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Abstract

We consider growing random recursive trees in random environments, in which at each
step a new vertex is attached (by an edge of random length) to an existing tree vertex
according to a probability distribution that assigns the tree vertices masses proportional to
their random weights. The main aim of the paper is to study the asymptotic behaviour of
the distance from the newly inserted vertex to the tree’s root and that of the mean numbers
of outgoing vertices as the number of steps tends to ∞. Most of the results are obtained
under the assumption that the random weights have a product form with independent,
identically distributed factors.
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1. Introduction

We consider the following random recursive tree model. A recursive tree is constructed
incrementally, by attaching a new vertex to a randomly chosen existing tree vertex at each step.
Initially, the tree consists of a single vertex, v(0), that has weight w(0) = 1 and label 0. At the
first step, a new vertex, v(1), is added to the tree as a child of the initial vertex. It is labelled 1,
and a random weight, w(1) > 0, and a random length, Y (1) ≥ 0, are respectively assigned
to v(1) and to the edge connecting the vertices v(0) and v(1). It is assumed that the edge is
directed from v(0) to v(1). At step j > 1, given all the weights w(0), w(1), . . . , w(j − 1),
first a node v(j∗) is chosen at random from the nodes v(0), v(1), . . . , v(j −1) according to the
distribution with probabilities proportional to the nodes’ weights, and then a new vertex v(j)
is added to the tree as a child of the node v(j∗). The new vertex has label j , and a random
weight w(j) > 0 and a random length Y (j) ≥ 0 are respectively assigned to it and to the edge
connecting the vertices v(j∗) and v(j). As at the initial step (where, for consistency, we will
put 1∗ = 0), the edge is directed from v(j∗) to its child vertex v(j). We assume that {Y (j)}j≥1
is a sequence of independent random variables (RVs) which is independent of the sequence of
the (generally speaking random) weights {w(j)}j≥0. Interpreting the sequence of weights as a
‘random environment’ in which our recursive tree is growing, and appealing to an analogy with
random walks and branching processes in random environments, it is not unnatural to refer to
such a model as a random recursive tree in a random environment.
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Let
D0 := 0, Dn := Dn∗ + Y (n), n ≥ 1,

be the distance from the vertex v(n) to the root (i.e. the sum of the lengths of the edges connecting
v(n) with v(0)). Our main aim in this paper is to study, as n → ∞, the asymptotic behaviour
of Dn under various assumptions on the random weights w(j) and lengths Y (j), and also that
of the mean values of the outgoing degrees

Nn(j) :=
n∑

k=j+1

1{v(k∗)=v(j)}, j ≤ n, (1)

where 1A is the indicator of the event A.
Observe that if w(j) ≡ Y (j) ≡ 1 for all j , then we obtain the standard random recursive

tree ([11]; see also [15]). Ifw(j) = aj , j ≥ 0, where a > 0 is a constant and Y (j), j ≥ 1, are
RVs whose distributions satisfy certain mild conditions, we obtain the recursive tree considered
in [10] (in fact, the model of [10] assumed that at each step a fixed number, k ≥ 1, of children
are attached to one of the existing tree vertices, and also that the Y (j) are vector valued).

Here we should also mention other, related models where the weights of the vertices can
change at each step. Thus, if, after the completion of the kth step of the tree construction, the
weight of the vertex v(j), j ≤ k, is w(j) ≡ w(j, k) = 1 + βNk(j), where β ≥ 0 is constant
and Y (j) ≡ 1, we obtain the linear recursive tree studied in [16] and [5] (see the bibliographies
therein for further references). The case where w(j) ≡ w(j, k) = 1 + Nk(j) was considered
in [3]; the power-tail limiting behaviour of the degree distribution for this model that had been
guessed in [3] was established in [8].

Ifw(j) = a1 · · · aj , j ≥ 1 (where a1, . . . , aj are independent, identically distributed (i.i.d.)
RVs), and Y (j) ≡ 1, we obtain a version of a weighted recursive tree. It is this last model and
its generalizations that will be of the most interest to us in the present paper.

From now on we assume that the weight, w(j), of the vertex v(j) is, generally speaking,
random and, once assigned, remains unchanged forever.

Section 2 of the paper is devoted to studying the asymptotic behaviour of the distribution
of Dn. Theorems 1 and 2 present general convergence results for the conditional distribution
of Dn in the cases where the random weights w(j) tend to ‘prescribe’ new attachments to
vertices close to the root of the tree and, respectively, where the new attachments are ‘more
dispersed’ across the tree. Corollary 2 covers the special case where w(j) ≡ 1. The results
of Section 2 also show that, for any α ∈ (0, 1], we can construct a random recursive tree such
that Dn behaves like nα as n → ∞. Theorem 3 implies that, in the case of the ‘product-
form’ weights w(j) = a1 · · · aj , j ≥ 1, with aj being nondegenerate i.i.d. RVs satisfying the
moment conditions E ln aj = 0 and E | ln aj |2+δ < ∞ for some δ > 0, the limiting distribution
of Dn/

√
n coincides with the law of the maximum of the Brownian motion process on a finite

time interval.
Section 3 deals with the expectations of the numbers of outgoing degrees in the case of

product-form weights, under the assumption that the random walk generated by the i.i.d.
sequence {ln aj } satisfies Spitzer’s condition. Theorem 4 gives the asymptotic behaviour of
the unconditional expectations ENn(k) as n → ∞ when either k = j or k = n − j for a
fixed value j ≥ 0 (in both cases it is given by a regularly varying function of n). Theorem 5
complements it by covering the case where min{j, n− j} → ∞. Here the answer has the form
of a product of regularly varying functions of j and n − j , respectively; in particular, in the
case when ln aj has zero mean and finite variance, we obtain ENn(j) ∼ 2π−1(n− j)1/2j−1/2.
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Theorem 6 describes, for a range of j -values, the asymptotic behaviour of the distribution of
the conditional expectation Ew Nn(j) given the sequence of weights w(1), w(2), . . . .

2. The distribution of Dn

2.1. The basic properties of Dn

Let

Wn :=
n∑
j=0

w(j), pn(j) := w(j)

Wn

, j = 0, 1, . . . , n.

Set f0(t) := 1 and fj (t) := E eitY (j), j ≥ 1, and let

ϕ0(t) := 1, ϕn(t) := Ew eitDn := E[eitDn | w(1), . . . , w(n− 1)], n ≥ 1,

�n(t) := E ϕn(t) = E eitDn, n ≥ 1

(here and in what follows, Ew and Pw respectively denote the conditional expectation and
probability given the sequence of weights {w(j)}).

It is easy to see that

ϕn+1(t) =
n∑
j=0

pn(j)ϕj (t)fn+1(t)

= Wn−1

Wn

n−1∑
j=0

pn−1(j)ϕj (t)fn+1(t)+ pn(n)ϕn(t)fn+1(t)

= (1 − pn(n))
fn+1(t)

fn(t)
ϕn(t)+ pn(n)ϕn(t)fn+1(t)

= [1 + (fn(t)− 1)pn(n)]fn+1(t)

fn(t)
ϕn(t)

= · · ·

= fn+1(t)

n∏
j=1

[1 + (fj (t)− 1)pj (j)]. (2)

Remark 1. Observe that (2) in fact means that, given the environment, the RV Dn+1 admits a
representation of the form of a sum of independent RVs, as follows:

Dn+1
d= I1Y (1)+ · · · + InY (n)+ Y (n+ 1). (3)

Here {Ij } is a sequence of random indicators that are independent of each other and also of
{Y (j)}, with P(Ij = 1) = pj (j), j ≥ 1. In the special case where Y (j) ≡ w(j) ≡ 1, this
representation is equivalent to the correspondence between the quantityDn and the numbers of
records in an i.i.d. sequence that was used in [11] (see also Section 3.6 of [17], for a discussion
of a somewhat more general situation where the representation (3) with Y (j) ≡ 1 holds). Note,
however, that in [11] a probabilistic argument that works only in that special case was used to
derive representation (3), which is actually the main tool for studyingDn, whereas our approach
leads directly to (3) and is much more general.
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From the recursive relation (2), we can derive a number of interesting results on the limiting
behaviour of Dn. Note that (2) was first derived in the case where w(j) = aj , j ≥ 0, Y (j) ∈
R
d , in [10] (one can easily see that this recursive formula and the statements of Theorems 1

and 2 below remain true in the multivariate case as well). In particular, relation (2) immediately
implies the following assertion, describing the limiting behaviour of the conditional distribution
of Dn (given the weights) when the weight sequence {w(j)} ‘suggests’ new children to attach
not too far from the tree’s root.

Theorem 1. If
∞∑
j=1

pj (j) < ∞ almost surely (a.s.)

and the distribution of Y (n) has a weak limit as n → ∞, i.e. for a characteristic function f (t),

lim
n→∞ fn(t) = f (t),

then there exists the limit

lim
n→∞ϕn(t) = ϕ∞(t) := f (t)

∞∏
j=1

[1 + (fj (t)− 1)pj (j)] a.s.

This result, in turn, implies that Dn
d−→ D∞ as n → ∞, where D∞ is a proper RV with the

characteristic function E ϕ∞(t).
The next assertion applies in situations where the attachment preferences are spread ‘more

uniformly’ across the tree.

Theorem 2. Let the sequence of RVs {Y (j)}j≥1 be uniformly integrable, and let there exist
both a sequence {hn} such that hn → ∞ as n → ∞ and an RV ζ such that the following
convergence in distribution occurs as n → ∞:

ζn := 1

hn

n∑
j=1

pj (j)E Y (j)
d−→ ζ. (4)

Then, for any t ,

ϕn

(
t

hn

)
d−→ eitζ .

Remark 2. We can easily see that if, instead of (4), we have ζn → ζ a.s. for some RV ζ , then

lim
n→∞ϕn

(
t

hn

)
= eitζ a.s.,

uniformly in t from any compact set.

Proof of Theorem 2. It is not difficult to see that, due to the uniform integrability condition,
as n → ∞,

fj

(
t

hn

)
− 1 = E exp

{
itY (j)

hn

}
− 1 = 1

hn
(it E Y (j)+ o(1))
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uniformly in j ≥ 1 and in t from any compact set. Hence, as pj (j) ≤ 1, by (2) we have

ϕn

(
t

hn

)
= fn

(
t

hn

) n−1∏
j=1

[
1 +

(
fj

(
t

hn

)
− 1

)
pj (j)

]

= (1 + εn(t)) exp

{
it

hn

n∑
j=1

pj (j)E Y (j)

}
,

where εn(t) = oP(1) as n → ∞. This clearly implies the assertion of the theorem.

Corollary 1. Under the conditions of Theorem 2,

lim
n→∞�n

(
t

hn

)
= E eitζ ,

so Dn/hn
d−→ ζ as n → ∞.

From Theorem 2 we can also easily deduce the following result obtained in [10] (note that,
in the special case where Y (j) ≡ 1, the result was originally established in [11]).

Corollary 2. If w(j) ≡ 1, j = 0, 1, 2, . . . , the family of RVs {Y (j)}j≥1 is uniformly inte-
grable, and

1

n

n∑
j=1

E Y (j) → µ ∈ R as n → ∞,

then Dn/ ln n
p−→ µ.

Proof. In this case clearly pj (j) = 1/(j + 1) and, as was shown in Lemma 1(i) of [10],
under the above conditions,

ζn = 1

ln n

n∑
j=1

1

j + 1
E Y (j) → µ.

The assertion of the corollary thus follows from Theorem 2.

We also obtain the same asymptotics for Dn when the weights are random but remain the
same ‘on average’.

Corollary 3. If Y (j) ≡ 1, j ≥ 1, and the sequence of random weights {w(j)} satisfies the
strong law of large numbers, i.e. as n → ∞,

1

n

n∑
j=1

w(j) → a > 0 a.s.,

then Dn/ ln n
p−→ 1.

Proof. It again suffices to apply (a slightly modified version of) Lemma 1(i) of [10] (this
time to the sequences {yn := anW−1

n } and {xn := w(n)/a}) and use our Theorem 2.
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Remark 3. To obtain a faster-than-logarithmic growth rate for Dn (assuming that Y (j) ≡ 1),
the weights w(j) should grow faster than any power function. Indeed, if, say,

w(j) = jαl(j), α ∈ R,

is a regularly varying function, then clearly

∞∑
j=1

pj (j) < ∞ if α < −1

(meaning that in this case Theorem 1 is applicable), and, by Karamata’s theorem, Wn ∼
(α + 1)−1nα+1l(n) if α > −1, meaning that pj (j) ∼ 1/(α + 1)j and, hence,

n∑
j=1

pj (j) ∼ ln n

α + 1
if α > −1.

Thus, in the latter case, Dn/ ln n
p−→ 1/(α + 1).

On the other hand, for, say,

w(j) = αjα−1ej
α

, α ∈ (0, 1],
we obtain Wn ∼ en

α
and, hence,

n∑
j=1

pj (j) ∼ nα.

This example thus shows that, for any α ∈ (0, 1], we can construct a random recursive tree
with Dn/nα

p−→ 1 as n → ∞.

2.2. The case of product-form random weights

In this subsection we will construct and study recursive trees with random vertex weights
of the form w(j) = a1 · · · aj , j ≥ 1 (where the aj are i.i.d. RVs), and unit edge lengths. As
will be clearly seen from the proofs below, the main results will also hold in the case of random
i.i.d. edge lengths with finite mean (Remark 4). Thus, restricting our attention to the case of
unit edge lengths leads to no loss of generality, but makes the exposition more compact and
transparent.

Denote by Tn, n = 0, 1, 2, . . . , the set of all rooted recursive trees having n nonrooted
vertices and unit edge lengths (that is, Tn consists of the rooted trees whose roots are labelled 0
and whose nonrooted vertices are labelled by numbers 1, 2, . . . , n in such a way that, for any
nonrooted vertex labelled, say, j , the shortest path leading from it to the root traverses only the
vertices labelled by numbers less than j ). For a tree tn ∈ Tn, let tn(j) ∈ Tn+1 be the recursive
tree which is obtained from tn by adding a vertex labelled n + 1 as a child of the vertex with
the label j ∈ {0, 1, . . . , n}.

We can describe the construction of our random recursive tree as follows. First, we run a
random walk

S0 = 0, Sj = θ1 + · · · + θj , j ≥ 1,

where the θj
d= θ, j = 1, 2, . . . , n, are i.i.d. RVs. Second, given Sj , j = 0, 1, . . . , n, we

construct a (conditional) Markov chain T0, T1, . . . , Tn, with Tk ∈ Tk, k = 0, 1, . . . , n, by as-
signing the weight w(j) := e−Sj to the vertex labelled j ≥ 0 (so w(j) = a1 · · · aj , j ≥ 1,
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in the notation of Section 1, with the aj := e−θj being i.i.d. RVs), so that now we have, for
r = 0, 1, . . . , n,

Wr =
r∑
q=0

w(q) =
r∑
q=0

e−Sq , (5)

pr(j) = e−Sj
Wr

= e−Sj∑r
q=0 e−Sq , j = 0, 1, . . . , r, (6)

and then letting, for any tr ∈ Tr ,

Pw(Tr+1 = tr (j) | Tr = tr ) ≡ P(Tr+1 = tr (j) | Tr = tr ; w(0), w(1), . . . , w(r)) := pr(j),

j = 0, 1, . . . , r.

The main result of this subsection is the following theorem.

Theorem 3. If

E θ = 0, σ 2 := E θ2 > 0, E |θ |2+δ < ∞ for some δ > 0, (7)

then, as n → ∞,

ζn := 1√
n

n∑
j=1

pj (j)
d−→ σm max

0≤u≤1
B(u), σm := σ

∫ ∞

0

m(dy)

y
< ∞,

where {B(u)}u≥0 is the standard Brownian motion process and the measure m is specified in
the proof (see (11)).

Together with Corollary 1, the above assertion immediately yields the following result.

Corollary 4. Under the conditions of Theorem 3,

Dn√
n

d−→ σm max
0≤u≤1

B(u) as n → ∞.

In other words, for any x > 0,

P(Dn > σm
√
nx) → 2(1 −�(x)),

where � is the standard normal distribution function.

Remark 4. It is obvious that the assertion of Corollary 4 remains true in the case of i.i.d.
random edge lengths, Y (j) ≥ 0, with finite, positive mean, the only difference being that σm
should be replaced by σm E Y (1) in its formulation.

Proof of Theorem 3. Let
Ln := min

0≤k≤n Sk.

Using the proof of Theorem 4.1 of [2], we will show that

1

|Ln|
n∑
j=1

pj (j) →
∫ ∞

0

m(dy)

y
< ∞ a.s. (8)
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Since, by the invariance principle,

|Ln|√
n

d−→ σ max
0≤u≤1

B(u) as n → ∞, (9)

the assertion of the theorem will then immediately follow.
First, denote by

γ0 := 0, γj+1 := min{n > γj : Sn < Sγj }, j ≥ 0,

the strict descending ladder epochs of the random walk {Sn}n≥0. All the RVs introduced are
finite a.s., as, in view of (7), {Sn}n≥0 is recurrent.

Let {Xn}n≥0 be a Markov chain defined, for n = 1, 2, . . . , by

Xn := eθnXn−1 + 1.

When Xx0 = x > 0 is a fixed value, we will use the notation {Xxn}n≥0. Clearly,

Xxn = xeSn +
n∑
q=1

eSn−Sq = eSn(x − 1 +Wn). (10)

Set γ := γ1. Under our assumptions in (7), the expectation E Sγ < 0 is finite (see,
e.g. Corollary 10, Section 17, of [9]), and the Markov chain {Xγn}n≥1 with transition kernel

Mγ (x, ·) := P(Xxγ ∈ ·), x > 0,

has a unique invariant probability measure, mγ , satisfying (see, e.g. Lemma 5.49 of [13] and
page 481 of [2]):

mγ (A) =
∫ ∞

0
mγ (dx)Mγ (x,A).

Moreover, the measure m defined by

m(f ) := 1

E[−Sγ ]
∫ ∞

0
E

[γ−1∑
k=0

f (Xxk )

]
mγ (dx) (11)

is an invariant measure for the Markov chain {Xn}n≥0 (see [2]).
Now note that, by virtue of (6) and (10),

ζn = 1√
n

n∑
j=1

pj (j) = 1√
n

n∑
j=1

1

X1
j

.

Let Pδy be the distribution of the two-dimensional random walk

Zn := (Xn, eSn), n ≥ 0

(on the group of transformations x 
→ ax + b of the real line with the composition law
(b1, a1)(b2, a2) = (b1 +a1b2, a1a2)), whenX0 = y. It was shown in the proof of Theorem 4.1
of [2] that if f ∈ L1(m) then

lim
n→∞

1

|Ln|
n∑
j=1

f (Xj ) =
∫ ∞

0
f (y)m(dy) Pmγ -a.s., (12)
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where

Pmγ :=
∫ ∞

0
Pδymγ (dy)

is the law of the two-dimensional random walk {Zn}n≥1 when the distribution of X0 is mγ .
For N = 1, 2, . . . and x > 0, let

gN(x) := 1

x
1{N−1≤x≤N} ≤ 1

x
=: g(x).

Clearly, for all x > 0,
gN(x) ↗ g(x) as N → ∞, (13)

and gN(x) ∈ L1(m) for each N = 1, 2, . . . . Therefore, by (12),

lim
n→∞

1

|Ln|
n∑
j=1

gN(Xj ) =
∫ ∞

0
gN(y)m(dy) Pmγ -a.s. (14)

On the other hand, for each N ≥ 1 and any x > 0,

1

|Ln|
n∑
j=1

gN(X
x
j ) ≤ 1

|Ln|
n∑
j=1

g(Xxj ) = 1

|Ln|
n∑
j=1

e−Sj
x − 1 +Wj

≤ 1

|Ln|
n∑
j=1

∫ x−1+Wj

x−1+Wj−1

dy

y
= 1

|Ln|
∫ x−1+Wn

x−1+W0

dy

y

= 1

|Ln| [ln(x − 1 +Wn)− ln x] ≤ 1

|Ln| [ln(x + ne|Ln|)− ln x]

≤ 1

|Ln|
[

ln ne|Ln| + x

ne|Ln| − ln x

]
= 1 + 1

|Ln| [ln n+O(1)]
p−→ 1 as n → ∞, (15)

by the invariance principle (see, e.g. [6, Section 2.10]).
Combining (14) with (15) shows that

sup
N≥1

∫ ∞

0
gN(y)m(dy) ≤ 1,

which, together with (13), yields
∫ ∞

0
g(y)m(dy) ≤ 1.

Therefore, by (12),

lim
n→∞

1

|Ln|
n∑
j=1

g(Xj ) =
∫ ∞

0
g(y)m(dy) =

∫ ∞

0

dm(y)

y
Pmγ -a.s.

To see that this convergence holds for all starting points x > 0, it suffices to observe that g(z)
is monotone in z > 0 and that Xx1

j > X
x2
j , j ≥ 1, for x1 and x2 with x1 > x2 > 0.

This, in view of (8) and (9), completes the proof of Theorem 3.
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3. The expectations of the outdegrees of vertices

Let Nn(j) be the outdegree of the vertex v(j), j = 0, 1, . . . , n, in Tn, i.e. the number of
edges coming out of v(j) in a tree having n nonrooted vertices. Clearly, the RV Nn(j) admits
the representation (1) and, therefore,

Ew Nn(j) = E[Nn(j) | w(1), . . . , w(n− 1)] =
n∑

k=j+1

Ew 1{v(k∗)=v(j)}

=
n∑

k=j+1

pk−1(j) = e−Sj
n−1∑
k=j

W−1
k (16)

and

ENn(j) =
n−1∑
k=j

E e−SjW−1
k . (17)

Our aim in this section is to investigate the asymptotic behaviour (as n → ∞) of the
expectations ENn(j) and that of the distributions of the RVs Ew Nn(j) in different ranges of
the parameter j .

3.1. The asymptotic behaviour of E Nn(j)

In this section we impose weaker restrictions (compared to conditions (7), used in Section 2)
on the random walk Sn = θ1 + · · · + θn, n ≥ 1, where θj

d= θ are i.i.d. RVs. Namely, we
assume only that Spitzer’s condition holds:

There exists a ρ ∈ (0, 1) such that

1

n

n∑
k=1

P(Sk > 0) → ρ as n → ∞. (18)

It is known [12] that this condition is equivalent to Doney’s condition,

P(Sn > 0) → ρ as n → ∞
(for a further discussion of condition (18), see, e.g. Section 8.9 of [7]).

We will need a number of auxiliary results concerning the random walk {Sn}n≥0. Let

�0 := 0, �j+1 := inf{n > �j : Sn > S�j }, j ≥ 0,

be the strict ascending ladder epochs of the random walk {Sn}n≥0. Recall that the γi , 0 =
γ0 < γ1 < γ2 < · · · , denote the strict descending ladder epochs of the walk. Introduce the
two renewal functions

U(x) := 1 +
∞∑
j=1

P(S�j < x), x > 0, U(0) = 1, U(x) = 0, x < 0,

V (x) :=
∞∑
j=0

P(Sγj ≥ −x), x > 0, V (0) = 1, V (x) = 0, x < 0,
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and set
Mn := max

0≤k≤n Sk, M̃n := max
1≤k≤n Sk.

It is known (see, e.g. Lemma 1 of [14] and Lemma 1 of [19]) that, under condition (18),

EU(−θ) 1{−θ>0} = e−φ, EU(x − θ) 1{x−θ>0} = U(x), x > 0, (19)

where

φ :=
∞∑
j=1

1

j
P(Sj = 0) < ∞

and
EV (x + θ) = V (x), x ≥ 0. (20)

By means ofV (x) andU(x)we can specify two sequences of probability measures, {P−
n }n≥1 and

{P+
n }n≥1, on the σ -algebras {�n := σ(S1, . . . , Sn)}n≥1, with the corresponding expectations

{E−
n }n≥1 and {E+

n }n≥1, by setting

E−
n [ψn(S1, . . . , Sn)] := eφ E[ψn(S1, . . . , Sn)U(−Sn) 1{M̃n<0}], (21)

E+
n [ψn(S1, . . . , Sn)] := E[ψn(S1, . . . , Sn)V (Sn) 1{Ln≥0}] (22)

for each bounded, measurable function ψn(x1, . . . , xn). It is easy to verify that (19) and (20)
imply that each of the sequences {P±

n }n≥1 is consistent, and that by Kolmogorov’s extension
theorem there therefore exist measures P− and P+ on the σ -algebra σ(S1, S2, . . . ) such that
their restrictions, P± |�n , to �n coincide with P±

n , n = 1, 2, . . . .
It is known (see Lemma 2.7 of [1]) that, under condition (18),

η1 :=
∞∑
k=1

eSk < ∞ P− -a.s., η2 :=
∞∑
k=0

e−Sk < ∞ P+ -a.s. (23)

Finally, it is not difficult to deduce from Lemma 3 of [19] that, if we let

H−
n (x) := P

( n∑
k=1

eSk ≤ x

∣∣∣∣ M̃n < 0

)
, H+

n (x) := P

( n∑
k=0

e−Sk ≤ x

∣∣∣∣ Ln ≥ 0

)

and
H−(x) := P−(η1 < x), H+(x) := P+(η2 < x),

then, under condition (18),

H±
n (x) ⇒ H±(x) as n → ∞, (24)

where the symbol ‘⇒’ denotes convergence at all continuity points of the limiting function.
In what follows we will often use the following result (see, e.g. Lemma 2.1 of [1], Theo-

rem 8.9.12 of [7], and Lemma 2 of [19]). Let

λn(x) := P(Ln ≥ −x), µ̃n(x) := P(M̃n < x), x ≥ 0.
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Lemma 1. Under Spitzer’s condition, (18), there exist functions l1(n) and l2(n), related by
l1(n)l2(n) ∼ π−1 sin πρ, n → ∞, that are slowly varying at infinity and such that

P(Ln ≥ 0) ∼ nρ−1l1(n) and P(M̃n < 0) ∼ n−ρl2(n), as n → ∞. (25)

Moreover, there exist absolute constantsC1 > 0 andC2 > 0 such that, for all n ≥ 1 and x ≥ 0,

λn(x) ≤ C1V (x)P(Ln ≥ 0), µ̃n(x) ≤ C2U(x)P(M̃n < 0). (26)

In (25) and in the rest of the paper, by an ∼ bn we mean that an/bn → 1 as n → ∞.
Let {S−

n }n≥0 and {S+
n }n≥0 be two independent copies of {Sn}n≥0, and let

L+
n := min

0≤r≤n S
+
r , M̃−

n := max
1≤l≤n S

−
l .

Introduce the probability distributions

P−,+ := P− × P+, P·,+ := P × P+, P−,· := P− × P

on the sample space R
∞ × R

∞ of the pair ({S−
n }n≥0, {S+

n }n≥0), where P is the distribution of
the original sequence {Sn}n≥0 and the measures P± are specified by (21) and (22), and let E−,+,
E·,+, and E−,· be the expectation operators under the respective measures.

We will call an array of RVs {Gl,r : l, r ∈ N} adapted if, for any pair of indices l, r ∈ N, the
RV Gl,r is measurable with respect to the σ -algebra σ(S−

1 , . . . , S
−
l ) ⊗ σ(S+

1 , . . . , S
+
r ). The

following result is contained in Lemma 3 of [19].

Lemma 2. Let Spitzer’s condition, (18), hold, and let {Gl,r : l, r ∈ N} be an adapted array of
uniformly bounded RVs. If the limit

lim
l,r→∞Gl,r =: G P−,+ -a.s.

exists then
lim

l,r→∞ E[Gl,r | M̃−
l < 0, L+

r ≥ 0] = E−,+G.

The next statement is a slight modification of Lemma 2.5 of [1] and can be proved using the
same arguments used there.

Lemma 3. Let Spitzer’s condition, (18), hold, and let {Gl,r : l, r ∈ N} be an adapted array of
uniformly bounded RVs. If the limit

lim
r→∞Gl,r 1{M̃−

l <0} =: G+
l 1{M̃−

l <0} P·,+ -a.s.

exists, then
lim
r→∞ E[Gl,r 1{M̃−

l <0} | L+
r ≥ 0] = E·,+G+

l 1{M̃−
l <0},

and if the limit
lim
l→∞Gl,r 1{L+

r ≥0} =: G−
r 1{L+

r ≥0} P−,· -a.s.

exists, then
lim
l→∞ E[Gl,r 1{L+

r ≥0} | M̃−
l < 0] = E−,·G−

r 1{L+
r ≥0} .
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The following result was proved in Lemma 2.2 of [1]. Denote by

τ(n) := min{k ≥ 0 : Sk ≤ Sl, l ∈ [0, n]}
the left-most point at which the random walk {Sn} attains its minimum value on the time
interval [0, n].
Lemma 4. Let Spitzer’s condition, (18), hold, and let u(x) ≥ 0, x ≥ 0, be a nonincreasing
function such that

∫ ∞
0 u(x) dx < ∞. Then, for every ε > 0, there exists an integer J such that,

for all n ≥ J ,
n∑

p=J
E[u(−Sp); τ(p) = p] P(Ln−p ≥ 0) ≤ ε P(Ln ≥ 0).

Introduce the RVs

G+
r (j) := e−S+

j−r 1{j≥r} +eS
−
r−j 1{j<r}∑r

p=1 eS
−
p + η+

2

,

G−
r (j) := eS

−
j−r 1{j>r} +e−S+

r−j 1{j≤r}
η−

1 + ∑r
p=0 e−S+

p

,

where η−
1 and η+

2 are defined as in (23), but for the random walks {S−
n }n≥0 and {S+

n }n≥0,
respectively. Note that 0 < G±

r ≤ 1 and, in view of (23), that G+
r (j) and G−

r (j) are a.s.
positive under the measures P·,+ and P−,·, respectively. Set

L̃+
n := min

1≤p≤n S
+
p (27)

and let

cj :=
∞∑
l=0

E·,+G+
l (j) 1{M̃−

l <0}, dj :=
j∑
q=1

∞∑
r=0

E−,·G−
r (q) 1{L̃+

r >0} . (28)

We can easily verify that cj and dj are finite for any j = 0, 1, . . . . Thus,

cj ≤ j + 1 +
∞∑

l=j+1

E·,+ eS
−
l−j 1{M̃−

l <0} = j + 1 +
∞∑
p=1

E eSp 1{M̃p<0}

= j + 1 +
∞∑
p=1

E eSp 1{S1<0,...,Sp<0}

< ∞
(see D2, Section 17, of [18]).

Now we are ready to formulate and prove the following statement.

Theorem 4. Let Spitzer’s condition, (18), hold. Then, for any fixed j ≥ 0,

lim
n→∞

ENn(j)

nP(Ln ≥ 0)
= cj

ρ
, (29)

lim
n→∞

ENn(n− j)

P(M̃n < 0)
= dj . (30)
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Remark 5. In view of (25), the relations (29) and (30) can be rewritten as follows:

ENn(j) ∼ cjρ
−1nρl1(n) and ENn(n− j) ∼ djn

−ρl2(n), as n → ∞.

Proof of Theorem 4. To prove the theorem, we have to evaluate the sum, (17), of expectations
of the form

E e−SjW−1
k =

k∑
l=0

E e−SjW−1
k 1{τ(k)=l} . (31)

The key idea both in this proof and in that of Theorem 5 is quite similar to that of the Laplace
method: the main contribution to the expectation (31) comes from the event where j is close
to τ(k) (for other values of j ≤ k, the quantity e−Sj will typically be quite small compared
with Wk).

First, we will show that, for each fixed ε > 0, there exists a J ≡ J (ε) such that, for all j ≥ 0
and all k ≥ J + j ,

E e−SjW−1
k 1{τ(k)≥J+j} ≤ ε P(Lk−j ≥ 0). (32)

Indeed, as Wk ≥ e−Sτ(k) , we have

E e−SjW−1
k 1{τ(k)≥J+j} ≤ E eSτ(k)−Sj 1{τ(k)≥J+j}

=
k−j∑
p=J

E eSp+j−Sj 1{τ(k)=p+j}

≤
k−j∑
p=J

E eSp 1{τ(k−j)=p}

=
k−j∑
p=J

E[eSp 1{τ(p)=p}] P(Lk−j−p ≥ 0),

and to obtain the result required it remains to apply Lemma 4 with u(x) = e−x .
The next step is to demonstrate that, for any fixed j ≥ 0 and l ≥ 1,

lim
k→∞

E e−SjW−1
k 1{τ(k)=l}

P(Lk ≥ 0)
= E·,+G+

l (j) 1{M̃−
l <0} . (33)

However, this is an easy consequence of Lemma 3. Indeed, assume first that j ≥ l. Then, for
the RVs Gl,r (j) defined for r ≥ j − l by

Gl,k−l (j) := e−S+
j−l∑l

p=1 eS
−
p + ∑k−l

q=0 e−S+
q

≤ 1, k ≥ j

(for r < j − l we can set Gl,r (j) ≡ 1), we have

E e−SjW−1
k 1{τ(k)=l} = E

eSτ(k)−Sj∑k
p=0 eSτ(k)−Sp

1{τ(k)=l}

= EGl,k−l (j) 1{M̃−
l <0, L+

k−l≥0}
= E[Gl,k−l (j) 1{M̃−

l <0} | L+
k−l ≥ 0] P(Lk−l ≥ 0)
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(here the second relation follows from the duality principle: we use the ‘time-reversed random
walk’ on [0, l]).

It is evident that, as k → ∞,

Gl,k−l (j) 1{M̃−
l <0} → G+

l (j) 1{M̃−
l <0} P·,+ -a.s.

and, therefore, by Lemma 3, that

lim
k→∞ E[Gl,k−l (j) 1{M̃−

l <0} | L+
k−l ≥ 0] = E·,+G+

l (j) 1{M̃−
l <0} . (34)

On the other hand, in view of (25), for each fixed l we have

lim
k→∞

P(Lk−l ≥ 0)

P(Lk ≥ 0)
= 1. (35)

Combining this with (34) gives (33). The case where j < l can be treated in a similar way.
Now everything is ready to complete the proof of the first part of the theorem. It follows

from (31), (32), and (33) that, for each fixed j ≥ 0,

E e−SjW−1
k ∼ cj P(Lk ≥ 0) as k → ∞. (36)

Therefore, for a fixed ε > 0 there exists a K(ε) < ∞ such that, for all K ≥ K(ε) and n > K ,

(1 − ε)cj

n−1∑
k=K+1

P(Lk ≥ 0) ≤ ENn(j) =
K∑

k=j+1

E e−SjW−1
k +

n−1∑
k=K+1

E e−SjW−1
k

≤ (K − j)+ (1 + ε)cj

n−1∑
k=K+1

P(Lk ≥ 0). (37)

By (25) and Karamata’s theorem (see, e.g. Section 1.6 of [7]),

n−1∑
k=K+1

P(Lk ≥ 0) ∼ n

ρ
P(Ln ≥ 0) as n → ∞.

This together with (37) completes the proof of (29).
Now we will prove (30). Let {S∗

n}n≥0
d= {−Sn}n≥0 be the ‘reflected’ random walk. By the

duality principle, for each fixed q ≤ j ,

E e−Sn−jW−1
n−q = E

e−Sn−j∑n−q
p=0 e−Sn−q−p = E

eSn−q−Sn−j∑n−q
p=0 eSn−q−Sn−q−p

= E
e−S∗

j−q∑n−q
p=0 e−S∗

p
= E e−S∗

j−q (W ∗
n−q)−1 (38)

(with an obvious definition for W ∗
n−q ).

Next we set
L∗
n := min

0≤k≤n S
∗
k , M̃∗

n := max
1≤k≤n S

∗
k
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and observe that, as n → ∞,

P(L∗
n ≥ 0) = P(Mn ≤ 0) ∼ eφ P(M̃n < 0). (39)

Indeed, by setting

χ := inf{k ≥ 1 : Sk ≥ 0}, χ̃ := inf{k ≥ 1 : Sk > 0},

we find from the factorization identities that, for |z| < 1,

1 − E zχ̃ = exp

{ ∞∑
n=0

zn

n
P(Sn > 0)

}
, 1 − E zχ = exp

{ ∞∑
n=0

zn

n
P(Sn ≥ 0)

}

(see, e.g. Corollary 4, Section 16, of [9]). Dividing both sides of these identities by 1 − z =
eln(1−z) yields

∞∑
n=0

zn P(Mn ≤ 0) =
∞∑
n=0

zn P(χ̃ > n) = 1 − E zχ̃

1 − z

= exp

{
−

∞∑
n=1

zn

n
P(Sn > 0)+

∞∑
n=1

zn

n

}

= exp

{ ∞∑
n=1

zn

n
P(Sn ≤ 0)

}

and, similarly,

∞∑
n=0

zn P(M̃n < 0) =
∞∑
n=0

zn P(χ > n) = exp

{ ∞∑
n=1

zn

n
P(Sn < 0)

}
.

Therefore,

∞∑
n=0

zn P(Mn ≤ 0) = eφ(z)
∞∑
n=0

zn P(M̃n < 0), φ(z) :=
∞∑
n=1

zn

n
P(Sn = 0).

To prove (39), it remains to use (25) and Karamata’s Tauberian theorem (see, e.g. Corollary 1.7.3
of [7]), noting that φ(z) → φ as z ↗ 1.

Now, from (36) and (39) we find that, as n → ∞,

E e−S∗
j−q (W ∗

n−q)−1 ∼ c∗j−q P(L∗
n−q ≥ 0) ∼ c∗j−qeφ P(M̃n < 0),

where, with a natural definition of E∗·,+ and with L̃+
r as defined in (27), from definitions (21)

and (22), we have

eφc∗j−q = eφ
∞∑
l=0

E∗·,+G∗+
l (j − q) 1{M̃∗−

l <0} =
∞∑
r=0

E−,·G−
r (j − q) 1{L̃+

r >0} .

https://doi.org/10.1017/S0001867800001440 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001440


Random recursive trees in random environments 1063

Therefore, from (17) and (38), as n → ∞ we have

ENn(n− j) =
n−1∑
k=n−j

E e−Sn−jW−1
k =

j∑
q=1

E e−S∗
j−q (W ∗

n−q)−1

∼ P(L∗
n ≥ 0)

j∑
q=1

c∗j−q ∼ P(L∗
n ≥ 0)e−φ

j∑
q=1

∞∑
r=0

E−,·G−
r (j − q) 1{L̃+

r >0}

∼ dj P(M̃n < 0),

as desired. Theorem 4 is thus proved.

The next theorem describes the asymptotic behaviour of the expectation ENn(j) as

min{j, n− j} → ∞.

Theorem 5. Let Spitzer’s condition, (18), be satisfied. Then

lim
j,n−j→∞

ENn(j)

(n− j)P(M̃j < 0)P(Ln−j ≥ 0)
= 1

ρ
. (40)

Remark 6. In view of (25), the assertion of the theorem can be rewritten as follows:

ENn(j) ∼ ρ−1j−ρl2(j)(n− j)ρl1(n− j) as j, n− j → ∞.

It follows that, for any fixed ε ∈ (0, 1
2 ), we have, for t ∈ [ε, 1 − ε],

ENn(�nt�) ∼ sin πρ

πρ

(
1 − t

t

)ρ
as n → ∞,

where �x� denotes the integer part of x. It is interesting to compare this with the corresponding
(obvious) asymptotics for the case w(j) ≡ 1, where ENn(�nt�) ∼ − ln t (of course, the
functions of t on the right-hand sides of the respective relations are densities on (0, 1)).

In the case where E θ = 0 and E θ2 < ∞, we do not even need to bound the value j/n away
from 0 and 1: in that case, from the asymptotic behaviour of the denominators in (40) (see, e.g.
page 94 of [9]), we have

ENn(j) ∼ 2

π

(
n− j

j

)1/2

as j, n− j → ∞.

Note also that assertions (29) and (30) (Theorem 4) can be viewed as the ‘boundary cases’
of (40): there is a ‘smooth transition’ between these asymptotics. To make the meaning of the
last statement more precise, we also have to show that cj ∼ P(M̃j < 0) as j → ∞, which is
a separate, nontrivial problem that is somewhat beyond the scope of the present paper. This
claim, however, is more than plausible, as can be seen from the following simple (but not quite
rigorous) argument. When j is large, the main contribution to the sum in cj in (28) comes from
terms with l close to j . Indeed, for l − j � 1, the lth term in that sum is

E·,+
[

eS
−
l−j∑l

p=1 eS
−
p + η+

2

∣∣∣∣ M̃−
l < 0

]
P(M̃−

l < 0) ∼ E−,+
[

eS
−
l−j

η−
1 + η+

2

]
P(M̃−

l < 0), (41)
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where the equivalence is due to the following interpretation: using P− corresponds to condi-
tioning our random walk to stay negative; see, e.g. [4]. This interpretation also implies that
the contribution of all such terms to the sum cj will be relatively small, as, for large l − j , the
sums S−

l−j typically assume fairly large negative values, given that the walk stays negative. A
similar assertion holds when j − l � 1. On the other hand, for the terms with indices l that
are ‘close’ to j (assume, say, that |l − j | ≤ K for an arbitrarily large, fixed K), we could use
the fact that P(M̃−

l < 0) ∼ P(M̃−
j < 0) as j → ∞ and l/j → 1 (due to regular variation),

and then observe that the sum of the conditional expectations that appear on the left-hand side
of (41) will be close to 1. This is because there we are basically conditioning on the random
walk {S−

k } staying negative, and, under E−,+, for large K and j � K we have

∑
|l−j |≤K

e−S+
j−l 1{j≥l} +eS

−
l−j 1{j<l}∑l

p=1 eS
−
p + η+

2

≈ 1

η−
1 + η+

2

[ K∑
k=0

e−S+
k +

K∑
k=1

eS
−
k

]
≈ 1.

We split the proof of the theorem into several steps. As said above, the main contribution to
the expectation E e−SjW−1

k from the sum (17) comes from the event where j is close to τ(k).
So first we will show that the contribution from the complementary event is negligibly small.

Lemma 5. Under Spitzer’s condition, (18), for any ε > 0 there exists a J ≡ J (ε) < ∞ such
that, for all j ≥ J and k − j ≥ J ,

E[eSτ(k)−Sj ; |τ(k)− j | ≥ J ] ≤ ε P(M̃j < 0)P(Lk−j ≥ 0). (42)

Proof. Fix a J > 0 and choose a j ≥ J and a k ≥ j + J . We have

E[eSτ(k)−Sj ; |τ(k)− j | ≥ J ] = R1 + R2,

where

R1 :=
j−J∑
t=0

E[eSτ(k)−Sj ; τ(k) = t], R2 :=
k∑

t=j+J
E[eSτ(k)−Sj ; τ(k) = t].

First consider R2. For t ≥ j , we obtain

E[eSτ(k)−Sj ; τ(k) = t] = E
[
eSt−Sj ; min

0≤p≤t−1
Sp > St , min

t≤p≤k Sp ≥ St

]

= E
[
eSt−Sj ; min

0≤p≤t−1
Sp > St

]
P(Lk−t ≥ 0)

= E
[
eSt−j ; max

1≤p≤t Sp < 0
]

P(Lk−t ≥ 0),

by the duality principle. Defining for each l ≥ 0 the shifted random walk

{S(l)p := Sl+p − Sl}p≥0,

from (26) we obtain

E
[
eSt−j ; max

1≤p≤t Sp < 0
]

= E
[
eSt−j P

(
max

1≤p≤j S
(t−j)
p < −St−j

∣∣∣ St−j
)
; max

1≤p≤t−j Sp < 0
]

= E[eSt−j µ̃j (−St−j ); M̃t−j < 0]
≤ C2 P(M̃j < 0)E[eSt−j U(−St−j ); M̃t−j < 0].

https://doi.org/10.1017/S0001867800001440 Published online by Cambridge University Press

https://doi.org/10.1017/S0001867800001440


Random recursive trees in random environments 1065

Hence,

R2 ≤ C2 P(M̃j < 0)
k∑

t=j+J
E[eSt−j U(−St−j ); M̃t−j < 0] P(Lk−t ≥ 0)

= C2 P(M̃j < 0)
k−j∑
p=J

E[eSpU(−Sp); M̃p < 0] P(Lk−j−p ≥ 0).

SinceU(x) is a renewal function, we haveU(x) = O(x), x → ∞. Thus, there exists a constant
C3 such that e−xU(x) ≤ u(x) := C3e−x/2 for all x > 0. Since

∫ ∞
0 u(x) dx < ∞, it follows

from Lemma 4 and the duality principle that, for every ε > 0, there exists a J1 ≡ J1(ε) < ∞
such that, for all k − j > J1,

k−j∑
p=J1

E[eSpU(−Sp); M̃p < 0] P(Lk−j−p ≥ 0) ≤ ε

2C2
P(Lk−j ≥ 0).

Thus, for k − j > J ≥ J1,

R2 ≤ ε

2
P(M̃j < 0)P(Lk−j ≥ 0). (43)

Now we will evaluate R1. For t < j , we obtain

E[eSτ(k)−Sj ; τ(k) = t] = E
[
eSt−Sj ; min

0≤p≤t−1
Sp > St ; min

t≤p≤k Sp ≥ St

]

= E
[
eSt−Sj ; min

t≤p≤k Sp ≥ St

]
P(M̃t < 0)

= E
[
e−Sj−t ; min

0≤p≤k−t Sp ≥ 0
]

P(M̃t < 0),

where to obtain the second relation we have again used the duality principle. Arguing as before,
we see that

E
[
e−Sj−t ; min

0≤p≤k−t Sp ≥ 0
]

= E
[
e−Sj−t P

(
min

0≤p≤k−j S
(j−t)
p ≥ −Sj−t

∣∣∣ Sj−t
)
; min

0≤p≤j−t Sp ≥ 0
]

= E[e−Sj−t λk−j (Sj−t ); Lj−t ≥ 0]
≤ C1 P(Lk−j ≥ 0)E[e−Sj−t V (Sj−t ); Lj−t ≥ 0].

Hence,

R1 ≤ C1 P(Lk−j ≥ 0)
j−J∑
t=0

E[e−Sj−t V (Sj−t ); Lj−t ≥ 0] P(M̃t < 0)

= C1 P(Lk−j ≥ 0)
j∑

p=J
E[e−SpV (Sp); Lp ≥ 0] P(M̃j−p < 0).
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From this bound we can deduce, using Lemma 4 and the same argument as that employed to
evaluate R2, that for every ε > 0 there exists a J2(ε) < ∞ such that, for all j > J ≥ J2,

R1 ≤ ε

2
P(M̃j < 0)P(Lk−j ≥ 0). (44)

Combining (43) with (44) and setting J := max{J1, J2} completes the proof of Lemma 5.

Next we evaluate the contributions to the expectations of interest from the events where τ(k)
is equal to a fixed number close to j .

Lemma 6. Under Spitzer’s condition, (18), for any fixed r ∈ Z,

lim
j,k−j→∞

E[e−SjW−1
k ; τ(k) = j + r]

P(M̃j < 0)P(Lk−j ≥ 0)
= E−,+

eS
−
r 1{r≥0} +e−S+−r 1{r<0}

η−
1 + η+

2

, (45)

where η−
1 and η+

2 are independent RVs defined as in (23), but for the independent random walks
{S−
n }n≥0 and {S+

n }n≥0, respectively.

Proof. For 0 ≤ r ≤ k − j , let

Gj+r,k−j−r := eS
−
r∑j+r

p=1 eS
−
p + ∑k−j−r

p=0 e−S+
p

.

Then

E[e−SjW−1
k ; τ(k) = j + r]

= E

[
eSj+r−Sj∑k
p=0 eSj+r−Sp

; min
0≤p≤j+r−1

Sp > Sj+r ; min
j+r≤p≤k Sp ≥ Sj+r

]

= E[Gj+r,k−j−r ; M̃−
j+r < 0, L+

k−j−r ≥ 0]
= E[Gj+r,k−j−r | M̃−

j+r < 0, L+
k−j−r ≥ 0] P(M̃j+r < 0)P(Lk−j−r ≥ 0).

Clearly, 0 < Gj+r,k−j−r ≤ 1 and

lim
j,k−j→∞Gj+r,k−j−r = eS

−
r

η−
1 + η+

2

P−,+ -a.s.

Hence, by applying Lemma 2 and recalling (25) and the properties of regularly varying functions
(cf. (35)), we obtain (45) for r ≥ 0. The proof of (45) for r < 0 is almost identical. Lemma 6
is thus proved.

Proof of Theorem 5. For a fixed ε > 0, let J ≡ J (ε) be such that (42) holds. For j ≥ J

and n− j ≥ J + 1, from (17) we have

ENn(j) = R3 + R4 + R5,

where

R3 :=
j+J−1∑
k=j

E e−SjW−1
k , R4 :=

n−1∑
k=j+J

E[e−SjW−1
k ; |τ(k)− j | < J ],

R5 :=
n−1∑

k=j+J
E[e−SjW−1

k ; |τ(k)− j | ≥ J ].
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We evaluate the quantities Ri, i = 3, 4, 5, separately. First observe that, in view of (30) (with
n replaced by k), there exists a constant C3 such that, for all sufficiently large j ,

R3 ≤ C3J P(M̃j < 0).

Thus, since

(n− j)P(Ln−j ≥ 0) ∼ (n− j)ρl1(n− j) → ∞ as n− j → ∞,

it follows that

R3 = o((n− j)P(M̃j < 0)P(Ln−j ≥ 0)) as n− j → ∞.

Furthermore, using the obvious inequalityWk ≥ e−Sτ(k) and the bound (42) together with (25)
and Karamata’s theorem, for j ≥ J and some constant C5 > 0 we have

R5 ≤ ε P(M̃j < 0)
n−1∑

k=j+J
P(Lk−j ≥ 0)

= ε P(M̃j < 0)
n−j−1∑
p=J

P(Lp ≥ 0)

≤ εC5(n− j)P(M̃j < 0)P(Ln−j ≥ 0)

and, therefore,
R5

(n− j)P(M̃j < 0)P(Lk−j ≥ 0)
≤ εC5.

Finally, set

EJ := E−,+
1 + ∑J−1

r=1 (e
S−
r + e−S+

r )

η−
1 + η+

2

.

Using Lemma 6, (25), and the properties of regularly varying functions, we see that, as
min{j, n− j} → ∞,

R4 ∼ EJ P(M̃j < 0)
n−1∑

k=j+J
P(Lk−j ≥ 0)

∼ EJ P(M̃j < 0)
n−j−1∑
p=J

P(Lp ≥ 0)

∼ EJ P(M̃j < 0)ρ−1(n− j)P(Ln−j ≥ 0).

Since limJ→∞ EJ = 1 by the dominated convergence theorem, the assertion of Theorem 5
immediately follows from the above relation for R4 and the bounds for R3 and R5.

3.2. The asymptotic behaviour of the distribution of Ew Nn(j)

Unfortunately, our description of the asymptotic behaviour of Ew Nn(j)will be less detailed
than that for ENn(j). We will be able to describe the distribution of the RV Ew Nn(j) only for
values of j located either to the right or in a small left-hand vicinity of the random epoch τ(n).
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Theorem 6. Let Spitzer’s condition, (18), be satisfied and let j ≡ j (n) be an arbitrary
(random) sequence with the property that (τ (n)− j)+ = o(n) in probability as n → ∞.
Then

P

(
eSj−Sτ(n)
n− j

Ew Nn(j) < x

)
⇒ P−,+

(
1

η−
1 + η+

2

< x

)
, (46)

where η−
1 and η+

2 are RVs defined as in (23), but for the independent random walks {S−
n }n≥0

and {S+
n }n≥0, respectively.

Proof. Since the RVs Wn (see (5)) are increasing in n, from (16) we have the following
lower bound:

Ew Nn(j) ≥ (n− j)e−SjW−1
n = (n− j)eSτ(n)−Sj∑n

k=0 eSτ(n)−Sk
.

Now we will derive an upper bound for Ew Nn(j). To this end observe that, according
to (23), for any fixed ε > 0 and δ > 0 there exists a J < ∞ such that

P+
( ∞∑
k=J

e−Sk > δ

)
≤ ε. (47)

Clearly, for any j ∈ [τ(n), n− 1],
Ew Nn(j) ≤ eSτ(n)−Sj (τ (n)+ J − j)+ + e−Sj (n− j)W−1

τ(n)+J

= eSτ(n)−Sj
[
(τ (n)+ J − j)+ + (n− j)

(τ(n)+J∑
k=0

eSτ(n)−Sk
)−1]

.

Hence, we obtain

( n∑
k=0

eSτ(n)−Sk
)−1

≤ eSj−Sτ(n)
n− j

Ew Nn(j)

≤ (τ (n)+ J − j)+
n− j

+
(τ(n)+J∑

k=0

eSτ(n)−Sk
)−1

. (48)

Evidently, for y > 0,

P

( n∑
k=0

eSτ(n)−Sk < y

)
=

n∑
p=0

P

( n∑
k=0

eSτ(n)−Sk < y; τ(n) = p

)

=
n∑
p=0

P

( p∑
l=1

eS
−
l +

n−p∑
r=0

e−S+
r < y; M̃−

p < 0, L+
n−p ≥ 0

)
. (49)

Furthermore, from (23) and (24) note that, as min{p, n− p} → ∞,

P

( p∑
l=1

eS
−
l +

n−p∑
r=0

e−S+
r < y

∣∣∣∣ M̃−
p < 0, L+

n−p ≥ 0

)
⇒ P−,+(η−

1 + η+
2 < y). (50)
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If condition (18) is met, then the generalized arcsine law holds (see, e.g. Theorems 8.9.9
and 8.9.5 of [7]):

lim
n→∞ P

(
τ(n)

n
≤ x

)
= sin πρ

π

∫ x

0
tρ−1(1 − t)−ρ dt, x ∈ [0, 1]. (51)

Thus, for any ε1 > 0, there exists a δ1 ∈ (0, 1
2 ) such that

P(τ (n) /∈ (nδ1, n(1 − δ1))) ≤ ε1, (52)

which, combined with (49) and (50), shows that, as n → ∞,

P

( n∑
k=0

eSτ(n)−Sk < y

)
⇒ P−,+(η−

1 + η+
2 < y). (53)

A similar argument combined with (47) shows that

P

(τ(n)+J∑
k=0

eSτ(n)−Sk < y

)
⇒ P−,+(η−

1 + η+
2 < y) (54)

as first n → ∞ and then J → ∞. On the other hand, again using (51), we conclude that, for
j ∈ [τ(n), n− 1],

(τ (n)+ J − j)+
n− j

≤ 1{τ(n)+J>j}
J

n− j
1{τ(n)≥n−√

n}

+ 1{τ(n)+J>j}
J√
n− J

1{τ(n)<n−√
n}

≤ J 1{τ(n)≥n−√
n} + J√

n− J
(55)

p−→ 0 (56)

as first n → ∞ and then J → ∞.
Using (53) on the left-hand side of (48), and (54) and (56) on the right-hand side of (48),

proves (46) for j ∈ [τ(n), n− 1].
For τ(n)− j > 0, we can use similar arguments. The only difference is that, in this case,

(τ (n)+ J − j)+ = τ(n)+ J − j,

and for j < τ(n) (varying with n in such a way that (τ (n)− j)+ = o(n)) the conclusion (56)
still holds, by (52). Theorem 6 is thus proved.
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