency list format follows a different approach. Rather than

mapping out the entire set of possible pairs of edges and then indicating
which ones are connected, an adjacency list simply contains only those
pairs of edges that are connected in the graph. For the directed network
in Figure 13.1, the adjacency list looks as follows:
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From To

A B
A D
B A
B C
C A

The graph has five directed edges, each of which corresponds to a single
line in our table. This format is very flexible: If we want to add more
vertices or edges, we can do so by inserting more rows into the table.
Also, if we want to add edge attributes to our graph, we can do so by
storing them in separate columns, in addition to the from and to columns
we have in our table. While edge attributes can easily be accommodated
in this way, vertex attributes are typically stored in a separate vertex list,
which is what we will do below.
We are now equipped with sufficient knowledge about the concept of

networks and how we can store them in tables. Let us now take a quick
look at the applied example we work on in this chapter.

13.2 application: trade and democracy

International trade patterns constitute a central question in international
political economy. When studying if and how much countries trade with
each other, our main interest is not in single countries and their char-
acteristics, but rather in the interactions between them. Therefore, the
data that we need to study this is best represented as a network, where
states constitute the nodes and the trade links between them are the edges.
In our example, we study an important question: How does the level of
democracy of states determine the volume of trade between them (Bliss
and Russett, 1998)? The data for our analysis comes from two different
sources. The first one is a dataset on bilateral trade, initially presented
by Barbieri et al. (2009) and later updated until 2014 by Barbieri and
Keshk (2017). The dataset draws on different sources and records (among
other variables) the annual trade volume between pairs of states for the
period 1870–2014. Therefore, rather than a single, static trade network,
the dataset captures the temporal evolution of international trade, with
annual observations.
The file trade.csv in the data repository contains a simplified version of

the trade data. The format corresponds to the adjacency list we discussed
above, so each trade link between two states constitutes an observation.
States are coded according to the Correlates ofWar (COW) coding system
(Correlates of War Project, 2008), which assigns independent states a
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unique identifier, the COW code. For each link in our trade network, the
states it connects are stored in the ccode1 and ccode2 variables. Due to
the fact that we have annual observations, each line in the data also has
a year variable. The last three variables provide information about the
trade volume between the two states in the given year: smoothflow1 is the
total volume of the first country’s imports from the second country (in
millions of US dollars), and smoothflow2 is the trade flow in the opposite
direction. Both values are smoothed over time (see Barbieri and Keshk,
2017). Finally, smoothtotrade is the smoothed total volume of trade in
the given year between the two states, independent of the direction.
Our second dataset for this chapter provides us with information about

the states themselves, which we later use to explain the volume of trade
between them. We rely on a subset of the large Varieties of Democracy
(V-Dem) database, a project at the University of Gothenburg (Coppedge
et al., 2019). Most importantly for our purpose, V-Dem provides aggre-
gated expert assessments of many aspects of a country’s political system,
which we can use to examine how the level of democracy affects trade
between two states. You can find a simplified version of the V-Dem data
in the repository. It contains annual observations of states, each of which
is coded with a cowcode and a year. Note that there are many missing
values for the COW code, since V-Dem also tracks political units that are
not considered to be independent states by COW and therefore have no
COW identifier. The variable that we will be using to measure a state’s
level of democracy is v2x_polyarchy, which codes “electoral democracy”
on a range from 0 to 1 (for more details about this and the other variables
in the dataset, see the V-Dem codebook). In the file,we also have the world
region the country belongs to (e_regiongeo) as well as the GDP per capita
(e_migdppc).
Together, the trade and V-Dem datasets constitute the (longitudinal)

network we will be analyzing in this chapter. The trade dataset is an
adjacency list with additional edge attributes, while the V-Dem data is
a vertex list with vertex attributes. Vertices are identified by COW codes,
so that we can link both datasets easily.

13.3 exploring network data in r with igraph

When dealing with networks, we need a toolkit that is able to handle
graph structures and allows us to conduct network analysis with them.
R’s base functions do not allow us to do that, as they are designed to
mainly work with tabular data.However, several of R’s extension libraries
provide functionality to process network data. One of the most powerful
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ones is the igraph package that we use in this chapter. igraph can read
and export different data formats for network data, and allows us to
manipulate and analyze networks in R. As always, we first need to load
the package:

library(igraph)

There are different ways in which you can load a network into igraph.
We use a function where we provide an edge list (the trade data) and a
vertex list, both as simple R data frames. Before we can do this, we first
need to import both datasets into R. Let us start with the trade network.
Here, we need to keep in mind that the trade dataset stores missing values
as −9, which is why we need to explicitly define this during the import.
Also, we remove missing values and entries with a bilateral trade volume
of 0, since they indicate that no trade is taking place and the states are
therefore not connected:

trade <- read.csv(file.path("ch13", "trade.csv.gz"), na.strings = "-9")
trade <- subset(trade, !is.na(smoothtotrade) & smoothtotrade > 0)

If we take a look at the summary of the trade dataset, you will notice
several things. Not surprisingly, even with the missing links removed, the
dataset is large and contains around half a million observations. This is
due to the fact that we observe pairs of states with annual estimates. To
get started, we only use a subset of the trade data to simplify our exercise.
We restrict coverage to 2014, and only keep those links with a total trade
volume of 100 million dollars or more:

trade <- subset(trade, year == 2014 & smoothtotrade >= 100)

Next, we turn to the vertex list, the V-Dem data. We load it as a data
frame, restrict it to 2014, and remove observations with missing COW
codes since we do not need them in this exercise:

vdem <- read.csv(file.path("ch13", "vdem.csv"))
vdem <- subset(vdem, year == 2014 & !is.na(cowcode))

Before we can use the V-Dem data in igraph, we need to arrange the
columns in the data frame. For the edge list, igraph expects the first two
columns to contain the node identifiers – this is what we already have in
the trade data frame. For the vertex data, igraph requires the first column
to be the node identifier, which is why we need to make the COW code
the first column in vdem:
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vdem <- subset(vdem,
select = c("cowcode", "country_name", "year",

"v2x_polyarchy", "e_regiongeo"))

Now, both data frames should be in the right format so that we can
create a network from them in igraph. Let us see how this works. We
use the graph_from_data_frame() function, which is one among many
different functions in igraph to construct a network. It takes an edge list
as its main argument, and (optionally) a vertex data frame with additional
data on the vertices.We also define the network to be undirected by setting
directed to FALSE:

tradenetwork <- graph_from_data_frame(trade, directed = F, vertices = vdem)

This does not seem to work: igraph is complaining about some some
vertices in the trade data not being listed in vdem. The reason is that we do
not have V-Dem codings for some states in the trade data – many of them
are micro-states and are not covered by V-Dem. Therefore, we restrict our
trade network to those pairs of states where V-Dem data is available for
both of them:

trade <- subset(trade, ccode1 %in% vdem$cowcode & ccode2 %in% vdem$cowcode)

Now, let us try to construct the network again:

n <- graph_from_data_frame(trade, directed = F, vertices = vdem)

We now have an igraph network n, and can apply network-specific
functions to it. First, we take a look at the summary:

summary(n)

IGRAPH 5ad0bc2 UN-- 174 3456 --
+ attr: name (v/c), country_name (v/c), year (v/n), v2x_polyarchy
| (v/n), e_regiongeo (v/n), year (e/n), smoothflow1 (e/n), smoothflow2
| (e/n), smoothtotrade (e/n)

Our network is undirected (UN) and has 174 vertices and 3,456 edges –
if you want to check, you can compute these numbers with vcount(n)
and ecount(n). The summary also displays the attributes we have defined
for our network. For example, country_name is a vertex attribute (v) of
type character (c), while smoothflow1 is an edge attribute (e) of type
numeric (n).
While igraph defines its own methods for accessing and modifying a

network, many of them work in ways that are similar to R. For example,
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V(n) gives you access to the entire list of nodes in the graph, and you can
retrieve any one of them simply by indexing. The following statement
returns the first vertex in the graph:

V(n)[1]

+ 1/174 vertex, named, from 5ad0bc2:
[1] 700

Similar to a data frame, we can use the $ operator to access a single
attribute:

V(n)[1]$country_name

[1] "Afghanistan"

We can also use the bracket operator to filter a subset of nodes, for
example, those with democracy scores higher than 0.9:

V(n)[v2x_polyarchy > 0.9]

+ 7/174 vertices, named, from 5ad0bc2:
[1] 225 94 390 220 385 380 2

For the edges, the E(n) function works in the same way. For example, it
allows us to find out which edge has the maximum total amount of trade
in 2014 with:

E(n)[which.max(E(n)$smoothtotrade)]

+ 1/3456 edge from 5ad0bc2 (vertex names):
[1] 710--2

Not surprisingly, this is the edge between China (COW code 700) and
the US (COW code 2). So far, we have only used igraph to retrieve infor-
mation that we could have also extracted from the original tables. The
real added value of the library, however, is its ability to perform network-
specific calculations. One of these is the “centrality” of nodes in the net-
work, which is a key concept in network analysis. More central nodes are
those that are better connected to others in the network. Centrality can
be computed in different ways. “Degree centrality” is one of the simplest
centrality measures, and it is defined as the number of links (the “degree”)
a node has to others. In igraph, we can calculate degree centrality with
the degree() function, as in:

degree(n)[1:3]

700 540 339
13 29 13
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figure 13.3. Level of democracy and centrality in the trade network.

Degree centrality, however, only considers the number of links that a
country has, but not the other country it is connected to. Another central-
ity measure is eigenvector centrality, which gives higher centrality scores
to those countries that are connected to other highly central countries.
In other words, it measures centrality by identifying those countries that
are connected to several other influential players in the trade network.
Using the vector field, we can extract the centrality scores after running
the corresponding function from igraph:

ec <- eigen_centrality(n)$vector

We can use these centrality scores to carry out a first analysis of
whether democracy is related to a country’s position in the trade network.
To do so,we create a bivariate plot of the democracy scores for the vertices
in our network, and the centrality measures we have just computed (see
Figure 13.3).
While the plot does not show a clear pattern, the linear fit is positive.

Still, this relationship could be confounded, so we will conduct further
analyses below. To conclude the discussion of igraph, let us examine
the trade network graphically. The entire network is large and densely
connected, which is why a plot of the entire network would not be useful.
Therefore, we extract a subset of the network (a “subgraph”) containing
only those countries located in South America according to V-Dem’s
region coding (region 18):

sa <- induced_subgraph(n, V(n)[!is.na(e_regiongeo) & e_regiongeo == 18])

This results in a much smaller graph with only 12 nodes and 43 edges.
Before we plot it, we define two properties of the network that are later
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figure 13.4. Trade network for South America.

used in the plot. First, we set a label for the nodes, which is simply the
country name. Second, we define a weight for the edges, such that it is
possible to distinguish trade relations with high volume from those with
a low volume:

vertex_attr(sa, "label") <- V(sa)$country_name
edge_attr(sa, "weight") <- E(sa)$smoothtotrade

You can apply the generic plot() function to an igraph network and
define a few network-specific parameters. In particular, we use a pre-
defined layout function for the graph, which causes those nodes con-
nected with edges of high weight (that is, with a high volume of trade
between them) to be located close to each other. We also define the size
of the nodes to be proportional to their democracy score, so that we
can examine visually whether more democratic nodes are more central
in the network:

plot(sa,
layout = layout_with_gem,
vertex.size = 40*V(sa)$v2x_polyarchy,
vertex.color = "white")

The plot in Figure 13.4 shows that some countries such as Chile are
more central actors when it comes to trade in South America. At first
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glance, there seems to be a weak relationship with the level of democracy,
such that less democratic countries (Venezuela, Ecuador, Bolivia) are
located more at the periphery of the network. Still, this relationship
remains to be explored more systematically, which is what we do in the
next section.

13.4 network data in a relational database

In the above example, we used a file-based workflow for processing and
analyzing network data in R and the igraph package. For larger and
more complex networks, it is often useful to store them in a database
that can handle large amounts of data and make them available to dif-
ferent users and in different formats. The trade network that we study
in this chapter is an example for a more complex network dataset, due
to its longitudinal structure with annual observations. In our example
above, we simply avoided this difficulty by using a snapshot of the net-
work for the year 2014. Now that we are moving towards a database-
backed setup, we want to be able to deal with the entire dataset, without
taking shortcuts.
In the previous section, we have seen that network data can be stored

as tabular data, and more precisely, as a combination of two tables: an
adjacency (edge) list, and a vertex list. This makes it easy to transfer this
setup to a relational database, similar to what we did in the previous
chapters. Assuming that your PostgresSQL server is running and that
you created the networkdata database for this chapter, we connect to the
PostgreSQL server as before:

library(RPostgres)
db <- dbConnect(Postgres(),
dbname = "networkdata",
user = "postgres",
password = "pgpasswd")

First,we import the trade network data, using the dbWriteTable() func-
tion in R.Note that we need to be careful with the coding ofmissing values
(−9) in the data, to make sure they are correctly recognized as NA values
during the import.

trade <- read.csv(file.path("ch13", "trade.csv.gz"), na.strings = "-9")
dbWriteTable(db, "trade", trade)
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We repeat the same procedure for the V-Dem dataset, which contains
additional attributes for the nodes in our dataset (the countries), again
with annual values:

vdem <- read.csv(file.path("ch13", "vdem.csv"))
dbWriteTable(db, "vdem", vdem)

Is the trade network an undirected or a directed graph? In our exercises
with igraph above,we treated it as an undirected network with symmetric
links between countries, each link representing a trade relation with a
given total volume. In reality, however, the dataset contains directed infor-
mation: The smoothflow1 and smoothflow2 variables for two countries
A and B tell us the amount of imports into A from B, and vice versa.
The trade dataset lists each of these connections only once; for example,
the edge between the US (COW code 2) and Canada (COW code 20) is
present only once for each year, as an edge 2 → 20, while 20 → 2 is not
listed as a separate entry in the data.
This data structure may be useful if we want to minimize the size of a

data file, but it is not convenient when working with the data. For that
reason, it is useful to turn the trade dataset into a proper directed network,
where each edge has a start and an end point and only one attribute, trade
volume. How can we do this? If we assume that smoothflow1 is our main
edge attribute, we could keep the existing entries, but would have to add
all of them again, but with reversed direction and smoothflow2 as the edge
attribute. This is exactly what the following line does:

dbExecute(db,
"INSERT INTO trade (ccode1, ccode2, year, smoothflow1)
SELECT ccode2, ccode1, year, smoothflow2 FROM trade")

Let us go through the different parts of this statement. Overall, it is
an INSERT statement, so it takes some data and adds it to the trade table.
Importantly, it specifies four columns of the table that the new data should
be inserted in: ccode, ccode2, year and smoothflow1. These are the variables
we would like to retain for our directed network with annual observa-
tions. But what is the data we want to insert? It is simply the entire
trade table, but with reversed column order: ccode2 should be inserted
as ccode1, ccode1 as ccode2, and smoothflow2 as smoothflow1, while year
remains the same. This is what we do in the second part of the INSERT
statement, where we define the data to be inserted with a simple SELECT
statement on the same table the data should be inserted in, but with the
columns reordered such that they match the ones in the existing table.
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Before we can proceed, however, let us clean up the table by removing the
unnecessary columns smoothflow2 and smoothtotrade:

dbExecute(db,
"ALTER TABLE trade
DROP COLUMN smoothflow2, DROP COLUMN smoothtotrade")

Also, the trade data contains entries with missing values in the trade
volume column, or where the trade volume is zero. The latter is equivalent
to there being no trade link between the two countries, so we remove these
entries:

dbExecute(db,
"DELETE FROM trade WHERE smoothflow1 IS NULL OR smoothflow1 = 0")

Finally, we strongly recommend that you create indexes on those
columns that are frequently used to join tables, or to retrieve and
aggregate data:

dbExecute(db, "CREATE INDEX ON vdem (cowcode)")
dbExecute(db, "CREATE INDEX ON vdem (year)")
dbExecute(db, "CREATE INDEX ON trade (ccode1)")
dbExecute(db, "CREATE INDEX ON trade (ccode2)")
dbExecute(db, "CREATE INDEX ON trade (year)")

Now, let us compute some simple network statistics directly in the
database. Keep in mind that a relational database such as PostgreSQL
has no notion of a network, so we cannot simply use existing functions
to derive network statistics such as the length of shortest paths or cen-
trality measures. However, we can use aggregate functions to compute
the degree centrality of the different nodes. Recall that degree centrality
is the number of incoming or outgoing links in a network. The following
statement calculates this measure for the year 2014 and for all trade links
with a volume of at least 100 million dollars, in decreasing order:

deg <- dbGetQuery(db,
"SELECT ccode1, count(*) AS indegree
FROM trade
WHERE year = 2014 AND smoothflow1 >= 100
GROUP BY ccode1
ORDER BY indegree DESC")

deg[1:3,]

ccode1 indegree
1 710 128
2 2 115
3 750 102
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The statement selects trade links for 2014, and for each country
(ccode1) counts the number of links that exist. Recall that the links in
our trade network denote imports, which means that the three countries
above are those that have the largest number of trade partners they
import from. China, for example, imported from 128 other countries,
with a volume of at least 100 million dollars from each. In a similar way,
we can compute the centrality in terms of total import volume, simply by
replacing the count() function with sum():

deg <- dbGetQuery(db,
"SELECT ccode1, sum(smoothflow1) AS totalimports
FROM trade
WHERE year = 2014
GROUP BY ccode1
ORDER BY totalimports DESC")

deg[1:3,]

ccode1 totalimports
1 2 2344005
2 710 2075854
3 255 1201135

Note that unlike working with igraph, we do not hard-wire the net-
work such that it consists, for example, only of trade links with a volume
of 100 million dollars. Rather, we can dynamically extract different parts
of the network, depending on what we need. This is a convenient way to
deal with more complex network data,where the complete dataset resides
in a relational database, and snapshots are dynamically extracted to be
analyzed in igraph or another network analysis software. Our database
also allows us to deal with the time series nature of our data. For example,
the code below computes the degree centrality of the US over time (again
restricted to those links with at least 100 million dollars):

deg <- dbGetQuery(db,
"SELECT year, count(*) AS indegree
FROM trade
WHERE ccode1 = 2 AND smoothflow1 >= 100
GROUP BY year
ORDER BY year DESC")

deg[1:7,]

year indegree
1 2014 115
2 2013 116
3 2012 117
4 2011 117
5 2010 118
6 2009 116
7 2008 122
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As a final step in our analysis, we test the link between democracy and
trade more systematically. To this end, we extract our network data in
a way that makes it possible for regression analysis to be applied. Here,
we use a simple dyadic setup, where we treat each trade link as a single
observation. In this analysis, we model the trade volume from one state
to another as a function of the economic performance of the two states
as well as their level of democracy. This is one simple way to analyze
network data; one problem is that it ignores all of the network structure
beyond the individual dyads. For example, in this dyadic analysis we
treat the imports from State A to State B as independent of other trade
flows (e.g., from State C to State B). More complex network models can
accommodate these higher-order dependencies, although this makes the
estimation much more difficult (Ward et al., 2013).
For the purpose of our simple dyadic model, we have to export the

data as a single data frame such that R can fit a regression model. This
data frame contains data about edges as well as vertices – essentially,
it is a combination of the vertex and edge lists we used in this chapter.
In the following statement, we merge the trade and vdem tables in our
database into a single data frame by means of a SELECT statement. The
join operation we use here is based on the entries in the trade table, and
appends V-Dem variables both for the first and the second country in each
dyad.Note that we are joining the V-Dem table twice to the trade links: for
the first country ccode1 in the dyad, and then again for the second country
ccode2. This is why we have to use the two alias names for the V-Dem
table: vdem1 and vdem2. Also note that in order to make the estimation of
the regression model faster, we restrict the data again to one year with
trade.year = 2014. However, you can remove this part of the statement
to obtain the data for the entire time period:

tradedyads <- dbGetQuery(db,
"SELECT
ccode1, ccode2, trade.year, smoothflow1,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM
trade,
vdem vdem1,
vdem vdem2

WHERE
ccode1 = vdem1.cowcode AND
trade.year = vdem1.year AND
ccode2 = vdem2.cowcode AND
trade.year = vdem2.year AND
trade.year = 2014")
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This design omits those pairs of countries that do not trade with each
other.Does democracy affect not just the volume of trade between pairs of
trading countries, but also whether a trade link exists between them? To
test this, we need to construct our dataset such that it contains all possible
dyads, in other words, all pairs of countries regardless of whether they
trade or not. For all these possible dyads, we add data from V-Dem about
economic performance and level of democracy, and then use these data in
a regression model to explain whether they had a trade link or not.
Before you take a closer look at the following statement, let us first

think about how we generate such a data structure. Our strategy consists
of two steps: First, we create a list of all possible dyads, irrespective of
whether trade occurs between them. Second, we add the data on trade
links, such that we can identify those cases in our complete list of dyads
that actually have a trade link. Process for the first step: Our vdem table
(the node list) contains all the countries in our sample, observed once
per year. To create a list with all possible dyads, we simply join the
table with itself. As you can see in the next statement, the vdem table is
used twice, once as vdem1, and once as vdem2. Since we have time series
data with annual observations, we need to make sure, however, that we
only join observations from the same year (vdem1.year = vdem2.year)
and also exclude links from one country to itself (vdem1.cowcode !=
vdem2.cowcode), since we cannot have dyads linking a country to itself.
This is what the complete statement looks like:

alldyads <- dbGetQuery(db,
"SELECT
vdem1.cowcode AS ccode1,
vdem2.cowcode AS ccode2,
vdem1.year,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM
vdem vdem1,
vdem vdem2

WHERE
vdem1.year = vdem2.year AND
vdem1.cowcode != vdem2.cowcode AND
vdem1.year = 2014")

For performance reasons, we again restrict this example to observa-
tions from the year 2014. As you can see, this gives us a large dataset with
30,102 observations, much more than those in our original trade dataset.
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This is not surprising, since the latter contains only pairs of countries
where some trade has been registered,whereas our dataset lists all possible
pairs of countries.
We can now continue to the second step: Join the information in the

trade table to the complete list of dyads. The following statement takes
our code above to generate a temporary, virtual table as part of a SELECT
statement. This is done using the WITH keyword in SQL. Our virtual table
is called dyads and can be used in the main statement as if it were a real
table:

alldyads <- dbGetQuery(db,
"WITH dyads AS
(SELECT
vdem1.cowcode AS ccode1,
vdem2.cowcode AS ccode2,
vdem1.year,
vdem1.v2x_polyarchy AS polyarchy1,
vdem1.e_migdppc AS gdppc1,
vdem2.v2x_polyarchy AS polyarchy2,
vdem2.e_migdppc AS gdppc2

FROM vdem vdem1, vdem vdem2
WHERE
vdem1.year = vdem2.year AND
vdem1.cowcode != vdem2.cowcode)

SELECT
dyads.ccode1,
dyads.ccode2,
dyads.year,
polyarchy1,
gdppc1,
polyarchy2,
gdppc2,
smoothflow1

FROM dyads LEFT JOIN trade ON
dyads.ccode1 = trade.ccode1 AND
dyads.ccode2 = trade.ccode2 AND
dyads.year = trade.year

WHERE dyads.year = 2014")
dbDisconnect(db)

The most important part of the statement is the LEFT JOIN of dyads to
trade – as you may recall, a left join preserves all data from the first table,
and joins those entries from the second table where the join condition
(on ccode1, ccode2, and year) is met. Fields from the second table (such as
smoothflow1) will be filled with NULL values for those rows from the first
table without a match in the second table. This example again restricts
the data to the year 2014 – you can get the entire dataset by removing the
LIMIT clause of the statement.
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figure 13.5. Coefficient plots for the regression models on trade and democracy.

The dataset we generate here can be used in an analysis where the
dependent variable is the existence (0/1) of a trade link between a pair
of countries. We can dynamically generate this binary dependent variable
by testing whether the volume of imports between two countries is NA
(which corresponds to the NULL values generated by the SQL left join, and
indicates that the trade dataset does not contain a link between them).

13.5 results: trade and democracy

We have now extracted two datasets from our relational database. The
first one (tradedyads) contains only those pairs of countries that trade
with each other, and it allows us to study how the level of democracy
affects the volume of trade between them. The alldyads dataset is a list of
all possible dyads, and we will use it to analyze the impact of democracy
on whether two countries trade at all. For the first analysis with volume
of trade as the dependent variable, we simply fit a linear regression model,
using the log10-transformed smoothflow1 variable as the dependent vari-
able. For the second analysis, we use a logit model with a binary depen-
dent variable, which takes the value 1 if smoothflow1 is not NA, and 0
otherwise. Each model includes the democracy levels of the importing
country (polyarchy1) and the exporting country (polyarchy2), as well as
their GDP per capita values (log-transformed).
Rather than showing the regression tables, I present the coefficients

from the models graphically in Figure 13.5. Not surprisingly, richer coun-
tries import and export more, as the positive coefficients for GDP vari-
ables show. Beyond that, democracy affects trade: The more democratic
both countries are in a given dyad, the more likely it is that they trade with
each other (see the coefficients for the logit model). The effect of democ-
racy on the volume of trade is not as clear-cut, as the results from the OLS
model show: While more democratic countries export more, there is no
evidence that democracy affects the amount of imports into a country.
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13.6 summary and outlook

Much research in the social sciences is about relationships between dif-
ferent kinds of entities, and network data are designed to capture this.
Networks consist of nodes and the links between them, and are usually
stored in adjacency matrices or adjacency lists. We saw that the latter
format is much more versatile, and corresponds to well-designed tabular
data. More complex network data, where nodes and edges have addi-
tional attributes attached to them, can be stored with separate tables for
the nodes and edges, which are linked by unique node identifiers.
In this chapter, we used the igraph package for R, which is designed

to process and analyze network data, as well as create flexible visual-
izations. Due to its special focus, it is able to generate network-specific
measures, such as different types of centrality for the network nodes.
We also discussed how network data can be processed in a relational
database.A strength of this approach is its ability to process large network
datasets using the built-in performance improvements such as indexes.
Our examples above demonstrate how you can generate different types of
network datasets for your analysis, while keeping the data in a relational
database. PostgreSQL does not have graph-specific functions for network
data, but it can be extremely helpful in managing your network data and
shaping it in different ways. For your work with network data, here is a
set of recommendations:

• Always prefer the adjacency list format: As the above examples
showed, it is much easier to work with network data that come in the
form of adjacency lists rather than matrices. Adjacency lists conform
to the “long” table format, which has a number of advantages. Most
importantly, simple networks queries such as the number of neighbors
per node become simple data aggregation operations, which can easily
be done in R or PostgreSQL.

• Use tabular data formats for network data: Unlike for spatial data,
there are few established data formats specifically for network data.
In most cases, other, more generic ones are used to store information
about graphs, for example, XML, JSON, or the CSV format. These
formats are usually a good choice, even though they do not incorporate
network-specific features. For example, as in our example above, with
a tabular data format we need to distribute the dataset in different files.

• Keep the different datasets (nodes and edges) consistent: Since network
data is often spread out across different files (nodes and edges), there
can be potential inconsistencies between them. For example, a node
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referenced in the edge list can be missing in the node list. Tools such
as igraph can detect these issues, and in PostgreSQL you can use the
referential integrity checks with primary and foreign keys for this.

• For large networks, graph databases can be useful: It is possible to
leverage a relational database such as PostgreSQL for large network
datasets, allowing us to use referential integrity checks and indexing.
However, PostgreSQL is restricted to tabular data, and does not have
any functionality to deal with graph operations – for example, it is
difficult to find the neighbors of the neighbors of a given node. For this
purpose, it is possible to use a specialized type of database designed for
graphs, such as Neo4j.
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