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We describe a theoretical and experimental study of an axisymmetric viscous gravity
current with a constant flux, confined to the space between two horizontal parallel plates.
The effect of confinement results in two regions of flow: an inner region where the
fluid is in contact with both plates and an outer annular region where the fluid forms a
gravity current along the lower plate. We present a simple theoretical model that describes
the flow dynamics by a single dimensionless parameter J, which is the ratio of the
characteristic height of an unconfined gravity current to the height of the confined space.
Theoretical height profiles display the same characteristics as unconfined gravity currents
until J ~ 0.48, where a rapid change in behaviour occurs as confinement comes into effect.
For larger values of J, the confined viscous gravity current gradually tends to Hele-Shaw
flow, with the transition essentially complete by J & 2. We compare the findings from
our theoretical model with the results of a series of experiments using golden syrup with
various fluxes and gap spacings. Although the data aligns with the major aspects of the
model, it is clear that other physics is at play and a single non-dimensional parameter is
not sufficient to capture the flow behaviour fully. We speculate on the factors absent in our
model that may be responsible for this mismatch.

Key words: lubrication theory

1. Introduction

Viscous gravity currents, essentially horizontal flows driven by their own buoyancy, have
numerous applications in both nature and industry. Unconfined viscous gravity currents
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characterise many geophysical flows such as the development of lava domes (Huppert
2006), the spreading of an ice sheet into the ocean (Robison, Huppert & Worster 2010;
Schoof & Hewitt 2013) and groundwater flow into a river (Guérin, Devauchelle &
Lajeunesse 2014). However, in many settings, vertical confinement can restrict the flow
and require an externally imposed pressure gradient in addition to the gravitational force to
drive it (see, for example, Nordbotten & Celia 2006). Their study of buoyancy-driven flows
in confined porous media and many related studies have been motivated by carbon capture
and storage (CCS) technologies, where carbon dioxide can be disposed of by injection
into confined aquifers underground, as reviewed by Huppert & Neufeld (2014). A primary
question for such confined, gravity-driven flows is the extent to which an injected fluid fills
the confining layer. In porous media, it is often found that the flow divides into two regions:
the injected fluid can fill the layer completely in the neighbourhood of the source, while
further away gravity causes it to flow along just one of the horizontal boundaries. Similar
phenomenology is seen in partially confined, layered porous media (Farcas & Woods
2015; Chiapponi et al. 2020), the latter including effects of shear-thinning, non-Newtonian
rheology.

Comparatively little research has been done to determine the conditions under which
free-fluid, viscous gravity currents are impacted by confinement. Such flows have been
investigated in two dimensions in the context of filling or cleaning of channels by injection
of one viscous fluid to displace another (Taghavi ef al. 2009; Zheng, Rongy & Stone 2015)
and in axisymmetry by Hinton (2020). A review of the effects of confining boundaries on
viscous gravity currents has been conducted by Zheng & Stone (2022).

If the ambient fluid is viscous, it can never be completely evacuated from between the
invading fluid and the rigid walls and so forms a squeeze film that remains for all time.
However, confined, gravity-driven flows may also have important applications in injection
moulding, for example, where the ambient fluid (air) can be considered inviscid. Previous
studies of injection moulding (Whale ef al. 1995; Hill 1996) use lubrication theory to
study thin-film fluid flow in very narrow confined spaces, in which the effects of gravity
are negligible. On the other hand, it has been noted that gravity can play an important role
when thicker mouldings are desired (Hoffman 2014).

In this paper, we assume that the ambient fluid is inviscid. In common with flows
in porous media, in which the no-slip condition is inapplicable, our model includes a
grounding line separating a region in which the injected fluid fills the entire layer, and a
region where it only partially fills the layer. Although injection moulding often involves
non-Newtonian fluids, we focus here on Newtonian fluids. We also consider an idealised
geometry related to injection moulding, namely the flow of a viscous fluid injected from
a point source into a narrow, horizontal, air-filled gap starting from some fixed time. In
two-dimensional flows in confined porous media (Pegler, Huppert & Neufeld 2014), it
has been found that there is a transition from early times at which the injected fluid only
partially fills the gap, to late times at which the flow domain has a region close to the source
in which the injected fluid fills the gap completely and a region further away in which the
injected fluid makes contact with only one of the boundaries. In the case of one viscous
fluid displacing another (Taghavi et al. 2009; Zheng et al. 2015; Hinton 2020), there is a
transition in propagation rates from early to late times though, as mentioned above, the
ambient fluid cannot be completely evacuated. In the case of axisymmetric spreading of a
viscous fluid into an inviscid ambient that we study here, there is a propagating grounding
line but the proportion of the flow that makes contact with both boundaries is constant in
time and we find a critical dimensionless parameter governing the flow that determines
that proportion.
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Figure 1. Side view of a confined viscous gravity current. Typical velocity profiles in the inner contact region,
0 < r < rg(t) (Region 1), and the annular gravity current region, rg(t) < r < ry(f) (Region 2), are shown.

The paper is outlined as follows. In §2, we present the governing equation for the
height profile of the free surface along with the boundary conditions for a confined
viscous gravity current. Similarity solutions reduce the governing equation to an ordinary
differential equation (ODE) with two free boundaries from which we obtain numerical
solutions. We show that the system is described by a single dimensionless parameter
J, being the ratio of the scale height for an unconfined viscous gravity current to the
gap thickness. Asymptotic solutions are developed for J <« 1 and J > 1, which help
to elucidate the transition from unconfined flow to confined, gravity-driven flow to
Hele-Shaw flow. In § 3, we describe a series of laboratory experiments using golden
syrup designed to test the theory. A discussion of the comparison between theory and
experiments and our conclusions are presented in § 4.

2. Mathematical model

Consider the axisymmetric propagation of a viscous fluid injected into a small gap of
height H between two horizontal parallel plates as illustrated in figure 1. From time ¢t = 0,
fluid is injected at a constant volume flux Qg into the air-filled gap from a small circular
hole located on the lower plate. We use a cylindrical coordinate system (7, 6, z), with the
origin chosen to coincide with the position of the centre of the source. At later times,
two regions of flow develop: an inner contact region, 0 < r < rg(f), where the fluid is in
contact with both plates; and an outer annular region, rg(t) < r < ry(t), where the free
surface of the fluid z = A(r, 1) lies below the upper plate. The velocity components in the r
and z directions are denoted by u(r, z, t) and v(r, z, t), respectively, and the fluid pressure
is given by p(r, z, t). The radial flux, which is continuous across the two regions, is denoted
by g. Let p be the density of the fluid, and v = u/p the kinematic viscosity, where w is
the dynamic viscosity.

In contrast to the model considered by Hinton (2020), the displaced air is assumed to
be inviscid, which allows for the development of a grounding line separating the inner
contact region from the outer annular region. We apply lubrication theory, which is valid
once Re(H/L) < 1, where Re = UH /v is the Reynolds number and L is the smaller of the
characteristic lengths corresponding to rg and ry — r¢.

In Region 1, 0 < r < rg(t), conservation of mass determines the radial flux g by

2ntrq(r) = Q. 2.1

In Region 2, rg(f) < r < ry(t), the flow is that of a classical viscous, free-surface
gravity current (Huppert 1982) in which the pressure p relative to atmospheric is

p(rv re t) =,0g(h—Z), (22)
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and the radial velocity

oh

satisfies no slip at z = 0 and no stress at z = h(r, ). The radial flux is given by

—£h3%

. 2.4
3v or 24

h
q(r,t) = / u(r,z, Hdz =
0

The rate of change of the free-surface height is related to g by the local mass-conservation
equation

Pl o =0 @.5)
— 4+ —-—(rq) =0, .
at  ror a4
which leads to the equation
ah 19 oh
P2 (). (2.6)
at  3vror or

At r = rg, the gravity-current solution intersects the upper boundary so
h(rg(t),t) = H. 2.7)

Additionally, conservation of mass there gives that

oh
_ 8o Qo (2.8)
3v dr r 27rg
At the leading edge, r = ry, the height of the free surface is zero,
h(rn(1), 1) = 0, (2.9)
while global conservation of mass requires that
™
Qot = TrgH 4 27 / hrdr. (2.10)
G

Alternatively, we can differentiate (2.10) with respect to time, and use the continuity
equation (2.6) with (2.7) and (2.8) to show that

d ah
N — lim 1 = lim (—i}ﬂ—), 2.11)

At ek rem\ 3v ar

which is a consequence of imposing zero flux through the leading edge.

2.1. Similarity solutions

Classical unconfined axisymmetric Newtonian viscous gravity currents with a constant
flux can be described by similarity solutions in which the radius scales with the square
root of time and the height scale is independent of time (Huppert 1982). Radial spreading
proportional to the square root of time is also a consequence of mass conservation in
two-dimensional flow from a point source. It is therefore anticipated that the introduction
of the external vertical length scale is consistent with a similar transformation for flows
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confined between parallel, horizontal boundaries. We see this by using H to scale & and
balancing the terms in (2.6) to give

gH3t 1/2
r~ ( ) . (2.12)
3v

Note that this scaling also balances all three terms in the mass-conservation equation
(2.10). We therefore introduce the similarity transformation

3p \1/2
h(r,t) = Hf (n), n= (gmt) r, (2.13a,b)
with
H3\ ? 13\ '/?
r¢(t) = nG & . In(D) =N 8! , (2.14a,b)
3v 3v

where ng and ny are constants to be determined. The partial differential equation (2.6)
thus reduces to the ODE

a3 + sn*f =0, (2.15)
and the boundary conditions (2.7)—(2.9) and (2.11) become
fme) =1, naf*me)f (ne) = =J%, (2.16a.b)
fan) =0, lim f2f = —Inw, (2.17a,b)
n—>nNN

where

1/4
J= (3Q°”) /H (2.18)
2ng
is the ratio of the scale height for an unconfined gravity current to the gap width of the
cell and ' denotes derivatives with respect to 1. A similar dimensionless parameter A,
which reduces to A = J* when the density of the ambient fluid is neglected and represents
a dimensionless volume flux, was identified by Hinton (2020). Although (2.15) and the
boundary conditions at the leading edge (2.17a,b) apply to unconfined axisymmetric
gravity currents, the boundary conditions (2.16a,b) are specific to confined flows. We note
that the existence of similarity solutions is a consequence of the coincidence mentioned
above given axisymmetric flow of a Newtonian fluid in a horizontal layer of uniform
thickness. Different relationships between these control parameters would be required for
self-similarity if the fluid were non-Newtonian, for example.
From (2.17a,b), we see that the solution for f at ny is singular. However, an asymptotic
solution for f near 1y can be used to discern the behaviour there. Setting n = ny in (2.15)
results in

(Ff) + 3unf' =0, (2.19)
which, solving subject to (2.17a,b), gives
3nv ) v\ !/3 _
fon ~ (TN) v —=m" oy~ = (1) aw—m 220a0)

This asymptotic solution is used to initialise the numerical solution described in § 2.2.
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2.2. Numerical results

The second-order ODE (2.15) can be written as a system of first-order ODEs by
introducing the variable, g = nf3f, resulting in

=2t g-_T (2.21a,b)

ST T
From (2.16a,b) and (2.17a,b), the boundary conditions on f and g are

fae) =1, faw) =0, gme)=-J* gw)=0. (2.22a—d)

The routine ODE15s from MATLAB R2019a was used to solve (2.21a,b) subject to
(2.22a—d) on the domain [ng, ny — &), where § = 10~8 was chosen such that the solution
changed by less than 0.002 % on further reduction of §. The conditions for f and g at

nN_S’

3nn 173 N (30N 4/3
f(n)z(T) 813, g =—= (= s13, (2.23a,b)

are obtained from the asymptotic solution in (2.20a,b). We used (2.23a,b) as the initial
conditions and integrated backwards along the domain [ng, ny — §], finding the parameter
nc from the condition f(ng) = 1 for a prescribed value of ny. The corresponding value
of J was then determined from (2.22¢) as J = (—g(n(;))l/ 4. This implicit relationship
allowed us to plot ng(J).

Dimensionless height profiles for various values of J are shown in figure 2, each
displaying different qualitative features. For J = 0.25, the flow is essentially unconfined,
the gravity current occupies the majority of the domain, and the inner contact region
is negligible. There is a noticeable inflection point near to ny which is a characteristic
of unconfined axisymmetric gravity currents. On the other extreme, for J = 2 the inner
contact region fills most of the domain, the gravity current occupies little of the domain,
and the flow is essentially described as a Hele-Shaw flow. The height profile for an
intermediate value of J = 0.75 is displayed in figure 2(b) in which both the inner contact
region and the gravity current region are well-defined and distinct.

In figure 3(a), the dimensionless front positions, ng(J) and ny(J), are plotted against
J, and in figure 3(b) the ratio ng/nn is plotted against J. We see that for larger values
of J, ng = ny and the inner contact region occupies the majority of the domain. The
asymptotic behaviour can be determined by using the expression for f in (2.20) and solving
for ng and ny in terms of J by applying the boundary condition f(ns) = 1 and imposing
mass-conservation (2.10). Applying f(ng) = 1, we find that

2

NN — NG ~ ET (2.24)
nN

while imposing global mass-conservation gives

nN 3NN 1/3
2J4~n(2;+2/ "(T) (v —m)'3dny
nG

30N /3 pnn
~ g+ 2y (7) f (v — '3 dy (2.25)
nG

to leading order in ny — 1. The latter integral in (2.25) is readily calculated and combined
with (2.24) to show that

204 ~nE + 1. (2.26)
959 Ad-6
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Figure 2. Typical dimensionless height profiles determined numerically for different values of J. For small
values of J the flow is essentially unconfined, while for large values of J the flow fills the gap almost completely.

From (2.24) and (2.26), we obtain

nG ~ N2J? (1 - L) . N~ 277 (1 + L) , (2.27)

27 1274

and
nG 1
— ~ 1 - — 2.28
N 374 (229

to first order when J >> 1. The leading-order result ng ~ ny ~ ~/2J? is straightforwardly
understood from conservation of mass in the Hele-Shaw limit. These asymptotic results are
seen in figure 3 to give very good representations of the numerical solution once J 2 1.
Although there is no grounding line in Hinton’s model (Hinton 2020), we can compare
the position of the leading edge when the viscosity ratio between the injected fluid and the
ambient fluid M tends to infinity. The leading-order position of the leading edge ny given
in figure 6 of Hinton (2020) for M = 100 is very close to the value given above, which
is to be expected because there will be little ambient fluid remaining in the squeeze film
when M is large.

For small values of J, the gravity current is essentially unconfined and the similarity
solution derived by Huppert (1982) applies. This can be reproduced here by scaling
f with J and n by J3/? and then solving the scaled version of (2.21a,b) using the
boundary conditions ng = 0 and the rescaled g — —1 as n — 0. With this approach,
our calculations give

ny ~ 142772 (2.29)
to leading order, which is equivalent to the results given by Huppert (1982) and Hinton

(2020). This asymptotic solution is seen in figure 3(a) to agree very closely with the
numerical solutions for J < 0.75.
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Figure 3. Numerical solutions (black curves) for ng and ny against J (a) and their ratio (b). The associated
asymptotic solutions for J < 1, (2.29) and (2.32), and J > 1, (2.27) and (2.28), are shown with red, dashed
curves. The different flow regimes and the transition regions are shown in (b), while in (a) the value J = 0.78
corresponds to the largest value of J for which the height profiles contain a point of inflection.

We anticipate that ng <« 1 when J <« 1, which is portrayed in figure 3(a). Therefore, in
the neighbourhood of 75¢, the second term in (2.15) is negligible and the equation can then
readily be integrated using boundary conditions (2.16a,b) to give

f~ [1 —4/*In (i)] " (2:30)

nG

We know from scaling that for most of the unconfined current f = O(J) while n =
O(J3/?). Therefore,

NG ~ EJ32e= 1@ (2.31)

for some constant £. It is noteworthy that the asymptotic solution (2.30) has the property
that f = 0 at some finite value of 1 and, if we arbitrarily set that value of 7 to be ny, we
obtain the result

nG ~ nye /@ (2.32)

which coincides with (2.31) with & >~ 1.42. We have not been able to prove this result
asymptotically but find that it gives excellent agreement with our numerical results, as
shown in figure 3. Actually, the coefficient £ is of minor significance relative to the
functional form of (2.31), which shows that ng behaves in an Arrhenius fashion with J
(cf. detonation phenomena) with extremely rapid growth away from zero at a finite value
of J. Any reasonable estimate for ng being significantly above zero (e.g. ng/ny = 1%
or 5 %) gives a transition value of J & 0.5. This rapid, exponential transition from an
unconfined gravity current to a confined current contrasts with the much slower, algebraic
transition from confined gravity current to Hele-Shaw flow shown by (2.28) and the shaded
regions in figure 3(b).

From figure 3(b), we see that for J < 0.48, ng/ny < 0.01, and the gravity current, which
occupies more than 99 % of the domain, is essentially unconfined. For J > 2.40, ng/nn >
0.99, and the inner contact region occupies 99 % of the domain, which corresponds to the
Hele-Shaw limit. Confined gravity currents form in the interval 0.54 < J < 1.59, where
the inner contact region occupies between 5 % to 95 % of the domain. Within this region,
there is a slight shift in behaviour at J = 0.78. For J < 0.78, the height profiles contain
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Figure 4. Schematic diagram of the side view of the experimental set-up drawn approximately to scale
showing the delivery system and the narrow gap between two Perspex sheets into which golden syrup is
injected.

a point of inflection as shown in figure 2(a), whereas for J > 0.78 there is no inflection
point.

3. Comparison with experiments

We performed a series of 27 experiments in which golden syrup was injected into the
narrow gap between two Perspex sheets from a circular hole in the centre of the lower sheet.
A schematic diagram of the set-up in shown in figure 4. The length of each side of the top
square sheet was 50 cm and the hole in the lower sheet had a diameter of 5.5 cm. Three
different gap sizes were investigated for fluxes ranging from 0.06—18 cm> s~!. Small square
plate spacings were positioned at each of the four corners to support the top sheet. A major
consideration in the experimental set-up was the thickness of the top and bottom Perspex
sheets, chosen to minimise deflection. The sheets were 1.5 cm thick and were clamped
along opposite edges. Given the Young’s modulus of Perspex (5.6 GPa), we estimate that
these measures ensured that any deflection resulting from the weight of each sheet and the
pressure from the fluid that comes into contact with them during an experiment was less
than 40 um in the most extreme experiment. Vernier callipers were used to measure the
gap spacing at each of the four corners and at different positions along the outer edges
when the top sheet was clamped down firmly. The measured gap spacings were (0.71 +
0.02) cm, (1.07 £ 0.02) cm and (1.48 = 0.02) cm. Out of 27 experiments, seven of them
were unconfined viscous gravity currents in which the fluid interface did not intersect with
the top sheet within the time scale of the experiment. The remaining experiments exhibited
confined viscous gravity current behaviour where the inner contact region and the gravity
current region were both well-defined, as shown in figure 5(a).

The fluid delivery system consisted of a mechanical traverse-driven pump which
was used to ensure that the fluid flux remained constant throughout the duration of
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Figure 5. Sample photograph of a confined viscous gravity current viewed from above for an experiment
with J = 0.63 (a). Plot of data points for ré and rlz\, as well as their linear regressions (b).

each experiment. The pump consisted of a vertical cylindrical tube of diameter 19 cm and
height 52 cm with a fitted pipe at the bottom end where the fluid is released, and a movable
close-fitting piston inside the tube driven by a stepper motor. Inside the cylindrical tube,
syrup was contained in a collapsible bag that fed the fluid into the fitted pipe at the bottom
end of the tube. Large-diameter pipes were used in the delivery system to reduce viscous
resistance and allow the pump to maintain a constant volume flux reliably. The initial
position of the piston was set so that it was in direct contact with the top of the sealed
end of the bag and that the syrup in the sealed bag expanded to reach the walls of the
cylindrical tube. The two input parameters to the controller for the stepper motor were the
speed at which the piston is driven downwards, which controls the output flux, and the
distance the piston must traverse, which corresponds to the total volume of fluid released.

The relationship between the nominal pump speed S (mms~!) and the output flux Q
(cm?s™!) was derived by running a series of Hele-Shaw flow experiments at different
piston speeds, and then calculating the volume at various times from the experimental
images. A graph of volume versus time was plotted, and the gradient, which is equivalent
to the flux, was found for each piston speed. A total of six experiments were used to derive
the constant of proportionality between the pump speed and the output flux. The flux
values for each experiment are shown in table 1.

The density of the syrup was measured to be (1421 & 15) kg m~3. Because the viscosity
of syrup is highly dependent on temperature 7', the temperature of the syrup was recorded
before each experiment, and was found to lie in the range 19-21 °C. Using a viscometer,
we found that at 22 °C and 23.5°C the dynamic viscosity of the Lyle’s golden syrup
that we used was (37.6 & 1.2) Pas and (30.3 £ 1.2) Pas, respectively. In order to estimate
the viscosity at lower temperatures in the range 19-21 °C, we first extracted the data set
showing dynamic viscosity p as a function of temperature 7" for Lyle’s golden syrup as
presented by Beckett ef al. (2011) and then applied a curve of the form u = A exp(—BT)
to the data set with 7 measured in Celsius. We found that a best fit gave A = 1470 Pas
and B =0.15°C~!. Using our experimental values, we obtained u = A exp(—0.157)
where A = 1023 Pa s. The kinematic viscosity at temperatures 19 °C, 20°C, 21 °C were
then calculated to be (420 + 30)cm?s™1, (360 £ 30)cm?s~! and (310 & 30)cm?s™!,
respectively. The error corresponds to an uncertainty in temperature of 0.5 °C. The largest
source of uncertainty in these experiments was associated with viscosity variations.
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Temp v H Flux J oG ay nG nN nG/nn

Units °C cm?s~! cm cem’ s~!

Max error  +0.5°C 9.7 % 2.8% 1.0 % 55% 25% 25% 11.6% 11.6% 232%
21 310 1.07 0.14 036 0.00 0.35 0.00 0.31 0.00
21 310 1.07 0.30 0.43 0.00 0.49 0.00 0.43 0.00
19 420 1.07 0.50 0.53 0.20 0.54 0.20 0.55 0.37
19 420 1.07 0.60 0.55 0.23 0.57 0.24 0.58 0.40
19 420 1.07 1.00 0.63 0.35 0.72 0.36 0.74 0.49
20 360 1.07 2.00 0.72 0.51 1.01 0.48 0.96 0.50
20 360 1.07 2.80 0.78 0.64 1.13 0.61 1.07 0.57
20 360 1.07 3.50 0.83 0.76 1.23 0.72 1.17 0.62
20 360 1.07 5.00 090 0.95 1.45 0.90 1.38 0.66
20 360 1.07 6.50 0.97 1.11 1.56 1.05 1.48 0.71
20 360 1.07 8.00 1.02 1.36 1.79 1.29 1.70 0.76
21 310 0.71 0.06 0.43 0.00 0.24 0.00 0.39 0.00
21 310 0.71 0.09 0.48 0.00 0.29 0.00 0.47 0.00
19 420 0.71 0.10 0.53 0.15 0.27 0.28 0.51 0.56
21 310 0.71 0.60 0.77 0.44  0.63 0.72 1.03 0.70
21 310 0.71 1.00 0.88 0.62 0.76 1.01 1.24 0.82
21 310 0.71 1.50 0.97 0.80  0.95 1.30 1.55 0.84
21 310 0.71 2.40 1.09 0.92 1.13 1.50 1.84 0.81
21 310 0.71 4.00 1.24 1.26 1.41 2.05 2.30 0.89
20 360 1.48 0.10 0.25 0.00 0.30 0.00 0.17 0.00
21 310 1.48 0.60 0.37 0.00 0.65 0.00 0.35 0.00
21 310 1.48 1.40 046 0.00 092 0.00 0.50 0.00
19 420 1.48 2.00 0.54 0.31 0.93 0.20 0.59 0.33
19 420 1.48 4.00 0.64 0.54 1.24 0.34 0.78 0.44
20 360 1.48 8.00 0.74 0.77 1.73 0.45 1.01 0.45
20 360 1.48 12.00 0.81 1.02 2.04 0.59 1.19 0.50
21 310 1.48 18.00 0.87 1.23 2.39 0.67 1.29 0.51

Table 1. Experimental input values, which are temperature, kinematic viscosity, gap spacing, and volume
flux, along with the corresponding J values found from (2.18). The results for « and «y found from the linear
regressions (3.1a,b) as well as ng, ny and ng/ny obtained from the relationships in (3.2a,b) are displayed. The
maximum errors corresponding to each parameter are shown in the third row. The errors shown for ng, ny, and
ng/ny are based on the error estimates reported in earlier columns.

From photographs of the experiments such as that shown in figure 5(a), the mean radius
of the inner region rg(#) and of the outer region ry(f) were calculated from the areas
of ellipses fitted by eye using tools in ImageJ (Schneider, Rasband & Eliceiri 2012) as
radius = (area/7t)!/2. For each data set, we used linear regressions to determine coefficients
o and oy such that

ra(t) = akt, () = adt, (3.1a,b)

as shown in figure 5(b). To reduce the influence of initial transients, some early-time data
points were omitted from the regression. From (2.14a,b),

3p \1/2 3p \ /2
nG = aG (g?) , N =0ON (g?) . (3.2a,b)

The parameters for each experiment and our principal measurements are given in table 1.

In figure 6, the data points (J, ng) and (J, ny) are displayed along with the theoretical
curves obtained in § 2. The data points [J, o and ¢ correspond to gap spacings 0.71 cm,
1.48 cm and 1.07 cm, respectively.
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Figure 6. Data points (J, n¢) (filled-in shapes) and (J, nx) (open shapes), where L1, o and ¢ correspond to
gap spacings 0.71 cm, 1.48 cm and 1.07 cm, respectively, along with the theoretical curves (a). Data points
(J, ng/nn) (filled-in shapes) along with the theoretical curve (b).

Overall, we see that our scaling analysis and corresponding similarity theory capture
the dominant variations of ¢ and ny with J very well. There is generally good agreement
between our experimental results for ny, shown by the open symbols in figure 6(a), and
the corresponding theoretical predictions, particularly given experimental uncertainty,
indicated with representative error bars on the right-most data points. There is also
reasonable agreement between theory and experiment for the position of the contact
line ny separating the contact region from the gravity current. Here, however, we see
some systematic variation of ng with gap spacing, with the experimental values of n¢g
corresponding to similar values of J decreasing slightly as the gap spacing increases. Such
systematic deviation from the similarity solution and the lack of a complete collapse of
the data onto a universal curve given by our scaling suggests the influence of additional
physics not included in our model, which we discuss in §4. We note particularly
the increasing deviation of the experimental results and the theoretical predictions
as J approaches the values required for essentially unconfined gravity currents from
above.

These trends are amplified by considering the ratio ng/ny, shown in figure 6(b), where
we see, nevertheless, that our theory captures the dominant, gradual transition between
confined gravity currents and Hele-Shaw flows at values of J around unity very well.
A strong result of this study is the rapid transition from essentially unconfined gravity
currents to confined currents at values of J ~ 0.5 (cf. figures 3b and 6b). We note that
the similarity solution for an axisymmetric gravity current from a point source has a
logarithmic singularity at the origin that makes g formally non-zero for any non-zero
value of J, while laboratory experiments from a finite source allows the current not to
make contact with the top plate at all. It is possible that an experiment run for a very long
time would eventually have the current make contact with the top plate. However, within
the finite time of our experiments, we found that there was no contact for J < 0.48 and
contact for J > 0.53. This compares very favourably with our theoretical predictions that
the transition 0.01 < ng/ny < 0.05 occurs in the range 0.48 < J < 0.54. Although the
annular region was too small for the thin-film approximation to be valid, we show with a
pink triangle in figure 6(b) the ratio of r/ry for one of the calibration experiments, which
coincides with the theoretical curve extremely well.
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4. Discussion and conclusions

We have developed a simple model of the axisymmetric flow of a viscous fluid from a point
source into the gap between two horizontal plates and found a family of similarity solutions
characterised by a single dimensionless parameter J = (3Qgv/2mg)!/*/H, which is the
ratio of the scale height of an unconfined viscous gravity current to the gap width H,
where Q) is the injected volume flux, v is the kinematic viscosity of the fluid and g is the
acceleration due to gravity. The flow has an inner, pressure-driven region in which the fluid
fills the gap and makes contact with both boundaries and an outer, gravity-driven annulus
in which the fluid makes contact only with the lower boundary. The proportion of the total
flow domain occupied by the inner contact region increases with J.

Our numerical and asymptotic solutions, confirmed by experiment, show that the inner
contact region occupies a negligible proportion of the flow domain if J is less than
approximately 0.5, around which value there is a rapid, exponential transition towards
a confined gravity current in which the contact region occupies a significant proportion of
the domain. As J increases further, there is a gradual, algebraic transition to Hele-Shaw
flow, with the contact region occupying 99 % of the flow domain once J is greater than
approximately 2. In practical terms in relation to injection moulding, this means that, for
a given geometry, the injection rate Qp must be greater than approximately 0.04gH* /v
in order for the mould to be filled, and greater than approximately 10mtgH*/v to avoid
the influence of gravity. For intermediate values of Qp, spanning more than two orders of
magnitude, wasted excess fluid must be injected in order to ensure complete filling.

Although our model captures the dominant transitions measured in our experiments, we
found a systematic deviation between our theoretical predictions and our measurements as
the gap width was varied. In particular, the proportion of the flow domain occupied by the
inner, contact region increased as the gap width decreased for a fixed value of J. Given
that the fluid was injected from a finite source, the theoretical logarithmic singularity
associated with a point source does not apply and we saw that the fluid did not make
contact with the upper plate at all during the experiments conducted with the smallest
values of J. However, once contact was made, the contact line between the inner, contact
region and the outer, gravity-driven region advanced further forward than predicted. The
fact that our experimental data varies systematically with gap thickness in a way not
captured by the scaling of our simple model suggests that other physical mechanisms are at
play. One possibility is that hydrodynamic and contact-angle effects akin to those that lead
to the teapot effect (Kistler & Scriven 1994) causes the contact line to advance along the
upper surface. Another, perhaps in combination, is that once the fluid loses contact with
the upper surface there is a rapid transition from a boundary condition of no slip to one
of no stress. In common with die swell (Batchelor, Berry & Horsfall 1973) or conditions
in the vicinity of grounding lines of marine ice sheets (Schoof 2007; Robison et al. 2010),
extensional stresses in the fluid film may influence the position of the contact line. Our
own visual observations of this contact region were that there is an appreciable meniscus,
unlike the glancing contact indicated by the simple theoretical model. These second-order
effects on the dynamics of confined viscous currents would make interesting topics for
further study.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2023.81.
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