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Abstract

The Pontryagin theory of optimal control 1s modified by assuming a
positive cost associated with switching control from one discrete value to
another. The resulting new theory permits a general existence theorem.
Pontryagin's maximum principle is replaced by an “indifference principle’.

1. Introduction

In many practical servo-mechanisms, the control mechanism has only

.o

two settings,
function x(t) which can take a continuous range of real values.
Consider the following optimal control problem:

Minimize
()= [ 0= &+ o) a
subject to '
L yx
x(0)=0
v=0,1 only,

0<¢&<1,0<c¢ and T >0 are given constants

off” and “‘on”, but is used to control a process described by a

(1.1)

(1.2)

(1.3)
(1.4)
(1.5)

Standard optimal control theory [1] applied to this problem gives no result at

all for a large class of reasonable cases. To be precise: if
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£=¢-3¢ (1.6)
is positive, and if the planning horizon T is such that

T > log [ﬂﬂg—”—cﬁ] 1.7

i(1-%)

then no piecewise continuous optimal control function v(t) exists. The ‘‘optimal
policy”, over a non-zero fraction of the time T, consists in switching the
control “on” and “off” infinitely rapidly, so as to simulate a continuously-
variable servo-mechanism kept at the constant intermediate setting v = X.

One way out (the way taken by many mathematical control theorists) is
to admit any measurable function v(¢). In our opinion, this amounts to
removing the mathematical model from all contact with reality.

A more acceptable way out is provided by the following observation. In
practice, there is always some cost associated with a switch of control. The cost
may be as trivial as wear and tear on the switching mechanism, or it may be as
complex as the cost of “loss of confidence in a stop-go national economy”’.
But some cost exists in all cases.

We therefore associate a positive cost y > 0 with each switch of control.
We admit only piecewise continuous controls v(r), which (by (1.4)) means
piecewise constant functions v(t). A control policy P is defined completely by
the set

P = {U(O), k, t, tz, ety tk} (1.8)

where v(0)=0 or 1 is the control setting at time ¢ =0; the non-negative
integer k is the number of times control alters during the planning horizon T;
and the 1, are the times at which control alters, satisfying

L=0<t,<bL<  <KE<T=ta (1.9

Given the policy P, the control function v(t) is:
v()=3+(—D"[v(0)—3] for tn <t=lns (1.10)

and m=0,1,2,---,k

In order to keep to essentials, we shall phrase the discussion in terms of a
system with a scalar state variable x(¢), and with a two-valued scalar control
variable v(t) =0 or 1, only. Neither restriction is essential, and the generaliza-
tions are discussed in section 4.

Let us now state our control problem. Let y >0, T >0, x(0), 4, B, 3, 8,
and M >0 be given constants, and let f(x, v, t) and fo(x, v, t) be real-valued
functions defined on the set R:
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R:a=x=é; v=0,1only; 0=t=T (1.11a)

with the properties

£ fo, of o 9°f —‘& exist everywhere and are

ax’ ax’ x>’ 9
continuous on R (1.11b)
5{ —‘% exist everywhere and are continuous on R (1.11c)
|f(x, v, t)] = M everywhere inside R (1.11d)
a<B=x0)=y<$6 (1.11e)
fx,v,0)>0foras=x=pB; v=01; and0=(=T
(1.11f)
f,v,t)<0fory=x=8; v=0,1; andO=t=T
(1.11g)
We are to minimize
r
J=x(T)+ky =f folx(2), v(t), t] dt + ky (1.12)
0
subject to the given value x(0) at time ¢ =0, and subject to
= flx(6),v(t), 1] (1.13)
v(t) = piecewise continuous, as given by (1.10) (1.14)
fo(x, v, t) 20 everywhere inside R (1.15)

This concludes the statement of the problem.

Although conditions (1.11) appear very restrictive, they are satisfied in
most pracucal apphcatlons For example, consider equations (1.1)~(1.5). Take
@=-2,B=—-1,9=2,6=23. Then x(0) = 0 satisfies (1.11e). Furthermore,
f(x, v, t) = v — x clearly satisfies (1.11f) and (1.11g), and if we pick M = 3, say,
then (1.11d) is satisfied also. (1.11b) and (1.11c) are satisfied trivially for
f=v—x and fo = (x ~ £+ cv, and so is (1.15). The linear nature of f and
quadratic nature of f, are not essential.

The main purpose of conditions (1.11) is to ensure that a solution of
(1.13) exists and the solution trajectory (x(t), v(t),t) for 0=t = T remains
entirely within the region R. As we shall see shortly, this is always true, no
matter how big T gets.
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4] Optimal control with a cost of switching control 319

Although conditions (1.11f)-(1.11g) achieve the purpose stated in the
preceding paragraph, the theory also goes through with other less restrictive
conditions — the essential thing is that solutions of (1.13) must exist for all
controls (1.8)-(1.10), and must remain within some compact region R.

If we are prepared to just postulate existence of a solution (as Pontryagin
[1] does), then the conditions can be relaxed even more. But we prefer to give
a general and constructive proof of the existence of an optimal solution of our
control problem.

Nothing whatever is gained by admitting all measurable control functions
v(t), rather than just the functions (1.10). We shall show that optimal
solutions exist within the piecewise continuous functions (1.10). There is no
point in using a sledgehammer to kill a fly, or to use Lebesgue theory for
functions which are piecewise constant, with a finite number of points of
discontinuity!

The problem (1.10)—(1.15) reduces to a standard Pontryagin problem [1]
for y =0, a limiting case which we exclude explicitly by the condition y >0.
However we shall need much of Pontryagin’s notation. We recall that the
Pontryagin discussion uses the Hamiltonian

HA, x,0,8)=A{t)f(x,0,t)— fo(x, v, t) (1.16)

and the co-state equation

d\_ _dH_df , Of
di - ax ox Mox (1.17)

with the end-point condition
A(T)=0 (1.18)

The Pontryagin optimal policy (if it exists!) consists of maximizing H with
respect to v, i.e., choose v*(t) such that at each time ¢ and for both
permissible values v =0, 1, it is true that

H(A, x,v*,1)= H(A, x, v, 1) (1.19)

It is a consequence of (1.19) and the assumed continuity of f and f, that the
Pontryagin optimal control v*(t) can switch between v* =0 and v* =1 only
at times ¢’ such that

H(\ x, 1,1y = H(A, x,0, ') (1.20)

Unless this condition holds, one or the other of v =0 and v = 1 is definitely
preferred and must be chosen.
We know that this Pontryagin problem may fail to have admissible
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(piecewise constant control) solutions. We shall show that the new problem
(1.10)-(1.15) with y >0 always possesses admissible optimal solutions, and
we shall characterize these solutions.

In section 2 we prove existence. Section 3 is devoted to theorems
characterizing the nature of the optimal solution. Finally, section 4 is devoted
to a brief discussion of extensions and generalizations of this theory. A short
example is given in Section 5.

2. Existence of an optimal control

LemMma 1.  Given any control policy P and corresponding control function
v(t), (1.10), the differential equation (1.13) has a solution x(t) with x(0) as
specified; furthermore, for all t in 0 =1t = T, the points (x(t), v(t), ) lie inside
the region R, (1.11a).

Proor. Let v(t) be given by (1.10); define g(x,t) by

g(x, 1) = f(x, v(1),1) 2.1)
The differential equation becomes
dx
S ek 22)
Let
= ¥ u 8_—..j)
At Mln( MM (2.3)

Then g(x,¢) is bounded by (1.11d) within the region
AR;: 0=t=At;, x(O)-Mr=x=x(0)+ M (2.9)

We note that (2.3) and (1.11e) ensure that ¢ =x =& everywhere in AR.
Furthermore g(x, t) satisfies a Lipschitz condition

[g(x,t)—g(x,t)|= A|x —x'| within AR, (2.5)
where
- ﬁi)
A max (ax (2.6)

(We take the maximum over the bigger region R, for later convenience.)
Hence (see Agnew [3], for example), the differential equation (2.2) has a
solution which remains inside AR,. We shall now show that this solution can
be extended from AR, to R.
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First, we prove that the solution x(r) satisfies
B=x(t)=7y for 0=t=At (2.7)

Suppose (2.7) is false, and let ¢, be such that x(t,) > ¥, say. Since x(0) < y by
(1.11e) and x(t) is differentiable by (2.2), there exists a ,, 0 < f, < ¢,, such that
x(t;)= v and x(t) > v for t, <t < t,. Now use the mean-value theorem of the
differential calculus: there exists t;, t, < t;<t,, such that

(%)' = f(x(t), v(ts), 13) = ﬂ‘—tL:tiz('—Z) >0 2.8)

However, the point (x (), v (), t;) is inside AR and hence a fortiori inside R.
Furthermore y < x(t;) < 8. But then (2.8) contradicts our assumption (1.11g)!
Similarly, the assumption x(t,) < B leads to a contradiction with (1.11f).
Thus (2.7) is established.
We can now prove the lemma itself. Consider the differential equation
(2.2) for the nth interval, (n — 1)At =t = nAt, where n =1,2,--- up to the
integral part of (1+ T/At). We define ¢, = nAt and the region AR,:

AR,: ti =t =t x(tm) MU -t )=Ex=x(t)+ MU —1t,-)  (2.9)

If x(t._;) satisfies B =< x(1._,) = 7, then (2.3) and (2.9) ensure that a = x = §
everywhere inside AR,. Furthermore, g(x, t) satisfies the Lipschitz condition
(2.5) within AR,, with the same A, (2.6). Thus, everything goes through by
induction on n. The same argument which led to (2.7) shows that

B=x(t.)=vy implies B=x(t.)=7v
and the leading step of the induction (n = 1) has already been established.
Q.E.D.

THEOREM 1. There exists an upper bound K on the number of switches of
control (k) in any optimal policy.

Proor. Consider the policy P,: {v(0) =0, k = 0}; i.e., we set v(t1) =0 for
all 0 =1 = T. Solve the differential equation (1.13) with initial condition x(0)
given; by lemma 1, this can be done.

Substitute the solution x(t) for policy P, into (1.12). The integral exists
[(1.11b) and (1.11c) ensure that f, is bounded and continuous] and we get

J(Py) = LT folx(1),0,¢]dt +0 (2.10)

Now let P be any policy (1.8). The solution x(¢) of (1.13) exists, by lemma 1.
Furthermore, the inequality (1.15) leads to
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J(P)=LTf0[x(:),v(t),:]d¢+ky;ky 2.11)

But unless J(P) < J(P,), there is no point in even considering policy P as a
candidate for optimality. Thus serious candidate policies P have ky = J(P)=
J(P,) which implies

k=T _ 2.12)
Y
This explicit upper bound on k establishes the theorem. Note that policies
with higher values of k are feasible. But they are never optimal.

THEOREM 2. An admissible optimal policy exists.

Proor. The candidate policies P, (1.8), form a set. We can give this set a
topology as follows: Two policies P and P’ are ¢-neighbours of each other if

i) k=k'

) |-+ —6+ - +|—til<e
With this definition, the policies P belong to a topological space . Further-
more, by theorem 1, k is bounded, and all the & are bounded 0=+« =T).
Therefore 7 is a compact space (Heine-Borel theorem).

The cost J(P) is a continuous function from m to the real numbers, and is
bounded below by J(P)=z0, all P.

Therefore J has a minimum and that minimum is attained for at least one
policy P in the policy space. Q.E.D.

3. Characterization of optimal controls

Let k(y) be the value of k for an optimal policy, for a given switching
cost y. Let J,(P) be the cost (1.12) of a policy P, for this switching cost, and
J*(v) be the optimal cost.

THEOREM 3. J*(y) is a non-decreasing function of v; k(y) is a non-
increasing function of vy, and becomes 0 for large enough v.

Proor. Let policy P, with k .switches of control, be optimal for
switching cost v ; and let policy P’, with k’ switches of control, be optimal for
switching cost y’. Let y > y’.

Consider policy P for switching cost y’. Its cost is, by (1.12)

JAP)= L, (P)+ (v’ — y)k = J,(P") 3.1
which we rewrite in the form

k=[J,(P)— L APy -7 32)
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Since y >y’ by assumption, and k =0, it follows that J,(P)=J*(y) is no
smaller than J,.(P') = J*(«y’). This proves the first assertion of the theorem.

Next, consider policy P’ for switching cost v. Its cost must exceed J, (P),
hence we get

L (P)=JA(P)+(y —y)k' =z J,(P)
which we rewrite as
k'z [J,(P)— T APy — 7'l (3.3)

Combination of (3.2) and (3.3) proves k = k', which is the second assertion of
the theorem.

Finally, we recall the bound (2.12) on k established in theorem 1. Clearly,
when vy exceeds J(P), (2.12) implies k=0 as the only possible
value. Q.E.D.

All these results are obvious intuitively. If the switching cost increases,
the optimal policy will certainly not use more switches of control than before.
And if it costs very much to switch from v =0 to v = 1, the optimal policy
consists of not switching at all during the entire time T. We then chogse
between v(t) =0, all t, and v(¢) = 1, all «. One or the other (or perhaps both)
are optimal, and that is that.

At this point we also note that the condition y >0 is essential. When
y =0 we have the Pontryagin problem for which there is no existence proof
(and for which an explicit counter-example can be constructed). For y <0,
there is never a sensible solution: If someone pays you money to throw a
switch, just stand there and throw it forward and back as fast as you can — the
faster the better!

THEOREM 4. If the v =0 (Pontryagin) problem has an admissible opti-
mal solution with ko switches of control, then for any y >0 it is true that
k(y)= ko. Furthermore, if k(v) = ko, then the optimal policy for y >0 equals
the Pontryagin policy.

Proor. The first assertion follows from theorem 3. The second assertion
is a consequence of the trivial observation that the switching cost ky cancels
out in a comparison of two policies with the same value of k.

THEOREM 5. (The indifference principle.) Let P, (1.8), be an optimal
policy. Let H and A(t) be defined by (1.16), (1.17), and (1.18). Then at each
switching time t, of P (i = 1,2, - - -, k) the Hamiltonian H is indifferent to the
choice of control, i.e.,

HA (), x(4),1,6)= H(A(1), x(1),0, 1) 3.9

https://doi.org/10.1017/50334270000001181 Published online by Cambridge University Press


https://doi.org/10.1017/S0334270000001181

324 John M. Blatt 9}

Proor. First compare policy P, (1.8), with another policy P’ which has
v'(0)=v(0), k'=k, t;=1 for i# j, but differs in the jth switching time:

=1t —¢ O<e<t -1, (3.5)

For the sake of definiteness, assume that v(t), as determined by (1.10) from
the optimal policy,is v(t)=0for ., <t =1t and v(t)=1for ¢, <t =14,,. (The
opposite case, switch of control from v =1 to v =0, gocs through with
obvious alterations in appropriate places).

In reference [2], it is shown that the varied state function x'(t) satisfies,
for small &,

x'()=x(t)+ el(t)+ o(e) 3.6)
{()=0 for O0=t=t-¢ 3.7)
{(t,)=f[x(t,),l,t,]—f[x(t,),O,t,] (38)
Z—f=(§£)g for L<t=T (3.9)

where df/dx in the last equation is evaluated along the optimal trajectory
(x(t), v(1),1). We define

xo(t) = fl folx (2", v(1'), t'] dt’ (3.10)
so that

) @3.11)

x0(0)=0 (3.12)

By comparison of policies P and P’ we obtain [2]

xo(t) = xo(t) + £4o(t) + 0 () (3.13)
{o(t)=0 for 0=t=1-¢ (3.14)
So(t) = folx(8), 1, 4] = fol x (1),0, ;] (3.15)
%%’=(§§°); for 4 <t=T (3.16)

where dfo/dx is evaluated along the optimal trajectory.
Now define A(¢) by (1.17), (1.18) and let

Z(t) = A(6)§(1) = Lo(1) (3.17)
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[10] Optimal control with a cost of switching control 325

At t =T, (1.18) gives

Z(T)= A(T)(T) = {(T) = = {oT) (3.18)
At this point, the argument differs slightly from the one for the Pontryagin
theory (see reference [2]) since xo( T') is not equal to the cost J which we wish

to minimize. The relation is J = xo(T) + ky. However, the two policies P and
P’ have the same value of k. Thus the difference in cost satisfies

J(P) = J(P) = xi(T) - xo(T) (3.19)

and this difference must be non-negative since P is optimal by assumption.
Using (3.13), we conclude {o(T)= 0, and hence (3.18) gives Z(T)=0.
We now combine (1.17), (3.9), (3.16), and (3.17) to deduce

4z _
dt
so that Z(;)= Z(T)=0. We use (1.16), (3.8), (3.15) and (3.17) to express this

inequality in the form:

H[A(), x(1),0,4]1= H[A (1), x (1), 1, 1] (3.21)

0 for t<t=T (3.20)

The next step in the argument employs a different (though related) variation
of the control function v(t). The varied policy P” has v"(0)=v(0), k" =k,
t' =1t for i# j, but now the jth switching time ¢} is larger than its optimal
value:

t)=t+e O<e<ta—y 3.22)

As before, assume the optimal v(¢) is 0 for t = ¢, and 1 for ¢ > . We get, in
place of (3.6)-(3.8):

x"(t)=x(1)+ el (1) + o(¢) (3.23)
£()=0 for 0=t=1, (3.24)
L +e)=flx(t,+€),0,4, +e]—flx(t; + £),1, 1 + €] (3.25)

Equation (3.9) now holds for ¢ > 1, + £. (3.10)-(3.12) are unchanged, (3.13) to
(3.15) become

x3(8) = xo(t) + edo(t) + 0(¢) (3.26)
f(1)=0 for 0=tr=4, (3.27)
bt + €)= folx(t + €),0,4 + e] = folx (4 +e), 1,4, +¢] (328

Equation (3.16) now holds for t = ¢, + ¢; equations (3.17)~(3.21) are unal-
tered, but instead of (3.21) we get:
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HIAW +e),x(t, +e), L, t,+e]z= H[A(; +e),x(5; +€),0,4 + €] (3.29)

At this stage, we use a continuity argument on (3.29) to allow us to combine it
with (3.21). A(¢) and x(r) satisfy first-order differential equations, and are
therefore continuous functions of time. By assumptions (1.11b) and (1.11c)
the functions f(x, v, t) and fo(x, v, t) are differentiable functions of ¢ and of x.
These properties imply, for constant v:

li_rpO H[A(G +e),x(g+e), 0,4 +e]=H[A(4), x(t), v, 1] (3.30)

We take this limit on both sides of (3.29) to get
HA(), x(1),1,4]= H[A(4), x(1),0, 1] (3.31)

This inequality can be combined directly with (3.21) to yield the indifference
principle (3.4). This completes the proof of theorem 5.

We note that the indifference principle is a weaker condition than
Pontryagin’s maximum principle. The maximum principle implies the indiffer-
ence principle (see equations (1.19) and (1.20)), but not vice versa. The point
is that the maximum principle of the Pontryagin theory forces us to switch
control when the phase space orbit crosses the indifference curve (3.4),
whereas the indifference principle merely allows us to switch control at such a
point. We are permitted to continue on with the same control as before, into a
region of phase space where, according to Pontryagin, this control is no longer
optimal.

However, once we have made this decision, we are not allowed to depart
from it (i.e., not allowed to alter the current value of v) until such time as we
again reach the indifference curve (3.4).

Although the new theory requires exploration of many more candidate
optimal paths than the Pontryagin theory, this does not make it unworkable.
And, unlike the Pontryagin theory, our theorem 2 ensures that an admissible
optimal policy always exists.

There is no relation between the indifference principle and what is called
“singular control”” in the Pontryagin theory. In singular control, the Pon-
tryagin condition H = maximum fails to determine a unique value of the
optimal control v*, because H is independent of v (at least for some range of
values of v). When a cost of switching exists, and hence the maximum
principle must be replaced by the indifference principle, then v* is no longer
determined uniquely by H, even when H has a unique maximum.

Before going on, we note that one of Pontryagin’s theorems carries over
without change (even though the proof requires slight alterations):
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THEOREM 6. If the system is autonomous (i.e., f(x, v, t) and fo(x, v, t) do
not depend upon t explicitly), then the value of H does not change with time:
dH/dt = 0.

PrOOF. (a) At times ¢ when the system is not on the indifference curve
(3.4), v(1) is constant (either O or 1, it does not matter), and straightforward
differentiation using (1.12), (1.16), and (1.17) gives

dH

I:O for t#t i=12,---k (3.32)

(b) At an indifference point, control may or may not switch between
v =0 and v = 1. If control does not switch, then the argument leading to
(3.32) is still valid. If control does switch, we have dH/dt = 0 for t < ¢, and for
t > 1 (by (3.32)), but we also have

+

lim H = lim H (3.33)

—ty 1~y

by the indifference property (3.4) and continuity of H. Thus H remains
constant as we cross the point t =¢. Q.E.D.

THEOREM 7. If the system is ‘“‘amenable to control” and has only one
degree of freedom, then the indifference curve (3.4) in the phase plane contains
at most one value of A for every x and t, i.e., A is a function of x and t.

Proor. We use (1.16) to write (3.4) as

Af(x,0,0) = fo(x,0, 1) = Af(x, 1,0) = fo(x, 1, 1) (3-34)
We define a state x at time ¢ to be ‘“‘amenable to control” provided that
f(x,0,1) # f(x,1,1) (3.35)

If this condition is violated, then the time development of the system (at this
time) is not influenced at all by the choice of control variable, i.e., dx/dt is the
same for v =0 as for v = 1.

Provided the state of the system is amenable to control, we can solve
(3.34) for A to get the indifference curve:

— _ fo(x,0, t)-fOG,l’t)
A=Al t)= £(x0.0)=f(x.1.1) (3.36)
This proves theorem 7 for points amenable to control. At a point which is not
amenable to control, A(x, t) becomes infinite. We assume there are at most a
finite number of such pointsin 0 =t = T. We note that an autonomous system
(no explicit dependence on t) has a time-independent indifference curve
A = A(x) in the phase plane of A versus x.
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Furthermore, for an autonomous system, theorem 6 allows us to deter-
mine the actual orbits in the phase plane. Let the constant value of H be
called E. Use (1.16) with H = E and solve for A to obtain

A= E—}Léif)—‘—’) (3.37)

Thus at points for which f(x, v) # 0, A is determined as a function of x, v, and
the time-independent parameter E.

We have therefore arrived at two one-parameter families of orbits in the
phase plane, one family for v = 0, the other for v = 1. At any moment, the
system moves along one of these orbits, in a direction determined by the sign
of f(x, v). This continues until and unless the orbit (with its given v and E)
intersects the indifference curve (3.34). At each such intersection point, we
have a choice: The optimal path may stay on the same orbital curve (i.e., v in
(3.37) may remain unaltered), or the optimal path may switch to the orbit
(3.37) with the same E but the opposite value of v.

These specialized properties (based on theorem 7) are very powerful in
simplifying the explicit solution of optimal control problems in this theory.
Unfortunately, these special properties do not generalize usefully to systems
with two or more degrees of freedom (i.e., systems in which x and A are
vectors with m 2 2 components). Generalizations of theorems 6 and 7 exist,
and are stated in section 4. But these generalizations are less useful; in
particular, the indifference principle (3.4) does not provide an explicit formula
for the vector A as a function of the vector x, and neither does conservation of
E by itself give an explicit formula for the orbits in phase space. In both cases,
we get restrictive conditions on A, not explicit formulas for A. In all other
respects, however, the theory generalizes well; the orbits in state space and/or
phase space exist and are determined implicitly (though no longer explicitly)
by the theory.

4. Some generalizations
(a) DISCRETE CONTROL WITH MORE THAN TWO VALUES.
Suppose the control set includes the values
v=0,1,2,---,1 4.1)
Piecewise constant control policies are then defined by sets:
P ={vo; k; 11, vy, ta, U2,* * *, te, U} 4.2)

with t, satisfying (1.9) and the v, members of the set (4.1). The control
function v(t) takes the form
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v()=v for t<t=t., 4.3)

where t,=0 and .., = T. (4.2) replaces (1.8), (4.3) replaces (1.10).

The switching cost now becomes a matrix y(a, B) (a, 8 =0,1,---,1),
where y(a, B) is the cost of switching from v = a to v = B. It is not necessary
to assume symmetry, i.e., y(a, 8) may differ from y(B, a). The cost (1.12) is
replaced by

J=xT)+ i v(Vi-1, 07) 4.4)

The essential assumption for the generalization is a lower bound

y(a,B)= v >0 (4.5)

on all switching costs. With such a lower bound, the existence theorem still
holds.

Theorems 3 and 4 lose their meanings unless all y(a, B) are equal; in that
case the theorems carry through.

Theorem 5, the indifference principle, needs to be restated slightly. Using
the notation (4.2) and (4.3), the assertion (3.4) is replaced by

HA(L), x (&), v, 6] = H[A(t), x(8.), t;1, 1] (4.6)

That is, the Hamiltonian is indifferent with respect to the change of control
(from v,_, to v,) which actually takes place at ¢t = ¢; it need not be indifferent
with respect to all conceivable changes of control.

Theorem 6 su. vives, in tncorem 7 ‘ve now have not just one indifference
curve, but /(I +1)/2 of them. They are giveu by

Aup(x, 1) = folx, a, £) — fo(x, B, t) “

B f(x7a’t)_f(x’ﬂ9')
with « =0,1,2,- -, B=a+1l,a+2,---, 1L
If the state variable x(¢) is a scalar and the system is autonomous,
constancy of H determines the permissible orbits and (4.7) gives a set of fixed
curves in the A — x phase plane. A switch of control from v = a to v = 8, or
vice versa, can occur only if the phase point (x(¢), A(t)) falls on the curve
A = A.s(x). Thus, quite a bit of the theory goes through as before.

(b) VECTOR STATE VARIABLE.

Now let x(¢) be a vector with components (x,(t), x2(¢), - -, x.(t)), n = 2.
The differential equation (1.13) is replaced by the system
%=ﬁ[x(t),v(r),t] i=12,--.,n (4.8)
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We note that, as long as the control set is discrete, there is no point in making
v a vcctor.

Conditions for ensuring the existence of a solution to the differential
equations can be written down. We shall not do so here.

Thereafter, for the case v =0,1, only, theorems 1,2,3,4,5 and 6 go
through with obvious minor modifications (in particular, A(t) becomes a
vector, also). Theorem 7 does not go through as it stands. Rather, the
indifference condition yields:

ZI Affi(x0,0) = fi(x. 1, O] = fo(x,0,1) = fo(x, 1,1) (4.9)

This is a linear relation between the components of the vector A. It is not
enough to determine A explicitly (unless n = 1). Similarly, conservation of the
Hamiltonian (for an autonomous system) yields

.Z’j] /\-(’)f'(x(l), U([)) =F +f(,(x(t), u([)) (4]0)

This is also not enough to determine A explicitly.

(c) DisconTiNuOusS f(x, v, t).

The condition (1.11b) implies that f(x, v, t) and fi(x, v, t) are continuous
functions of the time variable ¢, for all 0 = ¢ = T. This is often an inconvenient
restriction. We would like to be able to work with functions f and/or f, which
may jump at a finite number of values of ¢, i.e., which are piecewise C' rather
than C' over the whole interval.

In the Pontryagin case (y =0) this is permissible, as proved in
reference [2].

Here, however, we must investigate the possibility that a time 1 = 6 at
which f(x, v, t), say, is discontinuous becomes equal to one of the switching
times # of the optimal policy. The proof of the indifference principle relied
heavily on continuity arguments, see (3.30). At first sight, therefore, it looks
hopeless.

However, it is possible to relax the requirements somewhat. Let  be a
point of discontinuity, and define jump sizes Af and Af, by

Af(x,u)=[i_r3(1)[f(x, 0,0+ €)= folx. v, 0~ €)] 4.11)

Afo(x,v)= Iri_r’n0 [folx, v, 0 + €)= fo(x, v, 0 — €)] (4.12)

They need not both be non-zero, but at least one of them is non-zero if 8 is a
jump point.
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The theorems still go through if f and f, are piecewise C' and if the jump
sizes are independent of the control setting:

Af(x,0)=Af(x, 1) (4.13)
Afo(x,0) = Afo(x, 1) 4.14)

A detailed look at the proof of theorem 5 shows that this weaker condition
suffices.

Other generalizations suggest themselves readily enough, but they are
not discussed in this paper.

5. A specific example

Consider problem (1.1)~(1.5), with the numerical values £ = 0.6, ¢ = 0.1,
T =5.0. Equation (1.6) yields £ =0.55, and the condition (1.7) becomes
T >1.2217, which is satisfied. Thus this Pontryagin problem has no optimal
solution (one is led to a “‘chattering control’’).

Now change the criterion from (1.1) to (1.12), with a cost v = 0.4 of every
change of control.

The candidate optimal solutions corresponding to the policies (1.8) are
pieced together from solutions of the differential equations (1.2)'and (1.17),
with piecewise constant v. Let v, stand for the value of v(¢) in the interval
tm <1t =tn., as defined by (1.10). Let A, and B. be constants, m =

0,1,:--, k. Then in the interval ¢, <t =1t,., we have:
x(t)= v + A exp(tm — 1) 6.1
A(t)= Bnexp(t —t,)— An exp(tm —t)— 20, +2£ 5.2)

According to the indifference principle, A(¢) at ¢ = t,, must be such that H is
independent of v; this happens for A = ¢. These conditions bzcome

WmA(t)= B, —An —2v. +26=¢ (5.3)

form=12,---,k—1,k

and, using the notation z, =exp(fn+si— tm ),

Altna)= lim A(1)= Bnz. —%—2% +2=c (5.4)

form=0,1,2,---, k — 1
Furthermore, x(t) must be continuous at t = t,.,, giving the conditions:

Un + ApZm = Ui+ Ay form=0,1,2,--- k-1 (5.5)
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So far, we have 3k equations correcting the 3k +2 unknowns A,, B,, (with
m=0,1,---,k) and z,. (with m =0,1,---, k —1). The remaining two equa-
tions are obtained from the initial condition x(0) = 0 and the “free final state”
condition A(T)= 0. Thus, there are enough equations to specify at most one
candidate optimal solution for each choice of v(0) and k in (1.8). Evaluation
of (1.12) is straightforward, and we know that the optimal solution can be
obtained by finite enumeration, i.e., there is an upper bound on k.
For the numerical values £ =0.6, ¢ =0.1, T=5.0, and y =04, the
optimal policy is
v(0)=1, k=0, (5.6)

that is, v(t)=1 for all 0 =t = T. This is not a Pontryagin policy: near ¢t = T,
the final condition A(T)=0 together with continuity of A(t) ensure that
A(t)<c, hence every Pontryagin policy has v*(t)=0 near t = T.

In general, for given & ¢, T and for sufficiently high switching cost y (the
minimum value depends on &, ¢, and T) it is clear that any switching of
control becomes suboptimal. There then remains a choice between only two
candidate policies, v(0) =0 or v(0) = 1, both with k = 0. For £ > 0.5, v(0) =1
turns out to be optimal, for £ < 0.5, v(0) = 0 is optimal. It may be surprising at
first sight that the comparatively small switching cost y = 0.4 suffices to drive
us into this “‘no-switching” regime for a planning time T = 5.0, which so
greatly exceeds the critical time T.=1.2217 at which all Pontryagin policies
break down into chattering control. We state, without giving the proof, that
v =0.4 is large enough to prevent all switching for £ =0.6 and ¢ = 0.1, no
matter how large T is (i.e., even in the limit T — ).
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